• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • Tagged with
  • 13
  • 13
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Der Einfluss der Technik in der Medizin – nur eine Erfolgsgeschichte? / The influence of technology in medicine – A story of only successes?

Heidel, Caris-Petra 07 November 2008 (has links) (PDF)
Technik in der Medizin ist zwar kein neues Phänomen, führt aber heute mehr denn je zur Diskussion um Sinn und Wert der Medizin bzw. des Arztseins. Mit ihrer naturwissenschaftlichen und damit gleichzeitig technischen Fundierung seit der zweiten Hälfte des 19. Jahrhunderts hatte die Medizin zunächst in der Diagnostik, nachfolgend in der Therapie einen bislang nicht gekannten Aufschwung erfahren. Dies führte einerseits zu der Auffassung und dem Anspruch der Patienten, jede Erkrankung sei heilbar und jedes Organ ersetzbar. Andererseits artikulierte sich aber auch Unbehagen an der „Apparatemedizin“. Neben ethischen Bedenken bei einer auf biomedizinische Technik fokussierten Medizin stellt sich heute vor allem (wieder) die Frage nach dem Verhältnis von Patient und Arzt und der Rolle des Arztes an sich. / The use of technology in medicine is not a new phenomenon, but it today leads more than ever before to discussions on the purpose and value of medicine and what it means to be a doctor. With its scientific and simultaneously technical foundations, medicine has, since the second half of the nineteenth century, been experiencing a previously unheard-of boom – first in diagnostics, and subsequently in therapy. This led on the one hand to a belief and expectation among patients that every illness was curable, and every organ replaceable. On the other hand, reservations were also expressed about such “gadgetry medicine”. Alongside ethical concerns regarding a medicine focused on biomedical technology, the question of the patient-doctor relationship and the role of the doctor has today (once more) come to the fore.
2

Degradationskinetik von medizinisch relevanten bioabbaubaren Copolymeren unter statischen und dynamischen Bedingungen /

Tartakowska, Diana J. January 2005 (has links)
Zugl.: Berlin, Techn. Universiẗat, Diss., 2005.
3

Der Einfluss der Technik in der Medizin – nur eine Erfolgsgeschichte?

Heidel, Caris-Petra 07 November 2008 (has links)
Technik in der Medizin ist zwar kein neues Phänomen, führt aber heute mehr denn je zur Diskussion um Sinn und Wert der Medizin bzw. des Arztseins. Mit ihrer naturwissenschaftlichen und damit gleichzeitig technischen Fundierung seit der zweiten Hälfte des 19. Jahrhunderts hatte die Medizin zunächst in der Diagnostik, nachfolgend in der Therapie einen bislang nicht gekannten Aufschwung erfahren. Dies führte einerseits zu der Auffassung und dem Anspruch der Patienten, jede Erkrankung sei heilbar und jedes Organ ersetzbar. Andererseits artikulierte sich aber auch Unbehagen an der „Apparatemedizin“. Neben ethischen Bedenken bei einer auf biomedizinische Technik fokussierten Medizin stellt sich heute vor allem (wieder) die Frage nach dem Verhältnis von Patient und Arzt und der Rolle des Arztes an sich. / The use of technology in medicine is not a new phenomenon, but it today leads more than ever before to discussions on the purpose and value of medicine and what it means to be a doctor. With its scientific and simultaneously technical foundations, medicine has, since the second half of the nineteenth century, been experiencing a previously unheard-of boom – first in diagnostics, and subsequently in therapy. This led on the one hand to a belief and expectation among patients that every illness was curable, and every organ replaceable. On the other hand, reservations were also expressed about such “gadgetry medicine”. Alongside ethical concerns regarding a medicine focused on biomedical technology, the question of the patient-doctor relationship and the role of the doctor has today (once more) come to the fore.
4

Decoding motor neuron behavior for advanced control of upper limb prostheses

Kapelner, Tamás 01 December 2016 (has links)
No description available.
5

Evaluation eines neuartigen kapazitiven EKG-Systems bei Patienten mit akutem ST-Hebungs-Myokardinfarkt / First clinical evaluation of a novel capacitive ECG system in patients with acute myocardial infarction

Weil, Mareike Bianca 11 December 2013 (has links)
No description available.
6

Parallele Datenakquisition zur Beschleunigung Diffusionsgewichteter Kernspintomographie mit Stimulierten Echos / Parallel Data Acquisition for the Acceleration of Diffusion-Weighted Magnetic Resonance Imaging using Stimulated Echoes

