• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 53
  • 27
  • 16
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 370
  • 370
  • 370
  • 82
  • 73
  • 67
  • 42
  • 37
  • 34
  • 34
  • 33
  • 33
  • 31
  • 31
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Le rôle de l’inflammation dans le développement des complications neurologiques associées à l’insuffisance hépatique aiguë chez la souris

Chastre, Anne 12 1900 (has links)
L’insuffisance hépatique aiguë (IHA) se caractérise par la perte soudaine de la fonction hépatique résultant de la nécrose massive des hépatocytes en l’absence de pathologie hépatique préexistante. L’IHA s’accompagne de perturbations métaboliques et immunologiques qui peuvent entraîner l’apparition de complications périphériques et cérébrales telles qu’un syndrome de réponse inflammatoire systémique (SIRS), une encéphalopathie hépatique (EH), un œdème cérébral, une augmentation de la pression intracrânienne, et la mort par herniation du tronc cérébral. Les infections sont une complication fréquente de l’IHA et elles sont associées à un risque accru de développer un SIRS et une aggravation subséquente de l’EH avec un taux de mortalité augmenté. L’ammoniaque joue un rôle majeur dans les mécanismes physiopathologiques qui mènent au développement de l’EH et de l’œdème cérébral, et des études récentes suggèrent que les cytokines pro-inflammatoires sont également impliquées. Le but de cette thèse est d’étudier le rôle des cytokines pro-inflammatoires circulantes et cérébrales dans le développement de l’EH et de l’œdème cérébral lors d’IHA. Dans l’article 1, nous démontrons que l’inhibition périphérique du facteur de nécrose tumorale-α (TNF-α) par l’etanercept retarde la progression de l’EH en diminuant le dommage hépatocellulaire, réduisant l’inflammation périphérique et centrale ainsi que le stress oxydatif/nitrosatif hépatique et cérébral associé chez la souris avec une IHA induite par l’azoxyméthane (AOM). Ces résultats démontrent un rôle important du TNF-α dans la physiopathologie de l’EH lors d’IHA d’origine toxique et suggèrent que l’etanercept pourrait constituer une approche thérapeutique dans la prise en charge des patients en attente de transplantation hépatique. Dans l’article 2, nous simulons la présence d’une infection chez la souris avec une IHA induite par l’AOM pour mettre en évidence une éventuelle augmentation de la réponse inflammatoire. Nous démontrons que l’endotoxémie induite par le lipopolysaccharide (LPS) précipite la survenue du coma et aggrave la pathologie hépatique. Les cytokines pro-inflammatoires systémiques et cérébrales sont augmentées de façon synergique par le LPS lors d’IHA et résultent en une activation accrue de la métalloprotéinase matricielle-9 cérébrale qui s’accompagne d’une extravasation d’immunoglobulines G (IgG) dans le parenchyme cérébral. Ces résultats démontrent une augmentation majeure de la perméabilité de la barrière hémato-encéphalique (BHE) qui contribue à la pathogenèse de l’EH lors d’IHA en condition infectieuse. Les résultats de l’article 3 démontrent que l’augmentation de la perméabilité de la BHE lors d’IHA induite par l’AOM en condition non infectieuse ne résulte pas de l’altération de l’expression des protéines constitutives de la BHE. Dans l’article 4, nous démontrons que l’exposition d’astrocytes en culture à des concentrations physiopathologiques d’ammoniaque ou d’interleukine-1β résulte en l’altération de gènes astrocytaires impliqués dans la régulation du volume cellulaire et dans le stress oxydatif/nitrosatif. Un effet additif est observé dans le cas d’un traitement combiné au niveau des gènes astrocytaires impliqués dans le stress oxydatif/nitrosatif. L’ensemble des résultats de cette thèse démontre un rôle important de l’inflammation périphérique et cérébrale dans la survenue des complications neurologiques lors d’IHA et une meilleure compréhension des mécanismes physiopathologiques impliqués pourrait contribuer à la mise en place de stratégies thérapeutiques chez les patients atteints d’IHA en attente de transplantation. / Acute liver failure (ALF) is the clinical manifestation of an abrupt loss of hepatic function resuting from a massive hepatocyte necrosis in a patient with no preexisting liver disease. ALF is associated with metabolic and immunological disturbances that may lead to peripheral and cerebral complications such as systemic inflammatory response syndrome (SIRS), hepatic encephalopathy (HE), brain edema, increased intracranial pressure (ICP) and ultimately death by cerebral herniation. ALF is frequently complicated by infections, which are known to increase the risk of developing a SIRS with a subsequent worsening of HE and higher mortality rates. Ammonia plays a pivotal role in the pathophysiological mechanisms leading to HE and brain edema, and recent studies suggest that pro-inflammatory cytokines may also be involved. The aim of this thesis is therefore to investigate the role of circulating and cerebral pro-inflammatory cytokines in the setting of HE and brain edema during ALF. In article No. 1, we demonstrated that peripheral inhibition of tumor necrosis factor-alpha (TNF-α) by etanercept delays the progression of HE by reducing hepatocellular damage, decreasing peripheral and cerebral inflammation as well as associated oxidative/nitrosatif stress in mice with ALF induced by azoxymethane (AOM). These findings demonstrate an important role of TNF-α in the pathophysiology of HE during toxic liver injury and suggest that etanercept may provide a therapeutic approach in the management of patient awaiting liver transplantation. In article No. 2, we mimicked infection in mice with AOM-induced ALF in order to better understand the effects of an increased inflammatory response. We demonstrated that endotoxemia induced by lipopolysaccharide (LPS) precipitates the onset of coma and worsens the liver pathology. Peripheral and brain pro-inflammatory cytokines are synergistically raised by LPS during ALF and result in a large increase in cerebral matrix metalloprotease-9 (MMP-9) activity that was associated with immunoglobulin G (IgG) extravasation in the brain parenchyma. These results demonstrate a major increase of blood-brain barrier (BBB) permeability that contributes to the pathogenesis of HE during ALF with superimposed infection. Results from article No. 3 demonstrate that increase of BBB permeability during AOM-induced ALF without superimposed infection is not due to alteration of BBB constitutive proteins. In article No. 4, we demonstrated that exposure of cultured astrocytes to pathophysiological concentrations of ammonia or interleukin-1β results in an alteration of the expression of astrocytic genes implicated in cell volume regulation and oxidative/nitrosative stress. An additive effect on astrocytic genes implicated in oxidative/nitrosative was made evident in case of co-treatment. Taken together, results of the present thesis demonstrate a major role of peripheral and cerebral inflammation in the onset of neurological complications during ALF and a better understanding of the pathophysiological mechanisms implicated may contribute to new therapeutic strategies for ALF patients awaiting transplantation.
362

