• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 39
  • Tagged with
  • 101
  • 85
  • 37
  • 30
  • 28
  • 26
  • 26
  • 22
  • 18
  • 16
  • 15
  • 14
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Counteracting Ammonia Inhibition in Anaerobic Digestion using Wood Residues : Evaluating Ammonium Adsorption Capacity of Fibres from Pulp and Paper Mills

Wrangbert, Marcus January 2021 (has links)
One of the main interests in commercial methane production is to maximize the gas yield, and it is thus appealing to use material with relative high methane potential. However, such material often results in process instability whereas ammonia inhibition is common. Removal of ammonia through adsorption is a fairly unexplored method in the field of biogas production, and could prove to be cost-effective.The adsorption capacity of pulp fibres from the paper making industry were investigated through batch adsorption experiments. Additionally, the fibres effect on small scale batch digesters in terms of methane production and cellulase activity was explored. Overall, the adsorption capacity of the pulp fibres was low, whereas Kraft hardwood had the highest adsorption capacity in both an aqueous ammonium solution and digester fluid at 11±3 and 60±20 mg g-1, respectively. The initial total ammonium nitrogen concentration had the highest effect on the adsorption capacity with a positive correlation. The pulp fibres seemingly had no effect on the ammonia inhibited anaerobic digestion systems. However, the cellulase activity was higher after day 5 in the anaerobic digestion systems with a high ammonia concentration.In essence, the overall results showed that the adsorption of the fibres was relatively low and most likely not suitable as a material to prevent ammonia inhibition in an AD.
82

Konsekvenser av vätgasproduktion för fordonsdrift : klimatpåverkan och energieffektivitet för olika produktionsvägar för vätgas jämfört med fordonsgas och vindkraftsel producerat av energibolag i Östergötland / Consequenses for hydrogen production for vehicles : climate influence and energy efficiency for different hydrogen production pathways compared with biogas and electricity from windmills produced by an energy company in Östergötland

Lilja, Dennis January 2019 (has links)
Sedan 2016 har flera politiska incitament genomförts för att undersöka möjligheten för att få den nordiska vätgasmarknaden att växa. Vätgas är en energibärare med potential att användas som ett miljövänligt drivmedelsalternativ för transportflottan eftersom utsläppen vid användning med bränslecell är rent vatten och bränslecellsbilar har en hög energieffektivitet i jämförelse med bilar med traditionella förbränningsmotorer. De enda utsläppen som förknippas med vätgas är de som sker i samband med produktionen av gasen. Det finns flera olika sätt att producera vätgas ur olika substrat. Idag produceras den mesta vätgasen från naturgas på raffinaderier för användning i bensin- och dieselproduktion. Det planeras en expansion av tankstationer för vätgas i Sverige, men då det finns få producenter så finns det ett intresse för Tekniska verken i Linköping AB att undersöka vad olika produktionsvägar för vätgas har för fördelar och nackdelar i jämförelse med andra biodrivmedel som fordonsgas och elektricitet. Studiens syfte var att undersöka tekniskt lämpliga produktionsvägar för vätgas som är kompatibla med biogasproduktion eller vindkraftsel, och jämföra de olika produktionsvägarna med biogas och vindkraftsel i relation till klimatpåverkan och energieffektivitet då drivmedel för 100 km körsträcka produceras. Efter en teknisk screening av vätgasproduktion, biogasproduktion och elektricitet från vindkraft konstanterades att vätgasproduktion viaångreformering av biogas, tvåstegsrötning av organiskt avfall och PEM-elektrolys är de produktionsvägar som har bäst potential för miljövänlig vätgasproduktion hos Tekniska verken i Linköping AB. Vidare kartlades viktiga parametrar för modellering och simulering av klimatpåverkan i programvaran simaPro. För jämförelse av produktionsvägarna för vätgas från rötning av matavfall användes WTW-metodik. För jämförelsen mellan elektricitet och elektrolys användes modifierad LCA-metodik med klimatpåverkan för hela livscykeln för vindkraftverket men för resterande processteg användes endast klimatpåverkan för driften för produktionen. Resultaten för jämförelsen mellan produktion av biogas, ångreformering och tvåstegsrötning visar ingen tydlig skillnad i varken klimatpåverkan eller energieffektivitet. Studien påvisar däremot att ångreformering av fordonsgas behöver mindre mängd matavfall för produktion av drivmedel för 100 km körsträcka (38 kg/100km) i jämförelse med tvåstegsrötning (44 kg/100km) och biogas (54 kg/100 km). För jämförelsen mellan produktion av vätgas via elektrolys och vindkraftsel visades systemet för vindkraftsel (23,6 kWh/100 km) vara dubbelt så energieffektivt jämfört med systemet för elektrolys (50,9 kWh/100 km), medan systemens klimatpåverkan förhöll sig till en liknande ratio med 0,154 kg CO2-eq utsläpp/100 km i jämförelse med 0,343 kg CO2-eq utsläpp/100 km. Studien visar att vid analys av energieffektivitet och klimatpåverkan för närbesläktade produktionssystem så spelar energieffektiviteten i använd bil stor roll för resultatet. Studiens resultat är framförallt intressant för svenska energibolag som vill veta mer om vätgasproduktion och hur dess klimatnytta och energiproduktion förhåller sig till andra fossilfria drivmedel.
83

