Spelling suggestions: "subject:"batteries au lithium"" "subject:"catteries au lithium""
11 |
Croissance par pulvérisation cathodique d’un nanocomposite LiF-Cu et son application comme positive de batterie au lithium / Growth by sputtering of a LiF-Cu nanocomposite and its application as a positive for lithium batteryMunier, Antoine 18 June 2014 (has links)
Le composite LiF-Cu fonctionnant selon la réaction de conversion : Cu + 2 LiF →CuF2 + 2 Li+ + 2 e- a été synthétisé afin d’être étudié comme matériau d’électrode positivepour batterie au lithium. Pour faire réagir ces phases à l’état solide, les îlots de LiF nedoivent pas excéder quelques nanomètres et la percolation électrique dans l’épaisseur doitêtre établie. La technique retenue pour obtenir cette nanostructuration est la co-pulvérisationcathodique RF alternée. Afin de contrôler la synthèse du nanocomposite, la vitesse de dépôtet le flux d’adatomes pour chaque matériau ont été mesurés par profilométrie et ICP-OES.Leur composition et leur morphologie ont été caractérisées par microscopie électronique(SEM, TEM, STEM, HRTEM, AFM), diffraction (XRD, SAED) et spectroscopie (EELS, XPS).Les résultats ont montré que la morphologie obtenue était bien faite d’îlots nanométriques deCu et de LiF. La conductivité électrique du nanocomposite est de 5 ordres de grandeursupérieure à celle du LiF seul. Des premiers tests en batterie ont montré une fortepolarisation typique des matériaux de conversion et une faible cyclabilité. / The LiF-Cu nanocomposite reacting through the conversion reaction: Cu + 2 LiF→ CuF2 + 2 Li+ + 2 e- has been synthesized in order to be studied as positive electrodematerial for lithium battery. In order to perform this reaction in the solid state, the size of theLiF islands mustn't exceeds a few nanometers an the electric percolation through thethickness must be achieved. The technique used to obtain this nanostructuration is thealternated RF co-sputtering. In order to control the nanocomposite synthesis, the rate ofdeposition and the adatoms flux for each material have been measured using profilometryand ICP-OES. Their composition and morphology have been characterised by electronicalmicroscopy (SEM, TEM, STEM, HRTEM, AFM), diffraction (XRD, SAED) and spectroscopy(EELS, XPS). Results have shown that the morphology was indeed made of nanometricislands of Cu and LiF. The nanocomposite electric conductivity is 5 order of magnitudehigher than the LiF one. The first tests have shown a high polarization typical of conversionmaterials and a poor cyclability.
|
12 |
RMN de matériaux paramagnétiques : mesures et modélisationCastets, Aurore 18 November 2011 (has links) (PDF)
Ce travail consiste en l'étude par RMN multinoyaux de matériaux paramagnétiques d'électrodes positives pour batteries au Li. La RMN du solide permet une caractérisation de l'environnement local du noyau sondé grâce à l'exploitation des interactions hyperfines dues à la présence d'une certaine densité d'électrons célibataires (déplacement de contact de Fermi) ou de conduction (déplacement de Knight) sur ce noyau (densité transférée selon des mécanismes plus ou moins complexes). Les matériaux étudiés sont des phosphates de métaux de transition tels que Li3M2(PO4)3 (M = Fe, V), la famille des tavorites LiMPO4X (M = Fe, Mn; X = OH, F) ou encore les phases homéotypiques MPO4.H2O (M = Fe, Mn, V). Pour tous ces matériaux, caractérisés par RMN du 7Li, 31P et 1H, l'environnement local de ces noyaux a été étudié afin d'envisager les mécanismes de transfert de spin possibles. Des calculs ab initio ont été effectués pour reproduir les déplacements de RMN, puis établir des cartes de densité de spin afin d'étayer ou compléter la compréhension de ces mécanismes.
