• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 11
  • 10
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Metodverifiering av fria lätta kedjor (kappa och lambda) i humant serum, S-FLC.

Ali, Najma Suad January 2019 (has links)
Immunoglobulins are proteins produced by plasma cells and humans normally produce five different immunoglobulin classes of IgG, IgA, IgM, IgD and IgE. The basic function of the immunoglobulins is to counteract the invasion of pathogenic organisms by their antibody activity and to protect against its toxic products. The basic structure of the immunoglobulins is made up of two identical heavy chains and two light chains, kappa and lambda. In healthy subjects, normal plasma cell contents of the bone marrow are 1-3 %, in patients with multiple myeloma (MM), concentrations increase to over 90 % and are comprised of a malignant transplanted plasma cell clone. This clone of cells produces a kind of immunoglobulin that can be detected using various laboratory methods in both serum and urine. Analysis of free light immunoglobulin chains (kappa and lambda) in human serum occurs in the diagnosis and follow-up of MM and provides a simpler and faster alternative to daily urine collection for the analysis of light immunoglobulin chains in the urine. The purpose of the study was to carry out a method verification of free light chains in serum using an automated immunochemical instrument, BN Prospec II from Siemens, which uses the nephelometric measuring principle (antigen-antibody complex). The calibration concentrations of kappa and lambda assigned by Siemens were met. The method's stability and precision were measured by analyzing high and low controls for both analytes in each of the internal and total series. Within the series received CV 1,47 % for SL1 kappa and 2,57 % for SL2 kappa, and 1,77 % for SL1 lambda and 2,57 % for SL2 lambda. The total series was obtained CV 1,58 % for SL1 kappa and 2,81 % for SL2 kappa and CV 2,05 % for SL1 lambda and 2,30 % for SL2 lambda. The correctness of the method was studied through a patient comparison where 64 patient samples previously analyzed in Lund were analyzed in Kalmar. The study showed good precision and repeatability, the results of the patient comparison showed good correspondence with corresponding methods performed in Lund when the coefficient of determination for S-FLC-kappa was 0, 999 and 0, 958 for S-FLC-lambda. The conclusion is that analysis of free light chains in serum can be used in routine operation in the laboratory for clinical chemistry and transfusion medicine at the county hospital in Kalmar.
42

Synthesis and Characterization of MgA1ON-BN refractories

Zhang, Zuotai January 2006 (has links)
In order to meet the need of metallurgical industry in the world, a new MgAlON-BN composite which can be used for example in special refractory nozzles, tubes and break rings for the continuous casting of steel was studied in the present thesis. The aim was to understand the mechanism of synthesis and their physicochemical properties during the application. Thus, the thermodynamic properties, synthesis process, mechanical properties, thermal shock behaviour, thermal diffusivity/conductivity as well as corrosion resistance to molten iron containing oxygen and molten slag of MgAlON and MgAlON-BN composites have been investigated. The Gibbs energy of formation of MgAlON was estimated using the method proposed by Kaufman. The phase stability diagram of Mg-Al-O-N-B was investigated, and consequently the synthesis parameters were determined. MgAlON and MgAlON-BN composites were fabricated by hot-pressing method. The composites obtained this way were characterized by XRD, SEM, TEM and HREM analyses. A Matrix-flushing method was employed in the quantitative XRD analysis for the multi-component samples to understand the mechanism of synthesis. The relationship between mechanical properties and microstructure of the composites was investigated. The experimental results indicated that BN addition has significant influence on the mechanical properties of the composites. These can be explained by the fact that BN has low Young’s modulus, density and non-reactive nature as well as considerable anisotropy of many properties such as thermal expansion, thermal diffusivity/conductivity. Thus, the addition of BN in MgAlON is likely to lead to the presence of microcracks caused by the mismatch of thermal expansion coefficient. The microcracks result in the enhancement of the strength at elevated temperature and thermal shock durability of the composites. Effective thermal conductivities were evaluated from the present experimental results of thermal diffusivities, heat capacity and density. A model suitable for present composites has been derived based on Luo’s model. The predicted lines calculated by the model were in good agreement with experimental results. The reactions between the composites and molten iron as well as the slag were investigated by ‘‘finger’’ experiments and sessile drop experiments. Both experimental results indicated that the BN addition has positive influence on the corrosion resistance. These are attributed to the excellent corrosion resistance of BN to molten iron and slag, such as the higher contact angle between BN substrate and liquid iron and molten slag compared with that obtained for pure MgAlON. / QC 20100929
43