TECHNO-ECONOMIC ANALYSIS OF WOOD PYROLYSIS IN SWEDEN

Salman, Chaudhary Awais January 2014 (has links)
The significance of bio fuels production is increasing as fossil fuels are being depleted and energy security is gaining importance in the final energy mix. Moreover, bio fuel production offers the potential to alleviate concerns regarding global warming and air pollution. The process scheme design and parameter value choices used in this analysis are exclusively based on research domain literature by considering the state of the art of pyrolysis technology. Henceforth, the results should not be interpreted as optimal performance of mature technology, but as the most likely performance given the current state of scientific knowledge. The purpose of this thesis is to study and assess the technical and economic models for the conversion of woody biomass to valuable biofuel products via fast pyrolysis. The mass rate of wood is considered as 100,000 t/y. Bio fuel production from pyrolysis is energy intensive process. Therefore, heat and energy requirement calculation for the process and optimum heat integration is necessary to improve the overall thermodynamic efficiencies for wood biomass pyrolysis. Three different cases are discussed in this thesis: 1. fast pyrolysis at 500 oC, 2. fast pyrolysis at 1000 oC   and 3. Slow pyrolysis at 500 oC.    Literature study was conducted for different pyrolysis processes and based on their findings and results a model was developed on excel for the calculation of mass and energy balance. Mass balance results shows that the process can be selected on the basis of final product required. It was found that fast pyrolysis at 500 oC is used when bio oil is the priority product, for maximizing the syngas yield fast pyrolysis at high temperature 800-1000 oC is preferred. Similarly slow pyrolysis is used for maximizing bio char yield. It was also found that raw material type and its pretreatment also has strong influence on the pyrolysis process and final composition of bio fuels. Heat flux and energy streams for the pyrolysis scheme are also designed and syngas was selected to fulfil the heat requirements for different processes alongside with pyrolysis such as drying and grinding. It was found out that syngas combustion and heat recovery from the condenser will be able to fulfill the heat demand for pyrolysis process. However the specific heat requirement for fast and slow pyrolysis process varies. According to the calculations heat flux requirement for slow pyrolysis is higher than the fast pyrolysis. An explanation for this variability of the heat for wood pyrolysis is exothermic primary char formation process competing with an endothermic volatile formation process which makes it as overall endothermic process. But pretreatment of wood or biomass in fast pyrolysis is extra burden on the total heat demand for fast pyrolysis. Economic assessment for the pyrolysis plants is also conducted through literature survey of already installed plants and it was found out that pyrolysis is more feasible for large production facilities. The trends shows that capital costs increase with the increase of plant size but the capital cost curve moves towards a straight line after reaching the certain value the production cost per gallon of bio fuel decreases with the increase of plant capacity. The cost of biofuel is extremely sensitive to variations in operating cost (for example, cost of feed stock such as wood and selling price of products) but is not significantly affected by the variations in capital cost.
84