Caractérisation neuro-immunitaire d'un modèle d'encéphalomyélite auto-immune expérimentale spontanée

Saint-Laurent, Olivia 08 1900 (has links)
La sclérose en plaques est une maladie neuroinflammatoire idiopathique caractérisée par la formation de lésions focales de démyélinisation, qui apparaissent suite à l’infiltration périvasculaire de cellules immunitaires et à l’augmentation de la perméabilité de la barrière hémato-encéphalique. L’encéphalomyélite auto-immune expérimentale (EAE) est le modèle animal de cette maladie. Cependant, ce modèle présente des différences importantes avec la sclérose en plaques. L’objectif de ce projet de maîtrise était d’approfondir la caractérisation d’un nouveau modèle transgénique d’encéphalomyélite auto-immune expérimentale spontanée, le modèle TCR1640, afin de valider celui-ci pour l’étude des phénomènes physiopathologiques qui surviennent à différents stades de la sclérose en plaques, ainsi que pour le développement de nouveaux traitements de la maladie. La souris TCR1640 porte un récepteur des cellules T (TCR) transgénique autoréactif, qui reconnaît un peptide de la myéline et déclenche une réaction auto-immune contre la myéline endogène au sein du système nerveux central (SNC). Des observations faites in situ et in vitro ont permis d’identifier des changements qui surviennent de façon très précoce dans l’unité neurovasculaire chez les animaux TCR1640 présymptomatiques, et qui sont liés à la présence d’un profil immunitaire périphérique proinflammatoire. Lors des phases actives de l’EAE spontanée, les animaux TCR1640 au stade chronique présentent une inflammation accrue du système nerveux central associée à une infiltration leucocytaire massive, par rapport aux animaux au stade aigu de la maladie. Une étude in vivo a également permis de moduler la maladie développée par des animaux ayant subi une immunisation passive avec des cellules T auxiliaires en provenance de souris TCR1640. Enfin, l’implication de nouvelles molécules d’adhésion cellulaire dans le développement et le maintien de l’EAE spontanée a été suggérée par des observations in vitro. L’ensemble de ces résultats suggère que le modèle TCR1640 présente plusieurs avantages pour l’étude de la physiopathologie de maladies neuroinflammatoires telles que la sclérose en plaques, et servira d’outil afin de valider de nouvelles stratégies thérapeutiques. / Multiple sclerosis is an idiopathic inflammatory disease of the central nervous system. It is characterized by the formation of focal perivascular lesions and demyelination of the surrounding area, which appear concomitantly to a massive immune cell infiltration and disruption of the blood brain barrier. Experimental autoimmune encephalomyelitis is the animal model most extensively used for the study of multiple sclerosis. Unfortunately, this model does not mimic many aspects of the human disease. The goal of this project is to further the characterization of a new transgenic model of spontaneous experimental autoimmune encephalomyelitis, the TCR1640 model, and to validate it as a relevant tool for the study of multiple sclerosis physiopathology and treatment. The TCR1640 mouse possesses a transgenic T cell receptor which recognizes a myelin peptide and triggers an autoimmune response against endogenous myelin in the central nervous system. In situ and in vitro observations have led to the identification of early changes which appear at the neurovascular unit in presymptomatic TCR1640 animals. This early disruption of blood brain barrier homeostasis is linked to the establishment of a proinflammatory immune profile in the periphery. Animals at the chronic stage show sustained inflammation of the central nervous system parenchyma and massive leukocyte infiltration, compared to animals in acute phase of disease. An in vivo experiment has allowed modulating the disease by treatment with a multiple sclerosis-approved therapy, in wild type mice which had received reactivated CD4+ T cells from TCR1640 animals. Finally, the implication of new cell adhesion molecules in the development and maintenance of spontaneous experimental autoimmune encephalomyelitis has been suggested by in vitro study of melanoma cell adhesion molecule (CD146) and activated leucocyte cell adhesion molecule (CD166). The results obtained in this study suggest that the TCR1640 model is a valuable asset in the study of neuroimmune diseases such as multiple sclerosis. It could also be used to validate new therapeutic strategies for the treatment of this disease.
363

