• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 12
  • 10
  • 10
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 238
  • 72
  • 57
  • 42
  • 39
  • 35
  • 34
  • 31
  • 31
  • 29
  • 27
  • 26
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design of an integrated voltage regulator / Design av en integrerad spänningsregulator

Komark, Stina January 2003 (has links)
Many analog systems need a stable power supply voltage that does not vary with temperature and time in order to operate properly. In a battery operated system the battery voltage is not stable, e.g. it decreases with decreasing temperature and with ageing. In that case a voltage regulator must be used, that regulates the battery voltage and generates a stable supply voltage to power other circuitry. In this thesis a voltage regulator to be used in a battery operated system has been designed which meets the given specification of stability and power capabilities. A voltage reference, which is a commonly used devise in analog circuits, was also designed. The role of a reference voltage in an electrical system is the same as for a tuning fork in a musical ensemble; to set a standard to which other voltages are compared. A functionality to detect when the lifetime of the battery is about to run out was also developed.
72

Miniature MEMS-Based Adaptive Antennas on Flexible Substrates

Coutts, Gordon January 2007 (has links)
Current trends in technology are moving to increased use of wireless communication with rapidly increasing data transmission rates and higher frequencies. Miniaturization is essential to allow electronics of increasing complexity to fit into smaller devices. Adaptive technologies allow a single system to operate across multiple wireless protocols, adjusting to changing conditions to minimize interference and enhance performance. Flexibility is essential as the use of wireless technology increases and spreads to new industries. The objective of this research is twofold: to develop novel reconfigurable electromagnetic structures and a novel process to fabricate microelectromechanical systems (MEMS) devices on flexible substrates. The novel electromagnetic structures are passive frequency-switchable parasitic antennas, conformal MEMS-tunable frequency selective surfaces (FSS) and MEMS-tunable electromagnetic bandgap (EBG) structures. Fabricating the reconfigurable conformal FSS and EBG structures requires the development of a new fabrication process to produce MEMS devices monolithically integrated onto a flexible substrate. Novel frequency-switchable parasitic antenna arrays are developed, fabricated and measured. The structure radiates efficiently when placed over metal and absorbing material, improving the range of conventional RFID systems, as well as minimizing blind spots to provide continuous coverage in a hemisphere. A novel analysis method is developed to characterize frequency-switchable parasitic patch arrays. The purpose of the analysis is to provide an approximation of the input impedance and variation of the radiation pattern with frequency. The analysis combines models based on electromagnetic theory and circuit theory to provide a fast and yet reasonable approximation of the parasitic array characteristics. The analysis also provides a good deal of physical insight into the operation of multi-mode parasitic patch arrays. The end result is an initial array design which provides a good starting point for full EM simulation and optimization. The new analysis method is validated alongside measured and simulated results, with good correlation for both impedance characteristics and far-field radiation patterns. A MEMS-based switched parasitic antenna array is designed, fabricated and measured with good correlation between simulated and measured results. The structure is a direct-coupled parasitic patch array which is capable of frequency steering and has additional MEMS-enabled beam-steering capabilities at each frequency. An EBG-based multi-mode radiating structure design is presented, which is capable of frequency-switchable beam steering. The antenna area is significantly reduced compared to the parasitic patch array structure, but at a considerable cost in terms of gain and efficiency. A novel MEMS process is developed to fabricate large numbers of high-performance MEMS devices monolithically integrated onto a rigid-flex organic substrate using low-temperature processes. The rigid-flex substrate is all dielectric, which is amenable to low-loss electromagnetic structures. The substrate provides mechanical support to the MEMS devices while maintaining overall flexibility. The adaptation of each fabrication process step to handle flexible substrates is analyzed and documented in detail. The newly-developed MEMS process is used to fabricate a MEMS reconfigurable frequency-selective surface. A practical bias network is incorporated into the structure design to ensure that all devices are actuated simultaneously. FSS structures operating in the Ku and Ka bands are fabricated and tested, with good correlation between simulated and measured results for individual devices as well as the entire FSS structures. The newly-developed MEMS process is also used to fabricate a MEMS reconfigurable electromagnetic bandgap structure. An EBG structure operating in the Ka band is fabricated and tested to verify the validity of the proposed concept.
73