Jatropha – Zambia’s first Bio-diesel Feedstock

Mundike, Jhonnah January 2009 (has links)
The purpose of this study was to highlight and bring out the main environmental,economic and social impacts of the fast developing Jatropha industry in Zambia. Thestudy addressed key issues related with the Jatropha cultivation, processing and use of bio-diesel and its by-products. Each of the stages of Jatropha cultivation, conversiontechnology and the ultimate use of bio-diesel, glycerine and seedcake were related to the environmental, economic and social impacts. Jatropha based bio-diesel production in Zambia has potential to stimulate ruraldevelopment, promote agriculture and also helps to diversify Zambia’s economy. The Jatropha industry has potential to create more jobs than the fossil fuel sector. Locally produced bio-diesel would reduce reliance on imported fossil oil, which is more susceptible to external interruptions, ultimately improving on security of supply.Glycerine and the seedcake have both commercial and economic value within oroutside the country. The environmental impacts among others include reduced end-ofpipeemissions, soil conservation benefits and ability to minimize desertification. Key social impacts resulting from the Jatropha industry cannot be traced easily asactual experiences are yet to be seen and assessed. The issues of threat to foodsecurity and poverty reduction among the poor rural farmers require more time and amulti-disciplinary approach. The actual positive or negative impacts are projectionsthat depend on a variety of parameters and factors that may not follow a linear scale.The use of fertilizer may disadvantage rural farmers, while use of irrigation wouldequally impact negatively on them. Intercropping is beneficial to small scale farmers in the initial years, but may not be feasible later on. Pro-poor policies and promoting a reliable Jatropha feedstock are some of the waysthat will ensure a vibrant and competitive Jatropha industry in Zambia. Research anddevelopment should be promoted, well co-ordinated and encouraged so that up to date information is made available for informed decisions as the industry expands. / <p>www.ima.kth.se</p>
85

Bio-LNG and CO2 liquefaction investment for a biomethane plant with an output of 350 Nm3/h : A techno-economic-environmental analysis

Vernersson, Lars-Julian January 2022 (has links)
Stricter requirements from the European Union and the German government regarding the utilization of renewable and sustainable fuels for transportation, power, and heat production are currently in effect. This has led to that heavy transportation companies are looking for a more sustainable alternative to liquefied natural gas, such as liquefied biomethane. The monetary costs for the release of greenhouse gas are also increasing due to the carbon certificates that are being traded are decreasing in numbers each year. Carbon certificates grant companies an allowance of releasing a certain amount of emissions without being fined. Carbon dioxide and biomethane liquefaction can be a good investment for producers of biomethane to find new markets by for example trading in carbon certificates, selling liquid carbon dioxide, and producing liquefied biomethane as an alternative transportation fuel. The sale price of biomethane is heavily dependant on the emission factor for the biomethane and as such, capturing the carbon dioxide from the biomethane plant and off-setting fossil carbon dioxide would increase the sale price of the biomethane. The methods used are theoretical and quantitative, Numerical data was collected to be able to perform the economical and environmental calculations. The investment cost for the liquefaction technologies was scaled down to correspond to a plant with a production capacity of 350 Nm3/h. Also included in this thesis is a review of biomethane production, together with theory for the economical and environmental calculations.  By performing a technical, economical and environmental assessment of the technologies for the liquefaction of carbon dioxide and biomethane. This thesis shows that liquefaction of biomethane is not an economical viable option at the moment for plants equal or below this production capacity, due to a negative net present value, negative return on investment, sensitivity to fluctuating costs, and a high payback time. However, it could help in achieving the sustainability goals set forth by the European Union and the German government. With regards to the liquefaction of carbon dioxide it is deemed a viable investment option with an investment cost of approximately 1 million Euro and a payback time of approximately 3 years. Liquefaction of carbon dioxide could bring an extra income to the biomethane plant. This due to an added revenue in the sales of liquid carbon dioxide and an increase in the sale price of biomethane due to a reduction of the emission factor from 17 gCO2-eq /MJ to -23 gCO2-eq /MJ. The investment could also help achieving the sustainability goals by decreasing the dependence on fossil carbon dioxide for various sectors.
86

Bioenergy from Swedish forests : A Study of extraction methods, quality and effects for forest owners

Nilsson, Daniel January 2020 (has links)
The forest constitutes a very important element of renewable natural resources and makes a significant contribution to the Swedish bioeconomy. Biofuels are Sweden’s largest source of energy; of all the energy we use, 32% comes from biofuels, and of this approximately 85% comes from the forest and the forestry sector. In spite of this, logging residues constitute only a small component, compared to for example byproducts from sawmills and pulpindustry, and there is considered to be great potential for increasing their use. In 2019 the Swedish Forestry Agency issued new recommendations for logging residue harvest and ash recycling. This was a further development of the 2008 recommendations, which formed the foundation for how forest fuel producers work today, and were based on several decades of research into, for example, the impact on forest productivity and technological development of machinery. This practice of logging residue harvest aims to yield a dry and defoliated fuel where the needles are left at the clear felled area. However, if we are to increase the use of green renewable energy from forestry, it is very important to understand how different procurement systems affect the handling and storability of fuels from a quality perspective. It is also of great importance to understand, from the forest owners’ perspective, how removal of additional products from forestry influences nutritional balance and long-term productivity. If harvesting of logging residues does not affect long-term productivity, it is up to small-scale private forest owners to decide if removal of logging residues will be performed on their land. This thesis addresses some of these issues regarding removal of logging residues from the point of tree harvest up to the point of delivery to the energy conversion industry when the fuel chips are measured. Regarding different methods of handling of logging residues, the traditional method – dry-stacking – was compared with the, fresh-stacking method. The logging residues investigated came from stands that mainly consisted of Norway spruce (Picea abies (L.) Karst). The loads investigated in Paper 3 also came from logging of spruce-dominated forests. Both methods aim to dry the logging residues to an acceptable moisture content for delivery to the energyconversion industry. For the later part in the supply chain, moisture content measurements of logging residues were compared during a winter and summer season. The results of the studies indicate that the two methods do not create results that differ from what is allowed by the Swedish Forestry Agency and that they are quite similar with respect to dry mass- and nutrient removal from the clearfelled area. The results also show that similar yields and distributions of material are obtained from the logging residues with different stacking methods; in addition, the final felling itself, combined with the work performed by the forwarder operator, has a greater impact on the result than the method chosen for residue stacking of the logging residues. For the individual clear-felled area and the individual forest owner the increased removal associated with freshstacked logging residue has no major impact, however from a national perspective this small increase in removed logging residues may yield a supplement of between 0.5 – 1 TWh of green energy annually. Regardless of treatment, the studies indicated that the delivered fuel chips will have similar characteristics. The moisture content measurement techniques currently in use are sufficiently accurate and reliable. However, if the forest owner is unlucky and an error in measurement occurs or comminution and delivery happens during an especially wet period they may suffer a significant financial loss; indeed, it is generally not under the individual forest owners’ control when the logging residues are comminuted and delivered.
87

Förbättrad biogaspotential med hydrokol som additiv : En laborativ studie om metanproduktion / Improved biogaspotential with hydrochar as an additive : A laboratory study on methane production

