• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Bedeutung städtischer Gliederungsmuster für das Vorkommen von Pflanzenarten unter besonderer Berücksichtigung von Paulownia tomentosa (Thunb.) Steud. dargestellt am Beispiel Stuttgart /

Richter, Matthias. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Hohenheim.
2

Bestimmung des Bebauungsgrades von archäologischen Stätten durch statistische Analyse geomagnetischer Daten

Bilgili, Filiz. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Kiel.
3

Densité et logement collectif : innovations architecturales et urbaines dans la Suisse contemporaine /

Bassand, Nicolas. January 2009 (has links)
Thèse no 4276 sc. EPF Lausanne. / Bibliogr.
4

Grenzüberbau und Akzessionsprinzip

Gunia, Susanne January 2008 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2008
5

Stofflich-energetische Gebäudesteckbriefe - Gebäudevergleiche und Hochrechnungen für Bebauungsstrukturen

Gruhler, Karin, Böhm, Ruth, Deilmann, Clemens, Schiller, Georg 23 September 2014 (has links) (PDF)
Durch die Nachhaltigkeitsdiskussion unterstützt, gewinnt in der Stadt- und Raumforschung die Betrachtung der ökologischen Effekte des Bauens und Wohnens zunehmend an Bedeutung. In diesem Zusammenhang sind Kenntnisse über stofflich-energetische Aufwendungen im Rahmen der Bewirtschaftung von Wohnungsbeständen von großer Bedeutung. Ziel einer am IÖR durchgeführten Forschungsarbeit war es, stofflich-energetische Kennwerte für Gebäudetypen und Bebauungsstrukturen als Grundlage für ein vorausschauendes Stoffstrommanagement zu erarbeiten. Zur Ermittlung der entsprechenden Kennwerte wurde ein EXCEL-gestütztes Baustoff-Berechnungs-Programm (BBP) erarbeitet. Mithilfe dieses Programms ist es möglich, Baustoffmengen von Gebäuden als Gesamtgröße oder z. B. nach Materialgruppen differenziert zu berechnen sowie damit verbundene Energie- und Emissionskennwerte zu bestimmen. Für 18 repräsentative Gebäudetypen der Wohnbebauung wurden stofflich-energetische Kennwerte ermittelt und in einer Gebäudetypen-Dokumentation zusammengefasst. Neben dem Vergleich unterschiedlicher Gebäuderepräsentanten wurden Analysen und Hochrechnungen auf der Ebene von Bebauungsstrukturen durchgeführt. Diese basierten auf einer Unterteilung in neun verschiedene, voneinander abgrenzbare Stadtstrukturtypen der Wohnbebauung. Es wurde deutlich, dass Stadtstrukturen charakteristische Stoffintensitätswerte aufweisen und Orientierungswerte für die Planung abgeleitet werden können.
6

Verdichtete Siedlungsstrukturen in Sydney Lösungsansätze für eine nachhaltige Stadtentwicklung /

Schüttemeyer, Anke. January 2005 (has links)
Thesis (doctoral) - Universität, Bonn, 2002. / Includes bibliographical references (p. 138-152).
7

Analyse und Visualisierung der Siedlungsentwicklung mit SEMENTA®-CHANGE

Hecht, Robert, Herold, Hendrik, Meinel, Gotthard 14 October 2014 (has links) (PDF)
In diesem Beitrag werden Methoden der gebäudebasierten Erfassung der Siedlungsstruktur, deren Veränderung und Visualisierung vorgestellt. Die Analyse der Siedlungsentwicklung mit SEMENTA®-CHANGE basiert auf der automatisierten Auswertung topographischer Kartenwerke verschiedenster Zeitstände im Maßstab 1:25 000. Der Verfahrensansatz leistet einen wichtigen Beitrag für die Planung, da er für große Flächen eine Verortung der Gebäude-, Siedlungsflächen- und Siedlungsstrukturentwicklung der vergangenen Jahrzehnte erlaubt und sich daraus auch wertvolle Aussagen über die Wirksamkeit von raumplanerischen Instrumenten (z. B. Verhältnis der Innen- zur Außenentwicklung) ableiten lassen. Beispielhaft werden an ausgewählten Projektergebnissen das Anwendungspotenzial sowie die Grenzen des Verfahrens diskutiert.
8