|
13 |
Matériaux à hautes performance à base d'oxydes métalliques pour applications de stockage de l'énergie / High performance metal oxides for energy storage applicationsWang, Luyuan Paul 21 July 2017 (has links)
Le cœur de technologie d'une batterie réside principalement dans les matériaux actifs des électrodes, qui est fondamental pour pouvoir stocker une grande quantité de charge et garantir une bonne durée de vie. Le dioxyde d'étain (SnO₂) a été étudié en tant que matériau d'anode dans les batteries Li-ion (LIB) et Na-ion (NIB), en raison de sa capacité spécifique élevée et sa bonne tenue en régimes de puissance élevés. Cependant, lors du processus de charge/décharge, ce matériau souffre d'une grande expansion volumique qui entraîne une mauvaise cyclabilité, ce qui empêche la mise en oeuvre de SnO₂ dans des accumulateurs commerciaux. Aussi, pour contourner ces problèmes, des solutions pour surmonter les limites de SnO₂ en tant qu'anode dans LIB / NIB seront présentées dans cette thèse. La partie initiale de la thèse est dédié à la production de SnO₂ et de RGO (oxyde de graphène réduit)/SnO₂ par pyrolyse laser puis à sa mise en oeuvre en tant qu'anode. La deuxième partie s'attarde à étudier l'effet du dopage de l'azote sur les performances et permet de démontrer l'effet positif sur le SnO₂ dans les LIB, mais un effet néfaste sur les NIB. La partie finale de la thèse étudie l'effet de l'ingénierie matricielle à travers la production d'un composé ZnSnO₃. Enfin, les résultats obtenus sont comparés avec l'état de l'art et permettent de mettre en perspectives ces travaux. / The heart of battery technology lies primarily in the electrode material, which is fundamental to how much charge can be stored and how long the battery can be cycled. Tin dioxide (SnO₂) has received tremendous attention as an anode material in both Li-ion (LIB) and Na-ion (NIB) batteries, owing to benefits such as high specific capacity and rate capability. However, large volume expansion accompanying charging/discharging process results in poor cycleability that hinders the utilization of SnO₂ in commercial batteries. To this end, engineering solutions to surmount the limitations facing SnO₂ as an anode in LIB/NIB will be presented in this thesis. The initial part of the thesis focuses on producing SnO₂ and rGO (reduced graphene oxide)/SnO₂ through laser pyrolysis and its application as an anode. The following segment studies the effect of nitrogen doping, where it was found to have a positive effect on SnO₂ in LIB, but a detrimental effect in NIB. The final part of the thesis investigates the effect of matrix engineering through the production of a ZnSnO₃ compound. Finally, the obtained results will be compared and to understand the implications that they may possess.
|
14 |
Modélisation du comportement électrochimique de matériaux pour batteries au lithium à partir de calculs de premiers principesRocquefelte, Xavier 02 October 2001 (has links) (PDF)
Le fonctionnement d'une électrode positive de batterie au lithium repose sur la possibilité d'intercaler de façon réversible du lithium au sein du matériau qui la constitue. Une telle réaction conduit souvent à une perte de la cristallinité du matériau. Une démarche théorique permettant d'accéder à la structure du composé et à la modélisation de son comportement électrochimique est présentée dans ce mémoire. La première partie expose les fondements de la DFT (Density Functional Theory), et les mérites respectifs des méthodes FLAPW (Full potential Linearized Augmented Plane Waves) et PP/PW (Pseudopotential / Plane Waves). La seconde partie rappelle quelques concepts fondamentaux d'électrochimie comme le processus d'intercalation, les aspects thermodynamiques et les relations avec la structure électronique. Ensuite, une démarche basée sur l'optimisation de la géométrie de différentes hypothèses structurales est présentée. Cette démarche a été appliquée à l'étude d'un composé modèle LiMoS2, et a ensuite été étendue à des composés d'intérêt industriel tels que LixV2O5 (0 ≤ x ≤ 3). Ainsi, pour LiMoS2 et ω-Li3V2O5, les structures optimisées permettent de simuler des diagrammes de diffraction RX en très bon accord avec l'expérience. Ceci a donc permis, dans le cas de LixV2O5, une modélisation des premières décharges partant de α-V2O5 et de γ'-V2O5. Afin de mieux comprendre l'origine de la distorsion dans LiMoS2 et des variations de potentiel des courbes électrochimiques de LixV2O5, une analyse de la liaison chimique a également été réalisée. Ces résultats mettent clairement en évidence le fait qu'une approche couplant calculs de premiers principes et expériences constitue une aide efficace à la détermination de la structure de composés mal cristallisés. Une telle démarche contribue à la compréhension des transformations structurales induites par l'intercalation du lithium dans des oxydes de vanadium et peut ainsi être utile à la recherche de nouveaux matériaux de batteries.