Kristoffersson, Maria January 2023 (has links)
Anaerob rötning är en naturlig nedbrytningsprocess av organiskt material som tar tillvara på avfall samtidigt som nyttig energi kan utvinnas. På Biogasbolaget AB i Karlskoga omvandlas substrat som matavfall, gödsel och ensilage till biogas som sedan kan uppgraderas till fordonsgas. Fordonsgasen kan användas som drivmedel till bussar i närområdet. Det bildas dessutom en rötrest som används som biogödsel, men som är kostsam för företaget. Rötkamrarna i Karlskoga är överdimensionerade i förhållande till den mängden substrat som levereras, vilket innebär att de kan ta hand om mer gas än det som bildas i dagsläget. Tidigare studier har visat att tillsats av hydrokol kan öka metangasproduktionen. Därför var syftet med studien att utvärdera ifall hydrokol kan öka metangasproduktionen i satsvis anaerob rötning. Målen var att jämföra två olika hydrokol; skogsindustriellt och kommunalt, samt att komma fram till en optimal dos. Eftersom området är relativt nytt var det också av intresse att ta reda på hur klimatpåverkan förändras vid tillsats av hydrokol genom att utföra en enkel livscykelanalys.   Utvärderingen av hydrokolets potential i anaerob rötning utfördes genom satsvis rötning i två omgångar. Substrat och ymp hämtades från Karlskogas biogasanläggning. De doserna hydrokol som testades i båda försöken var 4, 8 och 10 g/l samt referensfallet 0 g/l vilket motsvarade Karlskogas förhållanden. Det gjordes även försök med endast hydrokol för att ta reda på om det var hydrokolet i sig som producerade metangas. Den satsvisa rötningen visade att det kommunala hydrokolet med en dos på 8 g/l gav mest metangas (841 Nml/g VS) jämfört med referensen 0 g/l (435 Nml/g VS) vilket var en ökning med 93%. Det skogsindustriella hydrokolet med en dos på 8 g/l visade en ökning med 16,6% (517 Nml/g VS) jämfört med referensen 0 g/l (443 Nml/g VS). Den enkla livscykelanalysen visade att det resulterade i en större minskning av utsläpp när dieselbussar kan bytas ut mot hydrokolsbaserad biogas jämfört med vanlig biogas. Vid tillsats av kommunalt hydrokol till biogasprocessen blev besparingen 14783 ton CO2.ekv./år vid utbyte av diesel och för skogsindustriellt hydrokol motsvarade besparingen 8938 ton CO2.ekv./år. Det jämfört med biogas som produceras utan hydrokol som vid utbyte av diesel sparar 7688 ton CO2.ekv./år. Massflödesanalysen visade att det teoretiskt är möjligt att använda Karlskogas rötrest för att använda som substrat till HTC-anläggningen och därmed införa ett cirkulärt system. Däremot visade metallanalysen att det finns risk för förhöjda mängder tungmetall i rötresten, vilket skulle kunna leda till att de inte klarar de krav som finns för att certifiera biogödseln.   För Biogasbolaget AB i Karlskoga innebär resultaten att de med 8 g/l kommunalt alternativt skogsindustriellt hydrokol skulle kunna öka sin metangasproduktion med 93% respektive 16,6%. Däremot kan det leda till problem med metallhalterna i rötresten som riskerar att överstiga gränsvärdena som finns för biogödsel. / Anaerobic digestion is a natural decomposition process of organic material that utilizes waste while extracting useful energy. At Biogasbolaget AB in Karlskoga, substrates such as food waste, manure, and silage are converted into biogas, which can then be upgraded to vehicle fuel. The vehicle gas can be used as fuel for buses in the local area. Additionally, a digestate is formed, which is used as biofertilizer but is costly for the company. The digesters in Karlskoga are oversized compared to the amount of substrate delivered, which means they can handle more gas than is currently being produced. Previous studies have shown that the addition of hydrochar can increase methane gas production. Therefore, the aim of the study was to evaluate whether hydrochar can increase methane gas production in batch anaerobic digestion. The goals were to compare two different types of hydrochar: from the forestry industry and municipal sources, and to determine the optimal dosage. Since the area is relatively new, it was also of interest to determine how the climate impact changes with the addition of hydrochar by conducting a simple life cycle analysis.   The evaluation of hydrochar's potential in anaerobic digestion was carried out through batch digestion in two rounds. Substrate and inoculum were obtained from Karlskoga's biogas plant. The doses of hydrochar tested in both experiments were 4, 8, and 10 g/l, as well as the reference case of 0 g/l, which corresponded to Karlskoga's conditions. Experiments were also conducted with hydrochar alone to determine if it was the hydrochar itself that produced methane gas. The batch digestion showed that the municipal hydrochar with a dosage of 8 g/l produced the most methane gas (841 Nml/g VS) compared to the reference of 0 g/l (435 Nml/g VS), which was an increase of 93%. The forestry industry hydrochar with a dosage of 8 g/l showed an increase of 16,6% (517 Nml/g VS) compared to the reference of 0 g/l (443 Nml/g VS). The simple life cycle analysis showed that it resulted in a greater reduction in emissions when diesel buses can be replaced by hydrochar-based biogas compared to regular biogas. When municipal hydrochar was added to the biogas process, the savings amounted to 14,783 tons of CO2 equivalent per year through diesel substitution. For forest industry hydrochar the equivalent resulted in savings of 8,938 tons of CO2 equivalent per year. This is in comparison to biogas produced without hydrochar, which saves 7,688 tons of CO2 equivalent per year when substituting diesel. The mass flow analysis showed that it is theoretically possible to use Karlskoga's digestate as substrate for the HTC plant, thus introducing a circular system. However, the metal analysis revealed a potential risk of elevated levels of heavy metals in the digestate, which could prevent it from meeting the requirements for certifying the biofertilizer.   For Biogasbolaget AB in Karlskoga, the results mean that with 8 g/l of municipal or forest industry hydrochar, they could increase their methane gas production by 93% and 16.6%, respectively. However, this could lead to issues with metal levels in the digestate, which may exceed the threshold values set for  biofertilizer.
88

Anaerobic digestion of horse manure : renewable energy and plant nutrients in a systems perspective