Bautechnik-Forum Chemnitz 2004

Baradiy, Saad, Möckel, Wolfgang, Nitzsche, Gunhild, Urbaneck, Thorsten 10 June 2004 (has links) (PDF)
Inhalt: Nachhaltiger Stadtumbau und Erneuerbare Energien - Ansatz und Konzepte einer ökologischen Stadtentwicklung Wohnprojekt Dresden Pillnitz - Innovatives Energiekonzept für zwei Mehrfamilienhäuser in Passivhausbauweise Tiefbautechnik in der Praxis - Die spektakuläre Gablenzbach-Sanierung Mauern für die Ewigkeit - Rekonstruktion, Sanierung und Neubau von Mauerwerksbauten Wärmebrückenbeheizung - Ein Widerspruch? Solares Heizen mit Großanlagen - Chancen und Perspektiven Bauphysikalische Wertung von belüfteten und nicht belüfteten Dächern Kritische Aspekte zum sommerlichen Wärmeschutz – Vorbemessung
9

Stofflich-energetische Gebäudesteckbriefe - Gebäudevergleiche und Hochrechnungen für Bebauungsstrukturen

Gruhler, Karin, Böhm, Ruth, Deilmann, Clemens, Schiller, Georg 23 September 2014 (has links)
Durch die Nachhaltigkeitsdiskussion unterstützt, gewinnt in der Stadt- und Raumforschung die Betrachtung der ökologischen Effekte des Bauens und Wohnens zunehmend an Bedeutung. In diesem Zusammenhang sind Kenntnisse über stofflich-energetische Aufwendungen im Rahmen der Bewirtschaftung von Wohnungsbeständen von großer Bedeutung. Ziel einer am IÖR durchgeführten Forschungsarbeit war es, stofflich-energetische Kennwerte für Gebäudetypen und Bebauungsstrukturen als Grundlage für ein vorausschauendes Stoffstrommanagement zu erarbeiten. Zur Ermittlung der entsprechenden Kennwerte wurde ein EXCEL-gestütztes Baustoff-Berechnungs-Programm (BBP) erarbeitet. Mithilfe dieses Programms ist es möglich, Baustoffmengen von Gebäuden als Gesamtgröße oder z. B. nach Materialgruppen differenziert zu berechnen sowie damit verbundene Energie- und Emissionskennwerte zu bestimmen. Für 18 repräsentative Gebäudetypen der Wohnbebauung wurden stofflich-energetische Kennwerte ermittelt und in einer Gebäudetypen-Dokumentation zusammengefasst. Neben dem Vergleich unterschiedlicher Gebäuderepräsentanten wurden Analysen und Hochrechnungen auf der Ebene von Bebauungsstrukturen durchgeführt. Diese basierten auf einer Unterteilung in neun verschiedene, voneinander abgrenzbare Stadtstrukturtypen der Wohnbebauung. Es wurde deutlich, dass Stadtstrukturen charakteristische Stoffintensitätswerte aufweisen und Orientierungswerte für die Planung abgeleitet werden können.:Einleitung.................................................................................................1 1 Umweltorientiertes Berechnungsverfahren für Gebäudetypen............ 3 1.1 Baustoff-Berechnungs-Programm......................................................4 1.1.1 Teil I – Stoffberechnungen für Bauteile...........................................5 1.1.2 Teil II – Stoffberechnungen für Baustoffgruppen............................9 1.1.3 Ableitung von Umweltkennwerten................................................12 1.1.4 Rahmenbedingungen zum Baustoff-Berechnungs-Programm.......13 1.2. Gebäudetypologie..........................................................................16 1.2.1 Sinn und Zweck von Gebäudetypologien......................................16 1.2.2 Geeignete Gebäudetypologien.....................................................17 1.2.3 Auswahl konkreter Gebäudetypen...............................................20 2 Stofflich-energetische Kennwerte unterschiedlicher Gebäudetypen – Dokumentation...........................................................25 2.1 Mehrfamilienhäuser.........................................................................28 2.1.1 Viergeschossiges Mehrfamilienhaus vor 1918 in Fachwerkbauweise – Typenvertreter IMF 1.......................................28 2.1.2 Dreigeschossiges Mehrfamilienhaus von 1870 bis 1918 in Ziegelbauweise – Typenvertreter IMZ 2............................................38 2.1.3 Viergeschossiges Mehrfamilienhaus von 1870 bis 1918 in Ziegelbauweise – Typenvertreter IMZ 3............................................48 2.1.4 Viergeschossiges Mehrfamilienhaus von 1919 bis 1945 in Ziegelbauweise – Typenvertreter IMZ 4............................................58 2.1.5 Viergeschossiges Mehrfamilienhaus nach 1945 in Ziegelbauweise – Typenvertreter IMZ 5............................................68 2.1.6 Viergeschossiges Mehrfamilienhaus von 1961 bis 1970 in Block- und Streifenbauweise – Typenvertreter IMI 1.........................78 2.1.7 Fünfgeschossiges Mehrfamilienhaus nach 1970 in Plattenbauweise – Typenvertreter IMI 2...........................................88 2.1.8 Elfgeschossiges Mehrfamilienhaus nach 1970 in Plattenbauweise – Typenvertreter IMI 3...........................................97 2.1.9 Achtzehngeschossiges Mehrfamilienhaus nach 1970 in Plattenbauweise – Typenvertreter IMI 4.........................................106 2.1.10 Dreigeschossiges Mehrfamilienhaus nach 1990 in Ziegelbauweise – Typenvertreter GWB............................................116 2.2 Einfamilienhäuser..........................................................................126 