Küntzel, Matthias 17 August 2006 (has links)
No description available.
7

Quantitative analysis of the spontaneous activity and response profiles of odorant receptor neurons in larval Xenopus laevis using the cell-attached patch-clamp technique

Topci, Rodi 24 June 2020 (has links)
No description available.
8

Silent speech command word recognition using stepped frequency continuous wave radar

Wagner, Christoph, Schaffer, Petr, Digehsara, Pouriya Amini, Bärhold, Michael, Plettemeier, Dirk, Birkholz, Peter 19 April 2024 (has links)
Recovering speech in the absence of the acoustic speech signal itself, i.e., silent speech, holds great potential for restoring or enhancing oral communication in those who lost it. Radar is a relatively unexplored silent speech sensing modality, even though it has the advantage of being fully non-invasive. We therefore built a custom stepped frequency continuous wave radar hardware to measure the changes in the transmission spectra during speech between three antennas, located on both cheeks and the chin with a measurement update rate of 100 Hz. We then recorded a command word corpus of 40 phonetically balanced, two-syllable German words and the German digits zero to nine for two individual speakers and evaluated both the speaker-dependent multi-session and inter-session recognition accuracies on this 50-word corpus using a bidirectional long-short term memory network. We obtained recognition accuracies of 99.17% and 88.87% for the speaker-dependent multi-session and inter-session accuracy, respectively. These results show that the transmission spectra are very well suited to discriminate individual words from one another, even across different sessions, which is one of the key challenges for fully non-invasive silent speech interfaces.
9

Cavitation and shock wave effects on biological systems / Kavitation und Stoßwelleneffekte in biologischen Systemen

Wolfrum, Bernhard 10 February 2004 (has links)
No description available.
10

Hydrodynamical investigations of liquid ventilation by means of advanced optical measurement techniques