Hadin, Åsa January 2016 (has links)
In horse keeping horse manure is produced, which can be utilized as a fertilizer or considered a waste. Horse manure constitutes a resource in terms of both plant nutrients and energy. In addition energy policies and objectives aim at replacing fossil fuels with renewable energy sources. The interest to improve resource recovery of horse manure increases due various incentives for renewable vehicle fuels, legal requirements on management of manure, and environmental impact from current horse manure management. This thesis aims at describing horse manure management in a life cycle perspective. This is made by (1) identifying factors in horse keeping affect­ing the possibility to use horse manure as a biogas feedstock and to recycle plant nutrients, (2) analysing factors in anaerobic digestion with influence on methane potential and biofertilizer nutrient content and (3) comparing the environmental impact from different horse manure treatment methods. Literature reviews, systematic combining, and simulations have been used as research methods. The results show that horse keeping activities such as feeding, indoor keeping, outdoor keeping and manure storage affect the amount and charac­teristics of horse manure and thereby also the possibilities for anaerobic digestion horse manure. Transport affects the collected amount and spread­ing affects loss of nutrients and nutrient recycling. Simulation results in­dicate the highest methane yield and energy balance from paper bedding, while straw and peat gave a higher nutrient content of the biofertilizer. The highest methane yield was achieved with a low rate of bedding, which in the cases of woodchips and paper is also preferable for plant nutrient recycling. Still, results indicate the best energy balance from anaerobic digestion with a high ratio of bedding. The environmental impact assessment indicates a reduction in global warming potential for anaerobic digestion compared to incineration or composting. / Vid hästhållning alstras hästgödsel som kan användas som växtnäring eller anses vara ett avfall. Hästgödsel utgör både en växtnäringsresurs och en energi resurs. Dessutom styr uppsatta energimål mot att förnybar energi ska ersätta fossila bränslen. Intresset för att öka resursutnyttjandet av hästgödsel ökar på grund av olika incitament för förnybara drivmedel, lagstiftning om gödselhantering och miljöpåverkan från dagens hantering av hästgödsel. I den här avhandlingen beskrivs hästgödselhantering i ett livscykel­perspektiv genom att (1) identifiera olika faktorer vid hästhållningen som påverkar möjligheten att utvinna biogas ur hästgödsel och återföra näringen till jordbruksmark, (2) analysera faktorer i biogasprocessen som påverkar den specifika metanmängden och innehållet av växtnäring i gödseln och (3) jämföra olika gödselhanteringsmetoders miljöpåverkan. Metoderna i avhan­dlingen har varit litteraturstudier, systematisk kombination av teori och em­piri samt simulering. Resultaten visar att utfodringen, om och hur hästarna hålls inomhus och utomhus och hur hästgödsel lagras påverkar mängden hästgödsel och dess egenskaper, och därmed också hur den fungerar som ett biogassubstrat. Trans­porterna har betydelse för hur mycket gödsel som kan samlas in och spridas, medan gödselspridningen påverkar näringsförluster och närings återföring. Resultaten från simuleringarna indikerar högst metanutbyte och bäst energi­balans från papper som strömaterial, medan halm och torv gav högre växt­näringsinnehåll i biogödseln. De högsta resultaten på specifik metanmängd nåddes med låg andel strö, vilket också var positivt för växtnäringsinnehållet vid scenarierna med spån och papper. Samtidigt indikerar resultaten att en hög andel strömaterial ger den bästa energibalansen. Miljöpåverkansbedöm­ningen indikerar att potentialen för klimatpåverkan minskar om hästgödsel behandlas i en biogasprocess jämfört med förbränning eller kompostering.
89

Avskiljning, användning och lagring av koldioxid från biogasproduktion : Lämpliga lösningar för Tekniska verkens biogasanläggning / Capture, utilization and storage of carbon dioxide from biogas production : Suitable solutions for Tekniska verken’s biogas plant