2.2.1 Eingeschossiges Einzelhaus nach 1960 mit ausgebautem Dachgeschoss – Typenvertreter E-EH 1...............................................126 2.2.2 Eingeschossiges Einzelhaus nach 1960 mit nicht nutzbarem Dachgeschoss – Typenvertreter E-EH 2...............................................135 2.2.3 Eingeschossiges Einzelhaus nach 1990 mit nicht ausgebautem Dachgeschoss – Typenvertreter E-EH 3...............................................145 2.2.4 Eingeschossiges Doppelhaus nach 1960 mit ausgebautem Dachgeschoss – Typenvertreter E-DH 1..............................................154 2.2.5 Eingeschossiges Doppelhaus nach 1960 mit ausgebautem Dachgeschoss – Typenvertreter E-DH 2..............................................164 2.2.6 Zweigeschossiges Reihenhaus nach 1960 mit nicht ausgebautem Dachgeschoss – Typenvertreter E-RH 1...............................................174 2.2.7 Zweigeschossiges Reihenhaus nach 1960 mit nicht nutzbarem Dachgeschoss – Typenvertreter E-RH 2...............................................184 2.2.8 Zweigeschossiges Reihenhaus nach 1990 mit nicht ausgebautem Dachgeschoss – Typenvertreter E-RH 3...............................................194 3 Vergleich unterschiedlicher Gebäudetypen.......................................203 3.1 Mehrfamilienhäuser.......................................................................203 3.1.1 Grundflächen und Volumen.........................................................203 3.1.2 Baustoffmengen – Stofflager und Stoffintensität........................208 3.1.3 Heizenergiebedarf......................................................................212 3.1.4 Umweltkennwerte......................................................................213 3.2 Einfamilienhäuser..........................................................................216 3.2.1 Grundflächen und Volumen.........................................................216 3.2.2 Baustoffmengen – Stofflager und Stoffintensität........................220 3.2.3 Heizenergiebedarf......................................................................224 3.2.4 Umweltkennwerte......................................................................226 3.3 Orientierungswerte und Kernaussagen.........................................228 4 Anwendung stofflich-energetischer Kennwerte auf Ebene von Bebauungsstrukturen...................................................................236 4.1 Verbindungselement Gebäudemix.................................................236 4.2 Stofflich-energetische Kennwerte für Stadtstrukturtypen der Wohnbebauung...................................................................................238 4.2.1 Stadtstrukturtypen und Gebäudemix..........................................238 4.2.2 Stoffkennwerte für Stadtstrukturtypen – Stoffintensität............242 4.2.3 Energiekennwerte für Stadtstrukturtypen – Kumulierter Energieaufwand..................................................................................249 4.2.4 Kernaussagen............................................................................254 Zusammenfassung..............................................................................259 Anhang A.............................................................................................263 Baustofftabelle....................................................................................264 Umweltkennwerte...............................................................................267 Anhang B.............................................................................................271 Rahmenbedingungen zum Baustoff-Berechnungs-Programm..............272 Literaturverzeichnis.............................................................................285 Tabellenverzeichnis.............................................................................289 Abbildungsverzeichnis.........................................................................296 Abkürzungsverzeichnis........................................................................305
10

Analyse und Visualisierung der Siedlungsentwicklung mit SEMENTA®-CHANGE

Hecht, Robert, Herold, Hendrik, Meinel, Gotthard January 2010 (has links)
In diesem Beitrag werden Methoden der gebäudebasierten Erfassung der Siedlungsstruktur, deren Veränderung und Visualisierung vorgestellt. Die Analyse der Siedlungsentwicklung mit SEMENTA®-CHANGE basiert auf der automatisierten Auswertung topographischer Kartenwerke verschiedenster Zeitstände im Maßstab 1:25 000. Der Verfahrensansatz leistet einen wichtigen Beitrag für die Planung, da er für große Flächen eine Verortung der Gebäude-, Siedlungsflächen- und Siedlungsstrukturentwicklung der vergangenen Jahrzehnte erlaubt und sich daraus auch wertvolle Aussagen über die Wirksamkeit von raumplanerischen Instrumenten (z. B. Verhältnis der Innen- zur Außenentwicklung) ableiten lassen. Beispielhaft werden an ausgewählten Projektergebnissen das Anwendungspotenzial sowie die Grenzen des Verfahrens diskutiert.

Page generated in 0.041 seconds