Janke, Thomas 20 August 2021 (has links)
Although liquid ventilation has been researched and studied for the last six decades, it did not achieve its expected optimal performance. Within this work, a deeper understanding of the fluid dynamics during liquid ventilation shall be gathered to extend the already available clinical knowledge about this ventilation strategy. In order to reach this goal, advanced optical flow measurement techniques are applied in different models of the human conductive airways to obtain global velocity fields, identifying prominent flow structures and to determine important dissolved oxygen transport paths. As the velocity measurements revealed, the evolving flow field is strongly dominated by secondary flow effects and is highly dependent on the local airway geometry. During the visualization experiments of the dissolved oxygen concentration fields, different transportation paths occur at inspirational and expirational flow. The initial concentration distribution can be linked to the underlying flow fields but decouples after the peak velocity phases. With higher flow rates/ tidal volumes, a more homogeneously distributed oxygen concentration can be reached.:List of Figures ....................................................................................... VII List of Tables ........................................................................................XIII Nomenclature ........................................................................................ XV 1 Introduction......................................................................................... 1 1.1 Motivation ........................................................................................1 1.2 Research objectives........................................................................... 3 1.3 Outline............................................................................................ 4 2 State of the art .................................................................................... 5 2.1 Liquid Ventilation............................................................................. 5 2.2 In vitro modeling.............................................................................. 8 2.3 Flow measurements ......................................................................... 11 2.4 Gas transport..................................................................................13 3 Flow field measurements ................................................................... 16 3.1 Hydrodynamic Model.......................................................................16 3.1.1 Lung replica ..........................................................................16 3.1.2 Flow parameter .....................................................................18 3.1.3 Limitations ...........................................................................22 3.2 Particle Tracking Velocimetry (PTV) ................................................24 3.2.1 Measurement principle ...........................................................24 3.2.2 Double-frame 2D-PTV ...........................................................25 3.2.3 Time-resolved 3D-PTV ..........................................................28 3.2.4 Phase-locked ensemble PTV ................................................... 31 3.3 Experimental set-up and measurement procedure ...............................33 3.3.1 Lung flow facility...................................................................33 3.3.2 2D-PTV configuration............................................................36 3.3.3 3D-PTV configuration............................................................36 3.4 Results & Discussion........................................................................38 3.4.1 Artificial lung........................................................................38 3.4.2 Realistic lung ........................................................................52 3.5 Conclusion ......................................................................................59 4 Oxygen transport ...............................................................................61 4.1 Hydrodynamic Model....................................................................... 61 4.1.1 Lung replica .......................................................................... 61 4.1.2 Flow parameter .....................................................................62 4.1.3 Limitations ...........................................................................65 4.2 Oxygen Sensitive Dye ......................................................................66 4.3 Experimental set-up......................................................................... 71 4.4 Results & Discussion........................................................................75 4.4.1 Constant flow rate .................................................................75 4.4.2 Oscillatory flow .....................................................................83 4.5 Conclusion ......................................................................................90 5 Summary............................................................................................ 92 6 Outlook .............................................................................................. 95 Bibliography ............................................................................................ 97 / Trotz intensiver Forschung in den letzten sechs Jahrzehnten, befindet sich die Flüssigkeitsbeatmung immernoch weit entfernt vom klinischen Alltag. Mit dieser Arbeit soll ein Beitrag geleistet werden, um das Wissen um die strömungsmechanischen Effekte während der Flüssigkeitsbeatmung zu vertiefen. Dazu werden verschiedene Modellexperimente durchgeführt, bei welchen moderne laseroptische Strömungsmessmethoden zum Einsatz kommen. Untersucht werden dabei unterschiedlich komplexe Geometrien der leitenden menschlichen Atemwege mit dem Ziel wesentliche Strömungsstrukturen, globale Geschwindigkeitsfelder und wichtige Transportwege des gelösten Sauerstoffs zu identifiziern. Die Geschwindigkeitsmessungen zeigen ein stark durch sekundäre Strömungseffekte dominiertes Geschwindigkeitsfeld, welches wesentlich von der lokalen Geometrie abhängig ist. Durch die qualitative und quantitative Erfassung der gelösten Sauerstoffkonzentrationsfelder können wichtige Transportwege aufgedeckt werden. Diese unterscheiden sich deutlich zwischen inspiratorischer und expiratorischer Strömungsrichtung. Die initialen Konzentrationsfelder stimmen mit den unterliegenden Geschwindigkeitsfeldern überein, unterscheiden sich ab der verzögernden Strömungsphase jedoch. Höhere Volumenströme/Tidalvolumen tragen dabei zu einer gleichmäßigeren Konzentrationsverteilung bei.:List of Figures ....................................................................................... VII List of Tables ........................................................................................XIII Nomenclature ........................................................................................ XV 1 Introduction......................................................................................... 1 1.1 Motivation ........................................................................................1 1.2 Research objectives........................................................................... 3 1.3 Outline............................................................................................ 4 2 State of the art .................................................................................... 5 2.1 Liquid Ventilation............................................................................. 5 2.2 In vitro modeling.............................................................................. 8 2.3 Flow measurements ......................................................................... 11 2.4 Gas transport..................................................................................13 3 Flow field measurements ................................................................... 16 3.1 Hydrodynamic Model.......................................................................16 3.1.1 Lung replica ..........................................................................16 3.1.2 Flow parameter .....................................................................18 3.1.3 Limitations ...........................................................................22 3.2 Particle Tracking Velocimetry (PTV) ................................................24 3.2.1 Measurement principle ...........................................................24 3.2.2 Double-frame 2D-PTV ...........................................................25 3.2.3 Time-resolved 3D-PTV ..........................................................28 3.2.4 Phase-locked ensemble PTV ................................................... 31 3.3 Experimental set-up and measurement procedure ...............................33 3.3.1 Lung flow facility...................................................................33 3.3.2 2D-PTV configuration............................................................36 3.3.3 3D-PTV configuration............................................................36 3.4 Results & Discussion........................................................................38 3.4.1 Artificial lung........................................................................38 3.4.2 Realistic lung ........................................................................52 3.5 Conclusion ......................................................................................59 4 Oxygen transport ...............................................................................61 4.1 Hydrodynamic Model....................................................................... 61 4.1.1 Lung replica .......................................................................... 61 4.1.2 Flow parameter .....................................................................62 4.1.3 Limitations ...........................................................................65 4.2 Oxygen Sensitive Dye ......................................................................66 4.3 Experimental set-up......................................................................... 71 4.4 Results & Discussion........................................................................75 4.4.1 Constant flow rate .................................................................75 4.4.2 Oscillatory flow .....................................................................83 4.5 Conclusion ......................................................................................90 5 Summary............................................................................................ 92 6 Outlook .............................................................................................. 95 Bibliography ............................................................................................ 97

Page generated in 0.0523 seconds