Harrius, Josefine, Larsson, Amanda January 2020 (has links)
Carbon dioxide is released by natural and anthropogenic processes, such as the production and combustion of fossil fuels. Production of biogas also generates carbon dioxide, but of biogenic origin. The global, yearly emissions of greenhouse gases are regularly increasing, although agreements such as the Paris Agreement is signed by parties globally. Sweden has the goal to reach net-zero emissions by 2045, and thereafter to only obtain negative emission levels. To reach these goals the biogenic version of Carbon Capture and Storage (CCS) called Bioenergy with Carbon Capture and Storage (BECCS) is considered to be an essential strategy. Using carbon dioxide, through Carbon Capture and Utilization (CCU), in for example products, can complement BECCS since the strategy can increase the value of carbon dioxide. These strategies make it possible to reduce the climate impact of biogas production.  This master thesis aimed to chart different techniques in CCS and CCU to examine how they can be used to utilize or store carbon dioxide from biogas plants. What technical demands different solutions create was explored. The different techniques were assessed through a multi criteria analysis by a technological, environmental, marketable and economical standpoint to investigate which ones were the most suitable for a specific, studied case – Tekniska verken’s biogas plant. One suitable technique within CCU was analyzed through a screening of actors in the region. An environmental assessment of one technique in CCS and one in CCU were compared with the reference case Business as usual, to explore how a simulated biogas plant’s climate impact can change through the implementation of CCS and CCU.  The charting of literature gave findings of 42 different techniques, which were sifted down to 7; algae farming for wastewater treatment, BECCS in saltwater aquifers, carbon dioxide curing of concrete, bulk solutions, production of methanol, production of methane through Power To Gas and crop yield boosting in greenhouses. The multi criteria analysis pointed out carbon dioxide curing of concrete and BECCS in saltwater aquifers as suitable solutions for the studied case. The implementation of these techniques requires a liquefaction plant, infrastructure for transportation as well as business partners.  A life cycle assessment of the studied cases climate impact was given through modelling and simulation of a model plant of the studied case, with the functional unit 1 Nm3 biomethane. The reference case Business as usual had a climate impact of 0,38 kg CO2 eq, which corresponds to approximately one eighth of the climate impact of fossil fuels such as gasoline or diesel. By storing the carbon dioxide through BECCS in saltwater aquifers the climate impact decreased to - 0,42 kg CO2 eq. By utilizing the carbon dioxide through curing of concrete the biomethane’s climate impact decreased to -0,72 kg CO2 eq. The results thereby evince that Swedish biogas producers can improve their climate performance through CCS and CCU. / Koldioxid släpps ut av såväl naturliga som antropogena processer, exempelvis vid produktion och förbränning av fossila bränslen. Även vid biogasproduktion uppkommer koldioxid, men av biogent ursprung. Årliga globala utsläpp av växthusgaser ökar regelbundet, trots överenskommelser som Parisavtalet som syftar till att begränsa klimatförändringarna. Sverige ska nå nettonollutsläpp senast 2045 och därefter ha negativa utsläppsnivåer. För att uppnå detta mål anses en biogen version av Carbon Capture and Storage (CCS), det vill säga avskiljning och lagring av koldioxid, kallad Bioenergy with Carbon Capture and Storage (BECCS) vara en essentiell strategi. Tillvaratagande av koldioxid, genom Carbon Capture and Utilization (CCU), kan ge ett bra komplement till BECCS eftersom det nyttiggör koldioxid i produkter och kan öka värdet av koldioxid. Tekniker inom CCS och CCU möjliggör minskad klimatpåverkan inom biogasproduktion.  Detta examensarbete syftade till att kartlägga olika alternativ inom teknikerna CCS och CCU för att undersöka hur dessa kan användas för att nyttiggöra eller lagra koldioxid från biogasanläggningar, samt att undersöka vilka tekniska krav som ges av lösningarna. Utifrån en multikriterieanalys bedömdes vilka lösningar som var tekniskt, miljömässigt, marknadsmässigt och ekonomiskt motiverade för tillvaratagande av koldioxid. Bedömningen genomfördes genom att studera specifikt fall som var Tekniska verken i Linköpings biogasanläggning. Den lösning som valdes ut som lämplig inom CCU analyserades ur ett marknadsmässigt perspektiv genom en översiktlig kartläggning av aktörer i regionen. Därefter studerades klimatpåverkan från en förenklad modell av Tekniska verkens biogasanläggning för att undersöka hur denna förändras vid implementering av en lämplig lösning inom CCS respektive CCU.  Genom en screening av lösningsförslag identifierades 42 lösningsförslag inom CCS och CCU som sållades ner till sju stycken; algodling vid vattenrening, BECCS i saltvattenakviferer, betong härdad av koldioxid, bulklösning, metanoltillverkning, tillverkning av metan genom Power To Gas samt växthusodling. Multikriterieanalysen visade att koldioxidhärdad betong inom CCU och BECCS i saltvattenakviferer inom CCS var lämpliga lösningar för det studerade fallet. För implementering av förslagen krävdes bland annat en förvätskningsanläggning, infrastruktur för transport och samarbetspartners.  De studerade scenariernas klimatmässiga livscykel erhölls genom modellering och simulering av en modellanläggning av det studerade fallets biogasanläggning i programvaran SimaPro med användning av den funktionella enheten 1 Nm3 fordonsgas. Resultatet visade att fordonsgasen i referensfallet har en klimatpåverkan på 0,38 kg koldioxidekvivalenter. Fordonsgasens klimatpåverkan var cirka en åttondel av fossila bränslen såsom bensin och diesels klimatpåverkan. Vid lagring av koldioxid genom BECCS i saltvattenakviferer förändrades klimatpåverkan till - 0,42 kg koldioxidekvivalenter. När koldioxid användes till härdning av betong förändrades fordonsgasens klimatpåverkan till -0,72 kg koldioxidekvivalenter. Detta innebär att svenska producenter av biogas kan förbättra sin klimatpåverkan genom såväl lösningar inom CCS som CCU.
90

Optimering av driftstemperatur vid mesofil rötning av slam : - funktionskontroll vid Uppsalas reningsverk / Optimizing operational temperature in mesophilic digestion of sewage sludge : – a study at Uppsala wastewater treatment plant