Subwavelength-scale Light Localization in Complete Photonic Bandgap Materials

Tang, Lingling January 2010 (has links)
<p>The objective of this dissertation work is to examine light localization in semiconductors provided by a complete photonic bandgap via three-dimensional (3D) woodpile photonic crystals. A 3D photonic crystal is a periodic nanostructure that demonstrates omni-directional Bragg reflection. These materials are anticipated to become a powerful tool for engineering light propagation and localization within subwavelength scales due to their complete photonic bandgap and the distinctive dispersion relation. </p><p>The approach of realizing microcavities in this dissertation is to combine multi-directional etching fabrication methods with mode gap design. Modulation of unit cell size along a line-defect 3D waveguide could bring a guiding mode into the mode gap region of the waveguide and form a microcavity with a resonance inside the complete photonic bandgap. The designed microcavities could be fabricated by multi-directional etching methods because they can structurally be decomposed into two sets of connected and straight dielectric rods. </p><p>Ultra-high-quality factor microcavities and sub-wavelength-scale waveguides are designed without introduction of local disorders. Monopole, dipole, and quadrupole resonant modes are demonstrated with a small modal volume. The smallest modal volumes obtained are 0.36 cubic half-wavelengths for a resonance field in vacuum, and 2.88 cubic half-wavelengths for a resonance field in a dielectric. Direct metal contacts with the microcavities do not significantly deteriorate the quality factors because the resonant fields are located inside the microcavities. Single-mode woodpile waveguides are also designed in both lateral and vertical propagation directions. </p><p>The multi-directional etching method is a simple approach to the fabrication of woodpile photonic crystals and designed optical components with a variety of crystal orientations and surfaces, including (110), (001), (100), and (010) planes. An arbitrary surface plane (mn0) is obtained with this method, where m and n are integers. Moreover, it can also produce large area woodpile photonic crystals with high precision in silicon and GaAs materials.</p><p>These optical components in woodpile photonic crystals would be building blocks of high-density, low-loss 3D integrated optics, cavity quantum electrodynamics (QED), nonlinear optics, and enable the realization of current-injection optical devices.</p> / Dissertation
74

Semiconductor Laser using Sputtered SiO2 and Quantum Well Intermixing

Chen, Rui-Ren 24 August 2011 (has links)
In this work , impurity free vacancy diffusion (IFVD) quantum well intermixing(QWI) technology by high thermal-expansion-induced stress is used to perform bandgap engineering. In this paper, 1530nm InGaAsP multiple QWs sandwiched by p-InP (2£gm thickeneess, top) and n-InP (bottom) material is used as testing material structure also laser fabrication material, where contact materials (InGaAs and InP) on p-InP are used for comparison. By the difference between thermal expansion coefficients of SiO2 on the different material (InGaAs, InP), large different behaviors of QWI are observed, while low different dependence on defects created by ion-implantation is found. Above 70nm photo luminance (PL) wavelength shift of InGaAsP MQW below 2£gm thick InP is realized in this method. Further more, CW in-plane laser structures are also successfully fabricated and demonstrated by such QWI, giving the same shift as PL. It shows that good qualify of material can be obtained in such QWI method. Using local deposition of SiO2 causes different bandgap materials, re-growth free processing for monolithic integration can be expected, offering a powerful scheme of QWI for bandgap engineering.
75

Sputtered SiO2 Enhance Quantum Well Intermixing for Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers

Tseng, Ling-Yu 30 August 2012 (has links)
In this work, a quantum well intermixing(QWI) technology, called impurity free vacancy diffusion(IFVD), is used to do the bandgap engineering in an optoelectronic monolithic integration. The monolithic integration of SOAs and EAMs is taken as an example. By IFVD, the transition energy levels of EAM quantum wells can be shifted to shorter wavelength region, while SOA quantum wells are kept the same. Therefore, the overall SOA-integrated EAM efficiency can be improved. We use dielectric film¡XSiO2 and Si3N4 to control the impurity free vacancy diffusion, both of these two dielectric layer will induce stress on the wafer, but they will come to the totally different result base on the difference atom chemistry with the substrate. Using Ga atom diffusion into SiO2 to relax stress, the IFVD will be operated to enhance quantum well intermixing, leading to energy bang transition change. On the other hand, with Si3N4 film, no significant intermixing is observed, implying atom chemistry dominates the whole process. Also, a super critical fluid technique by H2O2 is also employed to further improving SiO2 quality, a as large as 180nm blue shift is obtained, further improving such mechanism. Through difference properties between SiO2 and Si3N4 dielectric layers, different bandgap transitions in one single chip can be controlled in an area of 30£gm¡Ñ50£gm, leading to a planar bandgap engineering. Use these techniques, an EAM-SOA integration is designed and fabricated, obtaining an wavelength offset of 40nm with good quality of material structure. In the future, we can use this technique on large scale chip, tuning the bandgap to make photonic integration circuit without re-growth.
76

Analysis and Design for the Electromagnetic Susceptibility of High-Speed Digital Circuits

Kuo, Hung-chun 28 June 2006 (has links)
With the enormously developing of the wireless communication technology, the electromagnetic environment exposing to the electrical devices is becoming more and more complex. Besides, the trends of designing high-speed digital computer systems are toward fast edge rates, high clock frequencies, and low voltage levels. The electromagnetic susceptibility (EMS) or immunity of the high-speed circuit has become an important issue today apparently. In this thesis, we will firstly establish the measurement environment and calibration technology for numerical validation. Then we employ the three-dimension finite-differential time-domain (3D-FDTD) numerical method compared to the finite element method (FEM) to simulate the EMS behavior of the power delivery network (PDN) and traces of the printed circuit boards (PCB). In addition to several types of layout of the traces studied in this thesis, we also explain the mechanism and phenomenon of the EMS of the power/ground planes of the PCB. Besides the EMS behavior research of the traditional solutions to suppress the power noise, we propose an electromagnetic bandgap structure (EBG) which has the broadband suppression of the power noise and is validated to be effective to improve the EMS problems. Finally, we also propose a novel concept to increase the signal integrity (SI) by shielding design.
77

Power Integrity Analysis for High-Speed Circuit Package Using Transmission Line Method

Jhong, Ming-Fong 28 June 2006 (has links)
In recent high-speed digital circuits with pico-second rising/falling edges, it is reasonable to consider the power/ground planes as a dynamic electromagnetic system. The simultaneous switching noise (SSN) or ground bounce noise (GBN), resulting from the transient currents which flow between power/ground planes during the state transitions of the logic gates, has become a critical factor to degrade the signal integrity (SI) and power integrity (PI) in PCB or package design. In order to accurately perform overall system-level power integrity simulation, extracting the SPICE-compatible models with the resonant effect being considered in the power/ground planes and incorporating the model into the conventional circuit simulator, such as SPICE, is essential. In this thesis, a two-dimensional transmission line (2D-TL) model is proposed for constructing the SPICE-compatible model of the power/ground planes. Based on this model, the ground bounce noise for the BGA package mounted on a PCB can be efficiently evaluated. It is found that the behavior of GBN between the only package and package mounted on a PCB (hybrid structure) is obvious different. Then, we combine the SPICE-compatible model of the power/ground planes with decoupling capacitors to fast evaluate the behavior of GBN. It also has a good agreement between our model and the measured result. Adding decoupling capacitors between the power and ground planes is a typical way to suppress the GBN. However, they are not effective at the frequency higher than GHz due to their inherent lead inductance. In recent, a new method for eliminating the GBN at higher frequency is proposed by electromagnetic bandgap (EBG) structure with high impedance surface (HIS). Finally, we utilize 2D-TL model to fast analyze the behavior of the EBG, and combine decoupling capacitors with EBG structure to research the suppression of the GBN.
78