Rôle de la poly(ADP-ribose)polymérase dans les transformations hémorragiques induites par le rt-PA après une ischémie cérébrale / Role of poly (ADP-ribose) polymerase in hemorrhagic transformations induced by rt-PA after cerebral ischemia

El Amki, Mohamad 16 April 2013 (has links)
Les accidents vasculaires cérébraux (AVC) constituent un problème majeur de santé publique, puisqu’ils représentent la 3ème cause de mortalité dans les pays industrialisés. À l’heure actuelle, l’activateur tissulaire du plasminogène recombinant (rt-PA) est le seul traitement pharmacologique à la phase aiguë des AVC ischémiques. Il s’agit d’un thrombolytique dont l’utilisation reste très limitée (<2% des patients). En effet, quand le rt-PA est administré au-delà de 4h30, aucune récupération fonctionnelle n’est observée chez le patient. De plus, les données cliniques et expérimentales ont montré que l’administration du rt-PA augmente fortement la survenue de transformations hémorragiques. Il apparaît donc indispensable de développer des stratégies permettant, d’une part, de s’opposer à ces transformations hémorragiques, et d’autre part, d’augmenter la fenêtre thérapeutique du rt-PA. Au vu de ces données, mon travail a consisté à préciser l’intérêt thérapeutique d’inhiber une enzyme, la poly(ADP-ribose)polymérase (PARP) pour s’opposer aux effets délétères du rt-PA au niveau vasculaire. Ces études ont été menées sur un modèle d’ischémie cérébrale thromboembolique réalisé chez la souris, consistant en une injection de thrombine dans l’artère cérébrale moyenne. Dans un 1er temps, nous avons caractérisé ce modèle, récemment décrit dans la littérature (2007) et nouveau dans notre laboratoire. Nos travaux ont montré pour la première fois que, dans ce modèle, le rt-PA à la dose de 0,9 mg/kg (dose utilisée chez l’homme) reproduit fidèlement les « 2 visages » du thrombolytique en clinique : la thrombolyse précoce (30 min après l’ischémie) est associée à des effets bénéfiques, en réduisant le déficit neurologique, le volume de la lésion et l’œdème cérébral, alors que l’administration tardive de rt-PA (4h après l’ischémie) entraîne une aggravation des transformations hémorragiques et une perte de l’amélioration fonctionnelle. Dans un 2ème temps, nous avons étudié l’implication de la PARP dans les transformations hémorragiques induites par l’administration tardive de rt-PA. Le traitement par le PJ34(1 et 3 mg/kg), un puissant inhibiteur de cette enzyme, réduit la dégradation des protéines de jonction de la barrière hémato-encéphalique et les transformations hémorragiques induites par le rt-PA. De plus, le PJ34 s’oppose non seulement à la toxicité vasculaire du rt-PA, mais réduit également le déficit neurologique, le volume de la lésion et l’œdème cérébral. En conclusion, l’ensemble de ce travail montre que l’inhibition de la PARP prolonge la fenêtre thérapeutique du rt-PA et permet une thrombolyse « sécurisée ». Cette stratégie pourrait être mise en place de manière précoce après l’ischémie (avant même l’arrivée du patient à l’hôpital) et augmenter le nombre de patients pouvant bénéficier d’une thrombolyse. / Stroke is the third leading cause of death worldwide and a major cause of disability. Tissue plasminogen activator (rt-PA) is the only approved treatment in the United States and Europe for acute ischemic stroke. Clinical data show that beyond its therapeutic time window (4.5 hours after stroke onset), rt-PA exerts no more neuroprotective effects. Furthermore, clinical data showed that rt-PA increases the hemorrhagic transformations. Therefore, there is a critical need to develop a novel drug that can reduce rt-PA’s deleterious effects and extend its therapeutic window. The aim of the present study was to examine whether Poly(ADP-ribose)polymerase (PARP) mediates the hemorrhagic transformations induced by rt-PA administration. We used a mouse model of thromboembolic stroke, which consists of a microinjection of thrombin in the middle cerebral artery. First, we showed that in the mouse thrombin stroke model, the "human" dose of rt-PA exhibits effects close to those observed in clinic. Later, we showed PARP is implicated in the vascular toxicity of rt-PA after cerebral ischemia. PJ34, a PARP inhibitor, preserves the blood brain barrier integrity, reduces rt-PA-induced hemorrhagic transformations, improves neurological outcomes and reduces brain infarction and edema. In conclusion, this work showed that PARP inhibitors could be relevant candidates to extend the therapeutic time window of rt-PA after stroke without increasing the risk of hemorrhagic transformations.
364

Oligonucleotide-based therapies for neuromuscular disease

Douglas, Andrew Graham Lim January 2015 (has links)
No description available.
365

Mise en place de modèles in vitro de barrière hémato‐encéphalique et étude du transfert transendothélial de vecteurs et conjugués ciblant le récepteur au LDL / Setting-up of in vitro models of the blood-brain barrier and study of the transendothelial transfer of vectors and conjugates that target the LDL receptor