Characterization and Functionalization of 2D Overlayers Adsorbed on Transition Metals

Ng, May Ling January 2010 (has links)
Two-dimensional layered materials, namely monolayer hexagonal boron nitride and graphene were grown by CVD on various transition metals. The physical and chemical properties of these systems were characterized systematically using synchrotron-based spectroscopic techniques, scanning tunneling microscopy and low energy electron diffraction. It is learned that the overlayer–substrate interaction is caused by the overlayer π–substrate d band hybridization. The physical properties of these overlayers depend on the strength of interaction and the degree of lattice matching at the interface. The strength of interaction between the boron nitride and graphene overlayers and the transition metal substrates is increasing from Pt(111)–Ir(111)–Rh(111)–Ru(0001). For overlayers adsorbed on Rh and Ru, the interplay between these two parameters can result in corrugation of the overlayer, i.e. a surface with bonding and non-bonding areas. The amplitude of corrugation is increasing with the strength of interfacial interaction. The corrugated BN overlayer (BN nanomesh) was used as a template for the growth of two-dimensional and highly dispersive Au nanoparticles. In addition, the inert BN nanomesh was used as a substrate for the deposition of pentacene molecules that conform to the corrugated surface while preserving the herringbone crystal structure. The coadsorption of oxygen and Co clusters on the nanomesh was investigated. Oxygen was utilized to lower the Co surface energy, i.e. to prevent Co agglomeration. It is observed that the smaller Co clusters intercalate through the BN overlayer upon soft annealing. Beside the surface structure, the substrate induced surface reactivity of the MG overlayer was employed to promote the hydrogenation of graphene on Pt, Ir and Ni. The graphene layer adsorbed on Pt and Ir shows higher H uptake than MG/Ni. Furthermore the uptake increases with the size of the bonded graphene. The small H uptake for MG/Ni was attributed to the electron localization in the C-Ni bonds.
44

NOUVEAU PROCEDE DE CROISSANCE DE NANOFILS A BASE DE SiC ET DE NANOTUBES DE BN, ETUDE DES PROPRIETES PHYSIQUES D'UN NANOFIL INDIVIDUEL A BASE DE SiC

Bechelany, Mikhael 08 December 2006 (has links) (PDF)
Les nanofils (NFs) à base de SiC et les nanotubes (NTs) de BN ont fait l'objet de ce travail de thèse. Un nouveau procédé de synthèse de NFs SiC a été mis au point. Il est basé sur la pyrolyse à 1400°C de précurseurs de silicium et de carbone à la surface d'un support de condensation en graphite. Les avantages de ce procédé sont le faible coût des NFs SiC produits, l'absence d'étape de purification post-synthèse et la possibilité de générer in situ un revêtement à la surface des nanofils de nature chimique (silice ou carbone) et d'épaisseur modulable. Des modifications chimiques et structurales de ces NFs ont permis de synthétiser des nanostructures 1D multifonctionnelles, notamment à base de BN et ZnO. Ce procédé a été étendu avec succès à la fabrication de NTs BN. Ces derniers ont également été préparés par voie template à partir du borazine, H3B3N3H3, un précurseur moléculaire de BN. Une avancée vers les applications a été réalisée avec la localisation de la croissance des NFs SiC sur substrat Si ou SiC et l'incorporation des NFs en matrice inorganique. Les propriétés physiques d'un NF SiC individuel ont été étudiées par Spectroscopie Raman et par émission de champ.
45

Microstructural evolution in 9 wt.% Cr power plant steels

Li, Letian January 2013 (has links)
High chromium ferritic steels such as Grade 91 and Grade 92 are extensively used in the power plant industry. Components made from these types of steels, including headers, steam pipes and tubes, are required to provide reliable service at high pressures (20-30 MPa) and temperatures (550-610°C) for several decades. However, in order to further improve the thermal efficiency of the power plant, the future operation temperature for the ferritic steels needs to be elevated to 650°C. Therefore, the current research project focuses on the examination of recently developed MarBN type steels (Martensitic steel strengthened by Boron and Nitrides) and four Grade 92 derivatives in order to evaluate their suitability for 650°C application, and also to assess their creep strength from a microstructural point of view.
46

Characterization of Cubic Boron Nitride Interfaces with in situ Photoelectron Spectroscopy