Design and Characterization of 2D and 3D Photonic Crystal Fibers

Wu, Sung-Ping 15 July 2006 (has links)
Because of the fast growing in communications, the quality of signal transmission in optical fiber becomes very important. Concurrently, photonic crystal fiber (PCF) consisting of a central defect region surrounded by multiple air holes is attracting much attention in recent years because of its unique properties, such as full photonic bandgaps, wideband, dispersion, endlessly single mode and birefringence, etc. This thesis is mainly focused on the development of the photonic band structures and propagation properties of PCF. And we propose a novel ideal about 3-D PCF, which can be fabricated using the laser heated pedestal growth (LHPG) method. In the thesis, we study the optical properties of 2-D and 3-D PCFs made by Pyrex using the software RSoft. From the result of simulation, the 2-D out-of-plane bandgaps for a hexagonal close packed structure appear between the air filling fraction range from 0.30 to 0.88 for the incident light of wavelength range from 0.7 to 1
79

Wide Bandgap Semiconductor (SiC & GaN) Power Amplifiers in Different Classes

Azam, Sher January 2008 (has links)
<p>SiC MESFETs and GaN HEMTs have an enormous potential in high-power amplifiers at microwave frequencies due to their wide bandgap features of high electric breakdown field strength, high electron saturation velocity and high operating temperature. The high power density combined with the comparably high impedance attainable by these devices also offers new possibilities for wideband power microwave systems. In this thesis, Class C switching response of SiC MESFET in TCAD and two different generations of broadband power amplifiers have been designed, fabricated and characterized. Input and output matching networks and shunt feedback topology based on microstrip and lumped components have been designed, to increase the bandwidth and to improve the stability. The first amplifier is a single stage 26-watt using a SiC MESFET covering the frequency from 200-500 MHz is designed and fabricated. Typical results at 50 V drain bias for the whole band are, 22 dB power gain, 43 dBm output power, minimum power added efficiency at P 1dB is 47 % at 200 MHz and maximum 60 % at 500 MHz and the IMD3 level at 10 dB back-off from P 1dB is below ‑45 dBc. The results at 60 V drain bias at 500 MHz are, 24.9 dB power gain, 44.15 dBm output power (26 W) and 66 % PAE.</p><p>In the second phase, two power amplifiers at 0.7-1.8 GHz without feed back for SiC MESFET and with feedback for GaN HEMT are designed and fabricated (both these transistors were of 10 W). The measured maximum output power for the SiC amplifier at Vd = 48 V was 41.3 dBm (~13.7 W), with a PAE of 32 % and a power gain above 10 dB. At a drain bias of Vd= 66 V at 700 MHz the Pmax was 42.2 dBm (~16.6 W) with a PAE of 34.4 %. The measured results for GaN amplifier are; maximum output power at Vd = 48 V is 40 dBm (~10 W), with a PAE of 34 % and a power gain above 10 dB. The SiC amplifier gives better results than for GaN amplifier for the same 10 W transistor.</p><p>A comparison between the physical simulations and measured device characteristics has also been carried out. A novel and efficient way to extend the physical simulations to large signal high frequency domain was developed in our group, is further extended to study the class-C switching response of the devices. By the extended technique the switching losses, power density and PAE in the dynamics of the SiC MESFET transistor at four different frequencies of 500 MHz, 1, 2 and 3 GHz during large signal operation and the source of switching losses in the device structure was investigated. The results obtained at 500 MHz are, PAE of 78.3%, a power density of 2.5 W/mm with a switching loss of 0.69 W/mm. Typical results at 3 GHz are, PAE of 53.4 %, a power density of 1.7 W/mm with a switching loss of 1.52 W/mm.</p> / Report code: LIU-TEK-LIC-2008:32
80

Electrochemical Materials Science: Calculation vs. Experiment as Predictive Tools in Tailoring Intrinsically Conducting Polythiophenes