Molino, Yves 18 December 2015 (has links)
La barrière hémato-encéphalique (BHE) protège le système nerveux central (SNC) des fluctuations plasmatiques des molécules endogènes, mais aussi exogènes, et notamment des molécules à potentiel thérapeutique. L’imperméabilité de la BHE est compensée par la présence de mécanismes qui assurent le transport transendothélial des nutriments nécessaires au tissu nerveux, parmi lesquels la transcytose relayée par différents récepteurs. Dans le but d’améliorer le transfert d’agents thérapeutiques à travers la BHE, nous développons des « vecteurs » qui se lient à certains de ces récepteurs. Au cours de notre thèse, nous avons développé et optimisé des modèles in vitro de BHE et barrière sang-moelle épinière (BSME) syngéniques de rats et souris, basés sur la co-culture de cellules endothéliales microvasculaires (CEMs) cérébrales (CEMCs) ou spinales (CEMSs) et d'astrocytes. Parmi les récepteurs étudiés, nous montrons que le LDLR est exprimé à la membrane plasmique apicale des CEMCs et qu’il est impliqué dans la transcytose du LDL tout en évitant le compartiment lysosomal, confirmant l’intérêt de son ciblage dans nos approches. Nous montrons que nos vecteurs, conjugués à une molécule organique ou à un cargo protéique, sont endocytés par les CEMCs de façon LDLR-dépendante, évitent le compartiment lysosomal et franchissent la monocouche de CEMCs. Nous avons également mis en place des modèles in vitro de BHE et BSME enflammés, sachant que l’inflammation des CEMs est associée à de nombreuses pathologies du SNC. Ces modèles seront utiles pour évaluer des stratégies de vectorisation ciblant préférentiellement les structures du SNC en situation pathologique. / The blood-brain barrier (BBB) protects the central nervous system (CNS) from plasma fluctuations of endogenous, but also exogenous molecules, including therapeutic molecules. The BBB’s restrictive properties are compensated by the presence of different mechanisms that provide transport of nutrients across the BBB, including transcytosis of endogenous ligands mediated by receptors. Our objective is to improve drug delivery across the BBB and we developed “vectors” that target different recpetors. During our thesis we developed and optimized cellular tools and approaches, in particular syngeneic in vitro models of the BBB and blood-spinal cord barrier (BSCB) from both rat and mouse, based on the co-culture of brain (BMECs) or spinal cord (SCMECs) microvascular endothelial cells (MECs) and astrocytes. Among the receptors we studied, we show that the LDL receptor (LDLR) is expressed at the apical plasma membrane of BMECs and confirmed that it is involved in transcytosis of LDL through the vesicular compartment, while avoiding the lysosomal compartment, further establishing its interest as a target receptor. We show that our vectors conjugated to an organic molecule or to a protein cargo are endocytosed by BMECs in a LDLR-dependent manner, avoid the lysosomal compartment and cross the BMEC monolayers. Finally, we developed BBB and BSCB in vitro models in inflammatory conditions, considering that MECs inflammation is associated with many CNS lesions and pathologies. These models will be useful to better understand the inflammatory processes of CNS endothelial cells and to evaluate vectorization strategies preferentially targeting CNS structures in pathological condition.
366

Rôle des lymphocytes TH17 dans la fragilisation de la barrière hémo-encéphalique et la formation des lésions de sclérose en plaques