January 2016 (has links)
abstract: Cubic boron nitride (c-BN) has potential for electronic applications as an electron emitter and serving as a base material for diodes, transistors, etc. However, there has been limited research on c-BN reported, and many of the electronic properties of c-BN and c-BN interfaces have yet to be reported. This dissertation focused on probing thin film c-BN deposited via plasma enhanced chemical vapor deposition (PECVD) with in situ photoelectron spectroscopy (PES). PES measurements were used to characterize the electronic properties of c-BN films and interfaces with vacuum and diamond. First, the interface between c-BN and vacuum were characterized with ultraviolet PES (UPS). UPS measurements indicated that as-deposited c-BN, H2 plasma treated c-BN, and annealed c-BN post H2 plasma treatment exhibited negative electron affinity surfaces. A dipole model suggested dipoles from H-terminated N surface sites were found to be responsible for the NEA surface. Then, Si was introduced into c-BN films to realize n-type doped c-BN. The valence structure and work function of c-BN:Si films were characterized with XPS and UPS measurements. Measurements were unable to confirm n-type character, and it is concluded that silicon nitride formation was the primary effect for the observations. Finally, XPS measurements were employed to measure the band offsets at the c-BN/diamond interface. Measurements indicated the valence band maximum (VBM) of c-BN was positioned ~0.8 eV above the VBM of diamond. / Dissertation/Thesis / Doctoral Dissertation Physics 2016
47

Posterior Predictive Model Checking in Bayesian Networks

January 2014 (has links)
abstract: This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by proportions of replications in which the PPP-values were extreme. An effect size measure for PPMC was introduced as a supplemental numerical summary to the PPP-value. Consistent with previous PPMC research, all investigated fit functions tended to perform conservatively, but Standardized Generalized Dimensionality Discrepancy Measure (SGDDM), Yen's Q3, and Hierarchy Consistency Index (HCI) only mildly so. Adequate power to detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, Item Consistency Index (ICI), and to a lesser extent Deviance, while proportion correct (PC), a chi-square-type item-fit measure, Ranked Probability Score (RPS), and Good's Logarithmic Scale (GLS) were powerless across all investigated factors. Bivariate SGDDM and Q3 were found to provide powerful and detailed feedback for all investigated types of misfit. / Dissertation/Thesis / Ph.D. Educational Psychology 2014
48

Investigation Of Reactively Sputtered Silicon Carbon Boron Nitride (sicbn) Thin Films For High Temperature Applications

Vijayakumar, Arun 01 January 2007 (has links)
The increasing demand for efficient energy systems in the last decade has brought about the development of advanced sensor systems that utilize advance detection methods to help in preventive maintenance of these essential systems. These usually are needed in hard to access environments where conditions are extreme and unfit for human interaction. Thin film based sensors deposited directly on the surfaces exposed to harsh environments can serve as ideal means of measuring the temperature of the component during operation. They provide the basic advantage of proximity to the surface and hence accurate measurement of the surface temperature. The low mass size ratio provides the additional advantage of least interference to system operation. The four elements consisting of Si, C, B, and N can be used to form binary, ternary and quaternary compounds like carbides, nitrides, which are chemically and thermally stable with extreme hardness, thermal conductivity and can be doped n- and p-type. Hence these compounds can be potential candidates for high temperature applications. This research is focused on studying sputtering as a candidate to obtain thin SiCBN films. The deposition and characterization of amorphous thin films of silicon boron carbon nitride (SiCBN) is reported. The SiCBN thin films were deposited in a radio frequency (rf) magnetron sputtering system using reactive co-sputtering of silicon carbide (SiC) and boron nitride (BN) targets. Films of different compositions were deposited by varying the ratios of argon and nitrogen gas in the sputtering ambient. Investigation of the oxidation kinetics of these materials was performed to study high temperature compatibility of the material. Surface characterization of the deposited films was performed using X-ray photoelectron spectroscopy and optical profilometry. Studies reveal that the chemical state of the films is highly sensitive to nitrogen flow ratios during sputtering. Surface analysis shows that smooth and uniform SiCBN films can be produced using this technique. Carbon and nitrogen content in the films seem to be sensitive to annealing temperatures. However depth profile studies reveal certain stoichiometric compositions to be stable after high temperature anneal up to 900ºC. Electrical and optical characteristics are also investigated with interesting results. Finally a metal semiconductor metal structure based optoelectronic device is demonstrated with excellent performance improvement over standard silicon based devices under higher temperature conditions.
49

Design, Fabrication, and Characterization of Metals Reinforced with Two-Dimensional (2D) Materials