Andersson, Johanna January 2019 (has links)
För att minska klimatpåverkan är energisnåla processer och användning av fossilfria bränslen viktigt. Vid stabilisering av avloppsslam vid reningsverk är en vanlig metod rötning som förutom att ta hand om slammet även producerar biogas, ett fossilfritt bränsle med låga växthusgasutsläpp. Processer som drivs inom det mesofila temperaturområdet har visat sig vara stabila och ger en jämn gasproduktion. Det mesofila området sträcker sig mellan 25–40°C men de flesta processer drivs mellan 35–40°C. Den här studien undersöker möjligheten att sänka temperaturen inom det mesofila området för att få en lägre energiförbrukning och en energisnålare process. Då det är viktigt att biogasproduktionen inte försämras av en sänkt temperatur har skillnad i utrötningsgrad, metanpotential och utrötningstid undersökts vid tre olika temperaturer (32, 34,5 samt 37,5°C) via satsvisa utrötningsförsök. Utöver påverkan på biogasproduktionen har en energibalansberäkning utförts för rötkamrarna vid Uppsala reningsverk. Detta ger ett mått på hur stora vinster i värmeenergi en sänkt temperatur kan leda till. En betydande kostnad vid reningsverk är avvattningen av slam och det är därför viktigt att den inte riskerar att försämras om temperaturen sänks. Ett filtreringsförsök som mäter CST (Capillary Suction Time) ger ett mått på slammets avvattningsegenskaper och har därför utförts vid tre olika temperaturer. Resultaten visade ingen försämring i biogasproduktion vid en sänkning till 34,5°C och en minskning i metanpotential med 11 % vid en sänkning till 32°C. Nedbrytningshastigheten försämrades inte vid en sänkt temperatur. Vinster i form av lägre värmeförbrukning uppgick till 14 % vid sänkning till 34,5°C och 27 % vid sänkning till 32°C. Avvattningsförsöket visade ingen försämrad avvattning vid lägre temperaturer. Den här studien visar att det finns en möjlighet att sänka temperaturen i rötkammaren vid reningsverket i Uppsala och på så sätt sänka energiförbrukningen. För att bekräfta resultaten bör även kontinuerliga försök utföras men denna studie visar att det är möjligt att få en lyckad nedbrytning även i lägre mesofila temperaturer. Resultatet öppnar upp för fortsatta undersökningar om temperaturförändringar inom det mesofila området och kan leda till en optimering av rötningsprocessen och möjlighet att få en effektiv och energisnål produktion av biogas. / Energy efficient processes and the use of fossil free fuels play an important role in order to reduce the impact of climate change. Anaerobic digestion is a common way for stabilizing sewage sludge at wastewater treatment plants (WWTP). One of the benefits with anaerobic digestion is that it also produces biogas, a fossil free fuel with low greenhouse gas emissions. An operational temperature within the mesophilic range has proven to give a stable process with an unfluctuating production of gas. The mesophilic temperature range between 25-40°C but most processes are operated between 35-40°C. This study investigates the opportunity to lower the temperature within the mesophilic range in order to reduce energy consumption. It is important to maintain the production of biogas with a lower temperature. Therefore, the reduction in VS-content (VS-volatile solids), methane yield and time for degradation was determined by a BMP-experiment (BMP-Biochemical Methane Potential) in three different temperatures (32, 34.5 and 37.5°C). In order to quantify the reduction in heat consumption with lower operational temperatures the change in heat balance for a full-scale WWTP in Uppsala was calculated. A major part of the operational cost is dewatering of sludge and it is therefore important that it does not deteriorate with a lower temperature. The effect on the dewaterability at different temperatures was examined by a filterability test measuring CST (capillary suction time). The results from the study showed no significant difference in methane yield between 37.5°C and 34.5°C. The methane yield at 32°C was 11 % lower compared to 37.5°C but the degradation kinetic was not affected by a temperature change. The reduction in heat consumption was 14 % when the temperature was reduced to 34.5°C and 27 % when it was reduced to 32°C. The filterability test did not show a deterioration with lower temperatures. The study showed that it is possible to reduce the operational temperature for anaerobic digestion at the WWTP in Uppsala in order to reduce the energy consumption. To confirm these results a continuously experiment should be done, but this study shows that it is possible to get a successful degradation in a lower mesophilic temperature. This leads the way for further investigations within the mesophilic range and could lead to optimizing anaerobic digestion and the opportunity to get an energy efficient production of biogas.

Page generated in 0.0491 seconds