|
15 |
Synthèse et caractérisation de nouveaux phosphates utilisés comme matériaux d’électrode positive pour batteries au lithium / Synthesis and characterization of new phosphates used as positive electrode materials for lithium batteriesMarx, Nicolas 17 December 2010 (has links)
Ce travail porte sur la synthèse et la caractérisation de nouveaux matériaux d’électrodes positives pour batteries au lithium. Nos recherches se sont principalement orientées vers les matériaux de type phosphates de métaux de transition, et notamment vers la famille des tavorites de composition (Li,H)FePO4(OH), qui présente une structure tridimensionnelle comportant plusieurs types de tunnels propices à l’insertion d’ions lithium. La structure du matériau LiFePO4(OH) a ainsi été parfaitement résolue, de même que celle du matériau FePO4.H2O, qui est un nouveau phosphate de fer (III) découvert au cours de ces travaux. Ces deux matériaux, ainsi que ceux obtenus par traitement thermique de la phase FePO4.H2O, ont été caractérisés à l’aide de différentes techniques d’analyse physico-chimiques. Leur comportement électrochimique vis-à-vis de l’intercalation / désintercalation du lithium a été étudié, ainsi que les mécanismes redox et structuraux associés mis en jeu. / This work deals with the synthesis and characterization of new positive electrode materials for lithium batteries. Our researches were mainly focused on phosphates of transition metals, and especially on the tavorite-type materials of composition (H,Li)FePO4(OH). Their structure is characterized by a three-dimensional network with different types of tunnels, which can host inserted lithium ions. In this context, LiFePO4(OH) structure was perfectly solved, as well as that of FePO4.H2O, which is a new iron (III) phosphate discovered during this work. These two materials, together with those obtained by heat-treatment of FePO4.H2O, were characterized using different analytical techniques. Their electrochemical behavior toward intercalation / deintercalation of lithium was also studied, as well as the structural and redox processes involved.
|
16 |
RMN de matériaux paramagnétiques : mesures et modélisation / Multinuclear NMR of paramagnetic compounds : measurements and modellingCastets, Aurore 18 November 2011 (has links)
Ce travail consiste en l’étude par RMN multinoyaux de matériaux paramagnétiques d’électrodes positives pour batteries au Li. La RMN du solide permet une caractérisation de l’environnement local du noyau sondé grâce à l’exploitation des interactions hyperfines dues à la présence d’une certaine densité d’électrons célibataires (déplacement de contact de Fermi) ou de conduction (déplacement de Knight) sur ce noyau (densité transférée selon des mécanismes plus ou moins complexes). Les matériaux étudiés sont des phosphates de métaux de transition tels que Li3M2(PO4)3 (M = Fe, V), la famille des tavorites LiMPO4X (M = Fe, Mn; X = OH, F) ou encore les phases homéotypiques MPO4.H2O (M = Fe, Mn, V). Pour tous ces matériaux, caractérisés par RMN du 7Li, 31P et 1H, l’environnement local de ces noyaux a été étudié afin d’envisager les mécanismes de transfert de spin possibles. Des calculs ab initio ont été effectués pour reproduir les déplacements de RMN, puis établir des cartes de densité de spin afin d’étayer ou compléter la compréhension de ces mécanismes. / Paramagnetic materials for positive electrodes for Li batteries have been studied by multinuclear NMR. The local environment of the probed nucleus can be characterized by solid state NMR making use of hyperfine interactions due to transfer of some electron spin density (Fermi contact shift) on this nucleus, via more or less complex mechanisms. We studied a series of transition metal phosphates as Li3M2(PO4)3 (M = Fe, V) with anti-NASICON structure, LiMPO4X (M = Fe, Mn; X = OH, F) belonging to the tavorite family and the homeotypic phases MPO4.H2O (M = Fe, Mn, V). All these materials have been characterized by 7Li, 31P and 1H NMR, and the local environments of these nuclei have been analyzed to propose possible spin transfer mechanisms. First principles DFT calculations have been carried out to, first of all, reproduce the experimental NMR shifts, and then to confirm or complement the understanding of these mechanisms, in particular by plotting spin density maps.