Alhalasah, Wasim 19 March 2007 (has links) (PDF)
Eine Reihe 3-(p-X-phenyl)-Thiophenmonomeren (X = -H, -CH3, -OCH3, -COCH3, -COOC2H5, -NO2) wurde elektrochemisch polymerisiert, um Filme zu erhalten, die umkehrbar reduziert und oxidiert werden konnten (n-und p-dotiert wurden). Die Oxidationspotentiale der Monomere und die formalen Potentiale der n und p-Dotierprozesse der Polymere wurden mit Resonanz- und induktiven Effekten der Substituenten (Hammett konstanten) am Phenylring sowie semiempirisch errechneten Bildungswärmen der Monomereradikalkationen korreliert. Außerdem wurden die Oxidationspotentiale mit den Ionisierungspotentialen der Monomere verglichen, die über die Dichtefunktionialtheorie (DFT) errechnet wurden, die der Energie für das Erzeugen der Radikalkationen entsprechen. Um theoretische Grundlagen für die Einstufen-Bildung regioregulär -konjungierter Oligo- und Polythiophene zu erhalten, wurden die elektronischen Zustände von 3-Phenylthiophen-Derivaten anhand von Molekülorbitalberechnungen auf Grundlage der Dichtefunktionaltheorie mit Becke’s Drei-Parameter-Funktion (B3LYP), sowie mit den Basissätzen 6-31G(d) und 3-21G(d) erklärt. Die Reaktivität der Verknüpfung von mono- und oligo-3-Phenylthiophenen wurde von den berechneten ungepaarten Elektronenspindichten der entsprechenden Radikal-Anionen abgeleitet. Die Ionisierungspotentiale, die den Energien zur Erzeugung der Radikal-Anionen während der Oxidation entsprechen, wurden abgeschätzt. Die aus den 3-Phenylthiophenen entstandenen regioselektiven Hauptprodukte können gut durch die Größe der Spindichten erklärt werden. Da die Verknüpfungsreaktion an der zwei-Position des Thiophnrings (C-2) sterisch durch die Phenylgruppe und den Thiophenring gehindert ist, startet die Initiierung der 3-Phenylthiophene über die Bildung eines Kopf-Schwanz-Dimers. Folglich spielt das Kopf-Schwanz-Dimer eine wichtige Rolle bei den Wachstumsreaktionen der 3-Phenylthiophene. Die Ursache dafür liegt darin, dass das Kopf-Schwanz-Dimer in 5-Position die höchste Spin-Dichte besitzt und die Wahrscheinlichkeit einer Kopf-Kopf-Verknüpfung aufgrund der sterischen Hinderung zwischen dem Thiophenring und der Phenylgruppe gering ist. Polymerfilme von 3-Phenylthiophenderivaten, die durch elektrochemische Polymerisation synthetisiert wurden, sind in situ und ex situ durch Resonanz-Raman-Spektroskopie bei verschiedenen Anregungswellenlängen, sowie durch in situ und ex situ UV-Vis Spektroskopie analysiert wurden. Die Entwicklung der in situ UV-Vis-Spektren der Polymer von 3-Phenylthiophene nach der Dotierung wird durch ähnliche Eigenschaften gekennzeichnet, wie für viele Polythiophene mit einem hohen Grad der Konjugation beobachtet. Während der schrittweisen Oxidation der Poly-3-phenylthiophen Filme verringert sich die Intensität der Absorption wegen des Überganges bei 450-566 nm und ein neues ausgedehntes Absorptionsband, das auf (bi)polaron Zustände bezogen wird erscheint bei ungefähr 730-890 nm. Andererseits wird während der Oxidation (p-Dotierung) des Poly3-phenylthiophen Filmes eine blau/hypsochrome Verschiebung für beide Absorptionsbänder beobachtet . Es wird durch die Tatsache erklärt, dass ein Polymer eine Verteilung der Kettenlängen enthält und die längste Polymer kette (dessen Absorption bei niedriger Energie auftritt), bei niedrigeren Potentialen zu oxidieren beginnt. Die elektrochemischen Bandlücken der Derivate von 3-Phenylthiophen sind durch zyklische Voltametrie gemessen worden. Der Effekt der Substituenten auf den Oxidations-/Reduktions- potentiale wird besprochen. Bei Bandlücken, die durch zyklische Voltammetrie erhalten wurden, hat sich herausgestellt, dass sie im Allgemeinen höher liegen als optische Bandlücken. Erste Resultate der in situ Resonanz-Raman-Spektroskopie, von dem elektrochemisch erzeugten Polymerderivate von 3-Phenylthiophen Filmen auf einer Platinelektrode, in einer organischen Elektrolytlösung, werden berichtet. Beobachtete Raman