Kebir, Hania 08 1900 (has links)
La barrière hémo-encéphalique (BHE) est formée des cellules endothéliales microvasculaires cérébrales reliées entre elles par des jonctions serrées. Grâce à sa perméabilité restreinte et sélective, la BHE entrave le passage des molécules et cellules du sang vers le système nerveux central (SNC). Chez les patients atteints de sclérose en plaques (SEP), une maladie inflammatoire du SNC, la rupture de la BHE permet aux cellules immunes actives d'infiltrer le tissu cérébral. Il s'ensuit une réaction inflammatoire excessive au cours de laquelle d'autres leucocytes sont recrutés dans le cerveau et qui culmine par la formation des plaques de démyélinisation caractéristiques de la SEP. On dénote au niveau de ces lésions une présence importante de lymphocytes T CD4⁺ activés et de cytokines pro-inflammatoires propres à une réponse de type TH1, tels l’IFN-γ et l’IL-1. Curieusement cependant, l’inhibition de la voie TH1 n’empêche pas l’apparition de la maladie dans le modèle murin de la SEP et en aggrave même les symptômes. On attribue maintenant aux lymphocytes TH17, nommées en raison de leur capacité à produire de l’IL-17, un rôle clé dans le développement de la maladie. L’objectif de ce travail de thèse visait à caractériser les lymphocytes TH17 chez l’humain et définir leur contribution exacte dans la fragilisation de la BHE, une étape décisive dans la formation des lésions de SEP. Pour ce faire, nous avons mis au point une méthode expérimentale permettant l’expansion in vitro de populations de lymphocytes TH17 à partir de cellules mononuclées du sang de donneurs sains. Nos travaux démontrent que l’IL-23 induit la production d’IL-17, d’IL-22 et de granzyme B par les lymphocytes T CD4⁺CD45RO⁺ mémoires humains et qu’une proportion des cellules exprime de manière concomitante de l’IL-17 et de l’IFN-γ. La fréquence des lymphocytes T CD4⁺ IL17⁺, IL-22⁺ et des doubles positifs IL-17⁺IFN-γ⁺ est significativement plus élevée dans les lignées de lymphocytes TH17 provenant de patientes en poussée que dans celles de contrôles. Nos analyses démontrent que les cellules endothéliales de la BHE expriment de faibles niveaux des récepteurs de l’IL-17 et de l’IL-22 à l’état basal mais que leur présence est accrue dans le cerveau de patients atteints de SEP. L’activation du récepteur de l’IL-17 entraîne une augmentation de la perméabilité de la BHE et une perturbation de l’organisation des protéines de jonction occludine et ZO-1. Finalement, nous démontrons que la migration des lymphocytes TH17 à travers la BHE est régie en grande partie par la molécule d’adhérence ICAM-1 et que les lymphocytes qui co-expriment l’IL-17 et l’IFN-γ sont plus aptes à franchir la BHE que ceux qui produisent uniquement l’une ou l’autre de ces cytokines. Nous retrouvons d’ailleurs des cellules qui expriment simultanément les facteurs de transcription T-bet et RORC, associés respectivement aux lymphocytes TH1 et aux TH17, au sein des infiltrats péri-vasculaires des lésions actives de SEP. Les travaux présentés dans cette thèse auront permis d’affiner nos connaissances sur les mécanismes d’entrée des lymphocytes TH17 dans le SNC et les propriétés délétères des cytokines qu’ils sécrètent, notamment dans l’activation et la déstabilisation de l’endothélium cérébral. / The blood-brain barrier (BBB) plays a crucial role in protecting the central nervous system (CNS) by restricting entry of cells and molecules into the brain. In the CNS disorder multiple sclerosis (MS), breakdown of the BBB allows activated leukocytes to infiltrate the brain parenchyma, leading to the formation of the characteristic demyelinated lesions. For decades, MS was viewed as a TH1-mediated disease, a notion that was largely supported by studies in its animal model and by the abundance of prototypical TH1-associated cytokines within active MS lesions. However, over the years, accumulating evidence has highlighted the involvement of another subset of CD4⁺ T cells that express IL-17, therefore named TH17 lymphocytes, in the pathology of the disease. The goal of the work presented herein was to characterize the human TH17 lymphocyte population and define their contribution to the disruption of the BBB and leukocyte infiltration into the CNS, both important early events in the formation of MS lesions. To do so, we developed and optimized a method to successfully generate human TH17 lines in vitro from peripheral blood mononuclear cells of healthy donors. We demonstrate that in response to IL-23, human memory CD4⁺CD45RO⁺ but not naïve CD4⁺CD45RA⁺ T lymphocytes produce IL-17, IL-22, and granzyme B, with a subset of cells simultaneously expressing IL-17 and IFN-γ. Interestingly, we measure a significant increase in the percentage of T CD4⁺ IL17⁺, of IL-22⁺, and of IL-17⁺IFN-γ⁺ dual producers in TH17 cell lines expanded from the peripheral blood of acutely relapsing MS women as compared to those generated from healthy controls and remitting MS patients. We show that both IL-17 and IL-22 receptors are upregulated on BBB endothelial cells in situ during inflammation and that IL-17 enhances BBB permeability by disrupting the integrity of tight junction proteins occludin and ZO-1. Finally, we provide evidence that TH17 lymphocytes transmigrate efficiently across human brain endothelial cells via the adhesion molecule ICAM-1 and show that IL-17⁺IFN-γ⁺ double producers have an increased propensity to do so. Accordingly, we detect lymphocytes that display immunoreactivity against both the TH1- and TH17-associated transcription factors T-bet and RORC within perivascular infiltrates of active MS lesions. The work presented in this thesis has refined our understanding of the mechanisms that drive TH17 lymphocyte recruitment into the CNS and shed light on the deleterious effect of TH17-secreted cytokines, specifically in the activation and breakdown of the BBB.
367

Role of MCAM+ Regulatory T cells in multiple sclerosis

Sebali, Jennifer 07 1900 (has links)
Chez les patients atteints de la sclérose en plaques (SEP), les lymphocytes T autoréactifs utilisent des molécules d'adhérence (CAM) pour traverser la barrière hémo-encéphalique (BHE), pénétrer dans le système nerveux central (SNC) et médier la détérioration de la myéline. Les lymphocytes T régulateurs (Treg) constituent l’un des éléments clés de la tolérance immunitaire, protégeant contre les réactions auto-immunes. Cependant, l'entrée et la fonction des Treg dans le SNC restent largement inconnues. Notre laboratoire a démontré la contribution de plusieurs CAM, dont la molécule melanoma cell adhesion molecule (MCAM), dans la migration des lymphocytes pathogéniques à travers la BHE. L'objectif de cette étude est de déterminer si les Treg migrent dans le SNC en utilisant MCAM et s’ils exercent des fonctions anti-inflammatoires qui pourraient atténuer l'inflammation du SNC. L'expression de MCAM, des marqueurs fonctionnels de Treg (CTLA-4, CCR6, CCR5), ainsi que leur sécrétion de cytokines (IL-10, GrzmB, TGF-ß, IFN-γ, TNF α, GM-CSF, IL-17a), ont été étudiées sur des Treg du sang périphérique, du liquide céphalo-rachidien (LCR) et de la culture in vitro, provenant de patients atteints de SEP et d’individus sains (HC), par cytométrie de flux, en corroboration avec qPCR et ELISA. De plus, la présence de MCAM+ Treg dans le SNC a été évaluée par immunohistofluorescence (CD4, CD25, Foxp3, MCAM, noyaux) sur des souris atteintes d'encéphalomyélite auto-immune expérimentale (EAE). Nos données ont montré une augmentation de l'expression de MCAM sur les Treg de patients atteints de la forme cyclique de SEP (RRMS) par rapport aux HC. Nous avons observé une tendance vers une fréquence plus élevée de MCAM+ Treg dans le LCR par rapport au sang périphérique des patients atteints de SEP, ce qui suggère que MCAM pourrait jouer un rôle important dans la migration des Treg. Ces cellules MCAM+ Treg semblent avoir un phénotype plus fonctionnel et anti-inflammatoire que leurs contreparties MCAM-. De plus, nous avons trouvé des niveaux plus élevés de MCAM+ Treg dans les périodes de rémission de l'EAE, ce qui souligne leur implication durant cette phase de la maladie. Dans l'ensemble, nos données montrent que MCAM est une CAM essentielle pour la migration des Treg vers le SNC. / In multiple sclerosis (MS), autoreactive T cells upregulate cellular adhesion molecules (CAMs) to cross the blood brain barrier (BBB), enter the central nervous system (CNS) and mediate damage to myelin. Regulatory T cells (Treg) are one of the key components of immune tolerance, protecting against autoimmune reactions. However, Treg's entry and function in the CNS remains largely unknown. Our lab has demonstrated the contribution of several CAMs, including melanoma cell adhesion molecule (MCAM), in the migration of pathogenic lymphocytes across the BBB. The goal of this study is to determine whether Treg migrate into the inflamed CNS using MCAM and exert anti-inflammatory functions, possibly dampening CNS inflammation. The expression of MCAM and Treg functional markers and chemokine receptors (CTLA-4, CCR6, CCR5,), as well as cytokine secretion (IL-10, GrzmB, TGF-ß, IFN-γ, TNF α, GM-CSF, IL-17a), were studied on MS patients and healthy individuals (HC) Treg from the peripheral blood, cerebrospinal fluid (CSF), and in vitro culture, by flow cytometry, in corroboration with qPCR and ELISA. Moreover, the presence of MCAM+ Treg in the CNS was assessed by immunohistofluorescence (CD4, CD25, Foxp3, MCAM, nuclei) on experimental autoimmune encephalomyelitis (EAE) affected mice. Our data showed an increase in the expression of MCAM on Treg during relapse-remitting MS patients (RRMS) compared to HC. We observed a trend for a higher frequency of MCAM+ Treg cells in the CSF versus the peripheral blood of MS patients, suggesting that MCAM might play an important role in the migration of Treg. These MCAM+ Treg seem to have a more functional and anti-inflammatory phenotype than their MCAM- counterparts. Moreover, we found higher levels of MCAM+ Treg in periods of EAE remission, underlining their involvement during this disease phase. Overall, our data depicts MCAM as an essential CAM for Treg homing to the CNS.
368

Studies of the expression and characterization of various transport systems at RBE4 cells, an in vitro model of the blood-brain barrier

Friedrich, Anne 08 November 2002 (has links)
The purpose of this study was the investigation of several transport systems expressed at the BBB. The identification and functional characterization of such transport systems is essential to provide a basis for strategies to regulate drug disposition into the brain. Immortalized rat brain endothelial cells (RBE4 cells) have been used in this study as an in vitro model of the BBB. The present study has shown that the RBE4 cells are a suitable model of the BBB for transporter studies. These cells do express the amino acid transport systems L and y+, which are known to be present at the BBB. The uptake of L-tryptophan, a neutral amino acid transported by system L, exhibited a half saturation constant (Kt) of 31 µM and a maximal velocity rate (Vmax) of about 1 nmol/mg/min in RBE4 cells. The kinetic constants of the L-arginine uptake, representing system y+ transport activity, into RBE4 cells were determined with a Kt value of about 55 µM and a Vmax of 0.56 nmol/mg/min. Furthermore the expression of two sodium dependent transporters, the 5-HT transporter (SERT) and the organic cation/carnitine transporter OCTN2, was shown at the RBE4 cells. Uptake studies with radiolabeled 5-HT exhibited a saturable, sodium dependent transport at RBE4 cells with a Kt value of about 0.40 µM and a Vmax of about 52 fmol/mg/min. L-carnitine and TEA (tetraethylammonium) are known to be transported by the OCTN2 transporter. The uptake of L-carnitine into RBE4 cells was shown to be sodium dependent and saturable with a Kt value of 54 µM and a maximal velocity of about 3.6 pmol/mg/min. In contrast, the organic cation TEA follows a sodium independent uptake mechanism at RBE4 cells. Also a sodium independent choline uptake into the cells was discovered but the molecular identity remained unknown. This saturable choline transport exhibited a Kt value of about 22 µM and a maximal velocity of about 52 pmol/mg/min.
369