|
17 |
Surface modification of Li(Ni0.6Mn0.2Co0.2)O2 by plasma deposition for compatibility with aqueous processingTomassi, Erica 05 1900 (has links)
Les batteries lithium-ion dépendent de l’utilisation d’électrodes composites positives, traditionnellement préparées avec des liants fluorés tels que le polyfluorure de vinylidène (PVDF). Ceux-ci sont souvent dissouts ou dispersés dans des solvants toxiques et inflammables. Les interdictions récentes des substances per- et polyfluoroalkyles (PFAS), qualifiées de polluants éternels, imposent le développement d'alternatives durables pour atténuer les dommages environnementaux supplémentaires. La carboxyméthylcellulose (CMC) est une alternative prometteuse aux liants à base de PFAS car elle est biosourcée, biodégradable et soluble dans l'eau. Cependant, le processus d'utilisation d'un liant aqueux durable de CMC avec un matériau actif sensible à l'humidité, Li(Ni0.6Mn0.2Co0.2)O2, NMC622, dans une électrode composite positive présente un grand défi. Une avancée notable est l'application d'un revêtement protecteur qui peut être appliqué directement sur la surface des particules du matériau actif à l'aide d'un jet de plasma à pression atmosphérique (APPJ). Dans cette étude, l'APPJ a été utilisé pour déposer un revêtement organosilicié sur les particules de NMC622. Les particules de NMC enrobées ont subi des tests chimiques et électrochimiques rigoureux pour déterminer leur composition chimique et leur microstructure modifiée. Bien que ces résultats soient prometteurs, la performance électrochimique, mesurée par la capacité spécifique, la densité énergétique, l’efficacité coulombique, la stabilité cyclique, la durée de vie et la stabilité mécanique, n’est pas optimale, possiblement en raison de la dégradation préalable du matériau actif et d’une couverture inhomogène. Les particules enrobées ont connu un degré de protection contre l'exposition à l'humidité, aux électrolytes courants et aux environnements aqueux. La présence du revêtement s'est avérée préserver la microstructure des particules sans avoir d'impact significatif sur les propriétés électrochimiques du matériau, telles que la capacité spécifique et l’efficacité coulombique. / Lithium-ion batteries rely on the use of positive composite electrodes, which are traditionally prepared using fluorinated binders such as polyvinylidene fluoride (PVDF). These are often dissolved or dispersed in toxic and flammable solvents. Recent bans on ‟forever chemicals” per- and polyfluoroalkyl substances (PFAS) impose the development of sustainable alternatives to mitigate further environmental damage. Carboxymethyl cellulose (CMC) is a promising alternative to PFAS-based binders as it is bio-sourced, bio-degradable, and water-soluble. However, the process of using a sustainable CMC aqueous binder with a humidity sensitive active material, Li(Ni0.6Mn0.2Co0.2)O2, NMC622, in a positive composite electrode is challenging. One notable advancement is the application of a protective coating that can be applied directly on the active material particles surface using atmospheric pressure plasma jet (APPJ). In this study, the APPJ was used to deposit an organosilicon coating onto NMC622 particles. The coated NMC particles underwent rigorous chemical and electrochemical testing to determine the chemical composition, and microstructure of the modified particles. Despite promising indications, the electrochemical performance, measured by specific capacity, energy density, coulombic efficiency, cycling stability, lifetime and mechanical stability, is not optimal due possibly to the priori degraded active material and inhomogeneous coverage. The coated particles experienced a degree of protection from exposure to humidity, common electrolytes, and aqueous environments. The presence of the coating was found to preserve particle microstructure without having a significant impact on the electrochemical properties of the material, such as specific capacity and coulombic efficiency.
|
18 |
Etude de nouveaux matériaux phosphates de lithium et d'élément de transition comme électrode positive pour batteries LI-ION / Iron phosphates with original structures used as positive electrode materials in lithium and sodium batteriesTrad, Khiem 30 September 2010 (has links)
Depuis la mise en évidence des potentialités du phosphate LiFePO4 comme électrode positive de batteries lithium-ion, un très fort regain d’intérêt pour les phosphates de fer est actuellement observé. Dans cette optique de recherche de nouveaux matériaux, notre intérêt s’est porté sur la phase Na3Fe3(PO4)4 et sur des monophosphates de fer et de manganèse de type alluaudite LiXNa1-XMnFe2(PO4)3. Leurs structures, respectivement en couche et en chaines, en font de bons candidats pour des applications en tant que matériau d’électrode pour des batteries au lithium ou au sodium. Notre étude porte donc, d’une part, sur la synthèse et la caractérisation structurale de ces phases, et d’autre part sur leurs propriétés physiques et électrochimiques. / Since the discovery of highly interesting properties for LiFePO4 as a positive electrode material in lithium ion batteries, the search for novel polyanion-based insertion hosts is intense. Actually, cathodic materials based on iron phosphates exhibit high stability and economical and environmental interests. In this context, we were interested in Na3Fe3(PO4)4 with a lamellar structure and in alluaudite-like iron and manganese phosphates LiXNa1-XMnFe2(PO4)3 which structure exhibits tunnels. This work deals, in one hand, on the synthesis and the structural characterisation of these materials and in the other hand on their physical and electrochemical properties as positive electrode for lithium and sodium batteries.