Charleston, Jonathan 05 July 2023 (has links)
The development of metals that can overcome the strength-ductility-weight trade-off has been an ongoing challenge in engineering for many decades. A promising option for making such materials are Metal matrix composites (MMCs). MMCs contain dispersions of reinforcement in the form of fibers, particles, or platelets that significantly improve their thermal, electrical, or mechanical performance. This dissertation focuses on reinforcement with two-dimensional (2D) materials due to their unprecedented mechanical properties. For instance, compared to steel, the most well-studied 2D material, graphene, is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa). Examples of reinforcement by graphene have achieved increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. However, the superior mechanical properties of graphene are not fully transferred to the matrix in conventional MMCs, a phenomenon known as the "valley of death." In an effort to develop key insight into how the relationships between composite design, processing, structure, properties, and mechanics can be used to more effectively transfer the intrinsic mechanical properties of reinforcements to bulk composite materials, nanolayered composite systems made of Ni, Cu, and NiTi reinforced with graphene or 2D hexagonal boron nitride h-BN is studied using experimental techniques and molecular dynamics (MD) simulations. / Doctor of Philosophy / The design of new metals with concurrently improved strength and ductility has been an enduring goal in engineering for many decades. The utilization of components made with these new materials would reduce the weight of structures without sacrificing their performance. Such materials have the potential to revolutionize many industries, from electronics to aerospace. Traditional methods of improving the properties of metals by thermomechanical processing have approached a point where only minor performance improvements can be achieved. The development of Metal matrix composites (MMCs) is among the best approaches to achieving the strength-ductility goal. Metal matrix composites are a class of materials containing reinforcements of dissimilar materials that significantly improve their thermal conductivity, electrical conductivity, or mechanical performance. Reinforcements are typically in the form of dispersed fibers, particles, or platelets. The ideal reinforcement materials have superior mechanical properties compared to the metal matrix, a high surface area, and a strong interfacial bond with the matrix. Two-dimensional (2D) materials (materials made up of a single to a few layers of ordered atoms) are attractive for reinforcement in composite materials because they possess unprecedented intrinsic properties. The most well-studied 2D material, graphene, is made of a single layer of carbon atoms arranged in a hexagonal honeycomb pattern. It is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa) than steel. Examples of graphene reinforcing have shown increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. Despite their exceptional mechanical properties, the superior mechanical properties of graphene are not fully transferred to the matrix when incorporated into conventional metal matrix composites. This phenomenon, known as the "valley of death," refers to the loss of mechanical performance at different length scales. One cause of this phenomenon is the difficulty of evenly dispersing the reinforcements in the matrix using traditional fabrication techniques. Another is the presence of dislocations in the metal matrix, which cause very large local lattice strains in the graphene. This atomistic-scale deformation at the interface between the metal and the graphene can significantly weaken it, leading to failure at low strains before reaching its intrinsic failure stress and strain. This dissertation aims to provide insight into how the relationships between composites' design, processing, structure, properties, and mechanics can be used to transfer intrinsic mechanical properties of reinforcements to bulk composite materials more effectively. For this, nanolayered composite systems of Ni and Cu reinforced with graphene or 2D h-BN were studied using experimental techniques and molecular dynamics (MD) simulations to elucidate the underlying mechanisms behind the composites' material structure and mechanical behavior. Additionally, we explore the incorporation of graphene in a metallic matrix that does not deform through dislocations (or shear bands), such as the shape memory alloy nickel-titanium ( Nitinol or NiTi), to avoid low strain failure of the metal/graphene interface. This theoretical strengthening mechanism is investigated by designing and fabricating NiTi/graphene composites.
50

A Treatment Decision Support Model for Laryngeal Cancer Based on Bayesian Networks

Hikal, Aisha 07 June 2024 (has links)
The increase in diagnostic and therapeutic procedures in the treatment of oncological diseases, as well as the limited capacity of experts to provide information, necessitates the development of therapy decision support systems (TDSS). We have developed a treatment decision model that integrates available patient information as well as tumor characteristics. They are assessed according to their relevance in evaluating the optimal therapy option. Our treatment model is based on Bayesian networks (BN) which integrate patient-specific data with expert-based implemented causalities to suggest the optimal therapy option and therefore potentially support the decision-making process for treatment of laryngeal carcinoma. To test the reliability of our model, we compared the calculations of our model with the documented therapy from our data set, which contained information on 97 patients with laryngeal carcinoma. Information on 92 patients was used in our analyses and the model suggested the correct treatment in 419 out of 460 treatment modalities (accuracy of 91%). However, unequally distributed clinical data in the test sets revealed weak spots in the model that require revision for future utilization.

Page generated in 0.0175 seconds