Développement d’un modèle in vitro de la barrière hémato-encéphalique

Puscas, Ina 04 1900 (has links)
La barrière hémato-encéphalique (BHE) est une structure retrouvée au niveau des capillaires cérébraux. Elle représente un véritable obstacle pour les actifs qui doivent se rendre au cerveau pour y exercer un effet pharmacologique. Durant les étapes du développement du médicament, des modèles cellulaires in vitro sont utilisés pour l’évaluation de la perméabilité au cerveau des nouveaux médicaments. Le modèle assemblé avec des cellules endothéliales (CEs) isolées des capillaires des cerveaux de souris présente un intérêt particulier pour la recherche en raison de sa facilité d’obtention et sa pertinence pour le criblage des médicaments. Le but de ce projet a été de construire et de caractériser un modèle monocouche de CEs primaires de souris. En parallèle, un modèle monocouche de la lignée murine b.End3 a été investigué. L’évaluation de ces modèles a été basée sur les valeurs de TEER et de perméabilité aux marqueurs fluorescents, ainsi que sur la présence des protéines spécifiques de la BHE. La validation du modèle a été établie par la corrélation des résultats de perméabilité obtenus avec le modèle développé (in vitro) avec ceux obtenus chez la souris (in vivo). L’intégrité et l’expression des protéines spécifiques de la BHE du modèle primaire se sont montrées supérieures au modèle bEnd.3. La corrélation in vitro/in vivo du modèle primaire a abouti à un r2 = 0,765 comparé au r2 = 0,019 pour le modèle bEnd.3. Ce travail de recherche montre que le modèle primaire monocouche issu de cellules endothéliales cérébrales de souris est un modèle simple et fiable pour la prédiction de la perméabilité des actifs à travers la BHE. / The blood-brain barrier (BBB), a central nervous system structure, is found in the cerebral capillaries. It represents a major obstacle for the drugs that have to reach the brain in order to exercise their pharmacological effect. In the early stages of the drug development, in vitro cell models are used to evaluate the brain permeability of new drugs. Models assembled using primary endothelial cells (ECs) isolated from mouse brain capillaries are of particular interest for research, as for their ease of obtaining and relevance for the drug screening. Thus, the goal of this project was to build and characterize a primary mouse monolayer model. At the same time, a murine b.End3 cell line monolayer model was investigated. The evaluation of these models was based on the TEER and fluorescent marker permeability values, as well as on the presence of the BBB hallmark proteins. The model validation was established by the correlation of the permeability data obtained with the in vitro model and the data obtained in mice (in vivo). As a result, the primary mouse model showed superior monolayer integrity and higher expression of the tight junction and membrane transporter proteins when compared with the bEnd.3 cell line model. The in vitro/in vivo correlation of the primary model resulted in r2 = 0.765 compared to the bEnd.3 model with r2 = 0.019. This research work shows that the primary monolayer mouse model is a simple and reliable model for predicting the drug permeability across the BBB.
370

Rôles de DICAM et ALCAM dans la migration des lymphocytes vers le système nerveux central