|
19 |
Étude de la stabilité thermique et protection à la surcharge de cathodes pour batteries au lithium-ionEl Khakani, Soumia 03 1900 (has links)
Dans cette thèse, nous avons effectué une étude de la stabilité thermique de quelques matériaux, utilisés comme cathodes dans les batteries au lithium-ion (BLIs), afin de contribuer à l’amélioration de leur fonctionnement. Deux matériaux, potentiellement prometteurs pour les applications d’envergure des BLIs – telles que les véhicules électriques –, ont été choisis pour cette étude. Il s’agit du phosphate de fer lithié (LiFePO4) et de l’oxyde de nickel et de manganèse de structure-type spinelle (LiMn1.5Ni0.5O4). En plus de l’étude du mécanisme de décomposition de ce dernier, l’effet de la substitution partielle du manganèse dans le matériau original (LiMn2O4) par du nickel sur la réactivité a été mise en évidence. Ces études ont été menées grâce à la calorimétrie adiabatique afin de simuler les conditions thermiques retrouvées dans des BLIs où l’environnement est quasi-adiabatique.
L’effet de trois méthodes de synthèse sur la réactivité a été examiné pour LiFePO4. Nos résultats ont montré que, contrairement aux autres matériaux de cathodes, la stabilité thermique globale de LiFePO4 est peu affectée par la méthode de synthèse. Toutefois, cette stabilité intrinsèque dont le LiFePO4 bénéficie ne le met pas à l’abri des conditions d’abus de source externes. Ainsi, nous avons développé une nouvelle classe d’additifs électrolytiques pour la protection de LiFePO4 contre la surcharge. Ces derniers consistent en l’incorporation d’une navette redox dans un liquide ionique; tirant ainsi profit des avantages des deux espèces. Notre approche nous a permis d’atteindre une concentration aussi élevée qu’une mole par litre de notre additif dans des électrolytes conventionnels. Nous avons montré qu’à une concentration optimale de 0.7 M, ces liquides ioniques fonctionnalisés ont assuré la protection de LiFePO4 contre la surcharge pour plus de 200 cycles; et ce, sans affecter ses performances électrochimiques. Finalement, pour ce qui est du deuxième matériau de cathode, nous avons établi un mécanisme de décomposition de LiMn1.5Ni0.5O4 à hautes températures en présence de l’électrolyte. En plus, notre étude a montré que la substitution partielle du manganèse par le nickel dans LiMn2O4 pour augmenter son potentiel opérationnel a affecté à la baisse sa stabilité thermique; et ce, à des températures aussi basses que 60 °C. / In this thesis, we have investigated the thermal stability of cathode materials used in lithium-ion batteries (LIBs). Using accelerating rate calorimetry, the study was carried out on two of the most attractive cathode materials for large scale LIBs; namely, lithium iron phosphate (LiFePO4) and nickel-manganese spinel oxide (LiMn1.5Ni0.5O4). While the impact of partial nickel substitution for manganese in LiMn2O4 was investigated for LiMn1.5Ni0.5O4 along with its decomposition mechanism, the effect of the synthetic method was evaluated for LiFePO4. Our results have demonstrated that the high intrinsic thermal stability of LiFePO4 was only slightly affected by the synthetic method within the three studied routes. In order to enhance the safe operation of this material by providing a protection form electrical abuse during overcharge, we have developed a new class of overcharge protection additives. By combining a redox shuttle with an ionic liquid, we were able, for the first time, to dissolve the additive for protection against overcharge at concentrations up to 1 M in conventional electrolytes for LIBs. Our results have shown an overcharge protection of LiFePO4 for over 200 cycles, using an optimal concentration of 0.7 M, without compromising its electrochemical performances. Finally, by studying the thermal behavior of LiMn1.5Ni0.5O4 at different temperatures, we were able to establish the decomposition mechanism of this material. Moreover, our study has proven that the presence of nickel in LiMn1.5Ni0.5O4, that ensures the high voltage of this cathode material, is also responsible for the very poor thermal stability of this material at temperatures as low as 60 ºC.
|
Page generated in 0.0809 seconds