Banden werden zugewiesen; gegründet auf diesen Resultaten werden die zuvor angenommenen molekularen Strukturen diskutiert. / A series of 3-(p-X-phenyl) thiophene monomers (X= –H, –CH3, –OCH3, –COCH3, –COOC2H5, –NO2) was electrochemically polymerized to furnish polymer films that could be reversibly reduced and oxidized (n- and p-doped). The oxidation potentials of the monomers and formal potentials of the n- and p-doping processes of polymers were correlated with resonance and inductive effects (Hammett constants) of the substituents on the phenyl ring as well as the semiempirically calculated heats of formation of the monomer radical cations. Moreover, the oxidation potentials of the monomers were correlated with the ionization potentials of the monomers calculated via density functional theory (DFT), which correspond to the energies for generating radical cations during oxidative processes. For obtaining a theoretical basis for the one-step formation of regioregular –conjugated oligo-and polythiophenes, the electronic states of 3-phenylthiophene derivatives were elucidated by molecular orbital calculations using density functional theory with the Becke-type three parameters functional (B3LYP), the 6-31G(d), and 3-21G(d) basis sets. The reactivity for coupling reaction of mono- and oligo-3-phenylthiophenes are inferred from the calculated unpaired electron spin densities of the respective radical cations, and the ionization potentials which correspond to the energies for generating radical cations during oxidative processes were estimated. The major regioselective products of the oligomerization of 3-phenylthiophene can be well understood in terms of the magnitude of spin densities. Since the steric hindrance between the phenyl group and thiophene ring interferes with the coupling reaction occurring between 2-postions (C–2) of thiophene rings, the initiating reaction of 3-phenylthiophene is generaton of a head-to-tail (HT) dimer. Thus, the head-to-tail (HT) dimer plays an important role in the propagation reactions of 3-phenylthiophene. This originates from the highest spin density at the 5- position of the HT dimer and low probability of the HH coupling due to the steric hindrance between thiophene ring and phenyl group. Polymer films of the 3-phenylthiophene derivatives prepared by electrochemical polymerization were analyzed, in situ and ex situ, with resonance Raman spectroscopy using several excitation wavelengths as well as in situ and ex situ UV-Vis-spectroscopy. The evolution of the in situ UV-Vis-spectra of poly 3-phenylthiophene derivatives upon doping is characterized by similar features as observed for many polythiophenes with high degree of conjugation. During stepwise oxidation of the poly-3-phenylthiophene films the intensity of the absorption due to the transition around 450–566 nm decreases and a new broad absorption band related to (bi)polaron states appears around 730-890 nm. On the other hand, during the oxidation (p-doping) of the poly-3-phenylthiophene films a blue/hypsochromic shift is observed for both absorption bands. It is explained by the fact that a polymer contains a distribution of chain lengths, and the longest polymer chains (the absorption of which occurs at lower energies) start to oxidize at lower potentials. The electrochemical bandgaps of 3-phenylthiophene derivatives have been measured by cyclic voltammetry. The effect of substituents on the oxidation / reduction potentials is discussed. Bandgaps obtained by cyclic voltammetry have been found to be in general higher than optical bandgaps. Preliminary results of in situ resonance Raman spectroscopy of electrochemically generated poly-3-phenylthiophene derivatives films on a platinum electrode exposed to an organic electrolyte solution are reported. Observed Raman bands are assigned; based on these results previously suggested molecular structures are discussed.

Page generated in 0.0239 seconds