Grasmuck, Camille 04 1900 (has links)
La perturbation de la barrière hémo-encéphalique et la migration des lymphocytes de la périphérie vers le système nerveux central (SNC) sont des événements précoces dans la formation des lésions cérébrales de sclérose en plaques (SEP). Dans ce contexte, les lymphocytes passent au travers des barrières hémo-encéphalique ou hémo-méningée pour atteindre le SNC et sont des contributeurs importants dans l’inflammation et les dommages tissulaires. Pour migrer à travers les barrières du SNC, les lymphocytes pathogéniques expriment des molécules d’adhérence. Identifier les acteurs clés à la migration des lymphocytes pathogéniques en estimant la contribution des molécules d’adhérence dans ce processus est la prochaine étape pour le développement de thérapies pour traiter la SEP. L’objectif de ce projet est d’explorer le rôle de deux molécules d’adhérence que sont ALCAM (de l’anglais : activated leukocytes cell adhesion molecule) et DICAM (de l’anglais : dual immunoglobulin domain containing cell adhesion molecule) dans la migration des lymphocytes pathogéniques vers le SNC pendant la SEP. Notre objectif principal se subdivise en deux sous-objectifs. En premier, notre but est de caractériser le rôle d’ALCAM dans le passage des lymphocytes B à travers les barrières du SNC dans un contexte neuroinflammatoire. En second, nous explorons le rôle de DICAM dans la migration des lymphocytes T auxiliaires 17 (TH17) vers le SNC en neuroinflammation. Nous faisons l’hypothèse qu’ALCAM contribue à la migration des lymphocytes B vers le SNC et que DICAM est impliqué dans la migration des lymphocytes TH17 à travers la barrière hémo-encéphalique pendant la SEP. Ces molécules d’adhérence seraient alors impliquées dans la pathogenèse de la SEP et seraient de potentielles cibles thérapeutiques pour traiter cette maladie. Nous avons d’abord utilisé une combinaison de spectrométrie de masse, PCR quantitative, cytométrie de flux et microscopie afin d’explorer l’expression de chacune de ses deux molécules d’adhérence sur les lymphocytes d’intérêt périphériques ex vivo ou différenciés in vitro. Des analyses en cytométrie en flux et microscopie nous ont permis de caractériser leur expression dans le sang périphérique et dans les lésions cérébrales de personnes atteintes de SEP. Ensuite, les expériences d’adhérence en flux et de migration in vitro effectuées en déplétant la molécule d’adhérence d’intérêt ont permis de mettre en évidence leur rôle dans différentes étapes de la migration des lymphocytes à travers les cellules endothéliales des barrières du SNC. Pour finir, le traitement de plusieurs modèles murins de SEP, appelés EAE (de l’anglais : experimental autoimmune encephalomyelitis), avec des anticorps bloquant anti-ALCAM ou anti-DICAM ont permis d’explorer le potentiel effet de tels traitements sur la sévérité de la maladie. Dans la première étude, nos résultats montrent qu’ALCAM est préférentiellement exprimée par les lymphocytes B pro-inflammatoires, mémoires et effecteurs au potentiel pathogénique. En tant que molécule d’adhérence, ALCAM contribue à leur migration à travers les cellules endothéliales des barrières hémo-encéphalique et hémo-méningée chez la souris et l’humain. De plus, nos expériences ont permis de montrer que la fréquence de lymphocytes B ALCAM+ est augmentée dans le sang périphérique des personnes atteintes de SEP et ces cellules sont aussi présentes dans les lésions et les infiltrats méningées en SEP. Finalement, bloquer ALCAM in vivo réduit la sévérité de la maladie EAE en diminuant l’infiltration des lymphocytes B au SNC. Dans la seconde étude, nous avons montré que parmi les sous-types de lymphocytes TH, DICAM est préférentiellement exprimée par les lymphocytes TH17. Dans les lésions de SEP, DICAM et son ligand αVβ3 co-localisent avec des marqueurs de cellules endothéliales suggérant que ces deux molécules pourraient être présentées à la lumière des vaisseaux aux lymphocytes TH17 circulants. Dans le sang périphérique, la fréquence de lymphocytes T CD4+ exprimant DICAM est augmentée chez les personnes atteintes de SEP et cette augmentation corrèle avec l’activité de la maladie. Nos expériences ont montré que DICAM est impliquée dans l’adhérence, l’arrêt et la diapédèse des lymphocytes TH17 à travers les cellules endothéliales de la barrière hémo-encéphalique in vitro et in vivo. Finalement, le traitement de souris EAE avec un anticorps bloquant DICAM permet de réduire la sévérité de la maladie et diminue la migration des lymphocytes TH17 vers le SNC. Nos résultats indiquent un rôle d’ALCAM dans la migration des lymphocytes B et que DICAM, préférentiellement exprimé par les TH17, médie leur migration vers le SNC. Bloquer ALCAM ou DICAM sont deux stratégies permettant de réduire l’accès au SNC de différents sous-types de cellules pathogéniques pendant la neuroinflammation. Ainsi, elles sont toutes deux de potentielles cibles thérapeutiques pour réduire la sévérité et la progression de la SEP. / Disruption of the blood-brain barrier and migration of lymphocytes from the periphery to the central nervous system (CNS) are early events in lesion formation during multiple sclerosis (MS). Lymphocytes readily cross the blood-brain barrier (BBB) and the blood-meningeal barrier (BMB) to infiltrate the CNS and are important contributors to inflammation and tissue damage. To migrate through the brain barriers, pathogenic lymphocytes express adhesion molecules. Identifying key players in lymphocyte migration by understanding the role of adhesion molecules is the next step to develop novel therapies to treat MS. The objective of this project is to explore the role of two distinct adhesion molecules ALCAM (activated leukocytes cell adhesion molecule) and DICAM (dual immunoglobulin domain containing cell adhesion molecule) in pathogenic lymphocytes migration to the CNS during MS. This thesis subdivides in two main objectives. First, we aim to characterize ALCAM role in B lymphocyte migration to the CNS during neuroinflammation. Second, we aim to explore DICAM role in T helper 17 (TH17) lymphocytes migration to the CNS in neuroinflammation. We hypothesized that ALCAM plays a role in B lymphocytes migration to the CNS during MS and that DICAM is involved in TH17 lymphocytes migration through the blood-brain barrier during MS. Those adhesion molecules might be involved in MS pathogenesis and therefore could become new therapeutic targets to treat MS. We first used mass spectrometry, quantitative PCR, flow cytometry and confocal microscopy to explore expression profiles of ALCAM and DICAM by peripheral lymphocytes subpopulations ex vivo and differentiated in vitro. Flow cytometry and confocal microscopy analysis also revealed how those adhesion molecules are expressed by lymphocytes in peripheral blood and brain lesions of people living with MS. Then, we performed flow adhesion and migration assay of lymphocytes depleted for the adhesion molecule of interest allowing us to address their role in multitstep migration process through brain barriers endothelial cells. Finally, using five distinct murine experimental autoimmune encephalomyelitis models (EAE), we explored how blocking ALCAM or DICAM in vivo could affect lymphocytes migration to the SNC and disease severity. In the first manuscript, we described that ALCAM is preferentially expressed by B lymphocytes with memory, pro-inflammatory and effector phenotypes. Functionally, ALCAM is involved in B lymphocyte migration through both the BBB and the BMB in mouse and human. Interestingly, we showed that ALCAM expressing B lymphocytes are increased in peripheral blood of people living with MS and they are recovered in meningeal and parenchymal MS lesions. Last, blocking ALCAM in vivo alleviates EAE severity by reducing B lymphocyte infiltration to the CNS. In the second manuscript, we showed that TH17 lymphocytes preferentially express DICAM and can adhere both to DICAM and its ligand αVβ3. Moreover, DICAM and αVβ3 are both overexpressed by inflamed brain endothelial cells. In MS lesions, we described that both molecules colocalize with endothelial cell markers suggesting that it could be presented to the vessel lumen to the circulating TH17 lymphocytes. In peripheral blood, we showed that DICAM+ memory CD4+ T lymphocytes frequency is increased in people living with MS and it correlates with active form of the disease. Then, we described DICAM as a player in TH17 lymphocyte adhesion, arrest and migration through BBB endothelial cells in vitro and in vivo. Last, we showed that treating mice with a neutralizing DICAM antibody in several distinct models of EAE, reduced disease severity and TH17 cell migration to the SNC. Our data provide evidence of the role of ALCAM in memory B lymphocyte migration and that DICAM is preferentially expressed by TH17 cells and mediate their migration to the CNS during neuroinflammation. Collectively, our findings indicate that blocking ALCAM or DICAM are two ways to restrict different pathogenic cells access to the CNS during neuroinflammation and thus potentially to reduce the severity and worsening of a disease like MS.

Page generated in 0.0514 seconds