Spelling suggestions: "subject:"building energy"" "subject:"cuilding energy""
201 |
Zdroje tepla pro vytápění občanské budovy / Heat Source for heating of Civil BuildingTrajer, Štěpán January 2016 (has links)
The aim is to design an evaluate options for heating sytem for kindergarden with two floors. The project documention, investment cost and operating cost are included in this project.
|
202 |
Comportement thermo-hygrique de blankets aérogels de silice et applications à l’isolation des bâtiments / Thermo-hygric behavior of silica aerogel blankets and applications to building insulationNocentini, Kévin 14 December 2018 (has links)
En Europe, le secteur du bâtiment est le plus énergivore et représente environ 40 % de l’énergie totale consommée. A court terme, la façon la plus efficace de baisser cette consommation est de réduire les déperditions thermiques à travers l’enveloppe du bâtiment en augmentant son isolation thermique, tout en minimisant la perte de surface habitable. Dans ce contexte, les travaux de thèse portent sur l’étude et la mise au point pour pré-industrialisation de matériaux super-isolants composites à base d'aérogel de silice. Le matériau composite étudié fait partie de la famille des blankets aérogels et est obtenu via un procédé de séchage ambiant innovant. Grâce à leur faible conductivité thermique et leurs propriétés mécaniques renforcées, les blankets aérogels sont d’un grand intérêt pour l’isolation thermique qui nécessite de fines épaisseurs d’isolants. Les travaux de thèse visent dans un premier temps à effectuer une analyse des propriétés thermophysiques des blankets aérogels étudiés à la sortie du moule de fabrication et vis-à-vis de leur mise en œuvre lorsqu’ils sont soumis à différentes sollicitations (mécaniques, hygriques ...). Des travaux de modélisation du transfert de chaleur dans le blanket aérogel sont développés afin d’étudier les relations entre le transfert thermique et les paramètres morphologiques du matériau. Dans un second temps, les travaux de thèse portent sur l’étude des performances à attendre d’un système d’isolation basé sur le blanket aérogel mis en œuvre sur un bâtiment, à la fois par l’analyse du comportement thermique d’une cellule test en climat réel, ainsi que par la conduite de simulations numériques de bâtiments prenant en compte plusieurs techniques constructives, configurations de murs, et ce, pour plusieurs climats européens. Les résultats obtenus montrent que les blankets aérogels étudiés ont une très faible conductivité thermique –0,016 W.m-1.K-1– et ont un fort potentiel d’application dans l’isolation thermique du bâtiment. / Buildings are the largest energy end-use sector and account for about 40 % of the total final energy consumption in the EU-28. A short-term strategy to efficiently reduce this consumption is to decrease thermal losses through the building envelope by improving its thermal insulation, while minimizing the reduction of the available indoor living space. In this context, the thesis deals with the study and development for pre-industrialization of super-insulating composite materials based on silica aerogel. The studied material is part of the aerogel blanket family and is obtained by an innovative ambient drying process. With a very low thermal conductivity and reinforced mechanical properties, aerogel blankets are of great interest for applications where they can offer a cost advantage due to a space-saving effect. Firstly, the thesis work aims at performing analyses of the thermo-physical properties of the studied aerogel blankets at the exit of the molding and drying processes, and during application, when they are subjected to different environmental stresses (mechanical, hygric …). Heat transfer modeling is developed to study the relationship between the morphological parameters of the material and thermal transfer within it. Secondly, the thesis work focuses on the study of the expected performances of an insulating system based on the aerogel blanket, by the study of the thermal behavior of an experimental building monitored under actual climate, as well as the use of whole building energy numerical simulations taking into account several constructive techniques, different wall configurations, for various European climates. The results obtained show that the aerogel blankets studied have a thermal conductivity as low as 0.016 W.m-1.K-1 and have promising applications for building thermal insulation needs.
|
203 |
Prediction of Energy Use of a Swedish Secondary School Building : Building Energy Simulation, Validation, Occupancy Behaviour and Potential Energy-Efficiency MeasuresSteen Englund, Jessika January 2020 (has links)
Residential and public buildings account for about 40% of the annual energy use in Europe. Many buildings are in urgent need of renovation, and reductions in energy demand in the built environment are of high importance in both Europe and Sweden. Building energy simulation (BES) tools are often used to predict building performance. However, it can be a challenge to create a reliable BES model that predicts the real building performance accurately. BES modelling is always associated with uncertainties, and modelling occupancy behaviour is a challenging task. This research presents a case study of a BES model of a school building from the 1960s in Gävle, Sweden, comprising an example of a validation strategy and a study of energy use and potential energy-efficiency measures (EEMs). The results show that collection of input data based on evidence, stepwise validation (for unoccupied and occupied cases), and the use of a backcasting method (which predicts varying occupancy behaviour and airing) is an appropriate strategy to create a reliable BES model of the studied school building. Several field measurements and data logging in the building management system were executed, in order to collect input data and for validation of the predicted results. Through the stepwise validation, the building’s technical and thermal performance was validated during an unoccupied period. The backcasting method demonstrates a strategy on how to predict the effect of the varying occupancy behaviour and airing activities in the school building, based on comparisons of BES model predictions and field measurement data. After applying the backcasting method to the model, it was validated during an occupied period. The annual predicted specific energy use was 73 kWh/m2 for heating of the studied building. The distribution of heat losses indicates that the best potential EEMs are changing to efficient windows, additional insulation of the external walls, improved envelope airtightness and new controls of the mechanical ventilation system. / Byggnadssektorn står för ungefär 40 % av den årliga energianvändningen i Europa. Många byggnader är i stort behov av renovering och en minskning av energibehovet inom den byggda miljön är av stor vikt i både Europa och Sverige. För att undersöka byggnaders energianvändning används ofta simuleringsverktyg, men det kan vara utmanande att skapa pålitliga simuleringsmodeller som tillräckligt noggrant predikterar den verkliga byggnadens energianvändning. Simulering av byggnaders energianvändning är alltid förknippat med osäkerheter och att simulera människors beteendemönster är en stor utmaning. Den här forskningen innefattar en fallstudie med en simuleringsmodell av en skolbyggnad, byggd under 1960 talet och belägen i Gävle, inkluderat ett exempel på en valideringsstrategi och en studie av energianvändning och potentiella energieffektiviseringsåtgärder i byggnaden. Resultaten visar att insamling av indata baserade på evidens, stegvis validering (obemannad och bemannad) och användande av en backcasting-metod (vilket predikterar varierande brukarbeteende och vädring) är en lämplig strategi för att skapa en pålitlig energisimuleringsmodell för den studerade skolbyggnaden. Flertalet fältmätningar genomfördes och data loggades i systemet för fastighetsautomation, för att samla indata och för validering av de predikterade resultaten. Genom den stegvisa valideringen kunde byggnadens tekniska och termiska prestanda valideras för en obemannad period. Backcasting-metoden visar en strategi för hur man kan prediktera varierande brukarbeteende och vädringsaktiviteter i skolbyggnaden, baserat på jämförelser av modellens prediktioner och data från fältmätningar. När backcasting-metoden tillämpats i energisimuleringsmodellen, kunde modellen valideras för en bemannad period. Den årliga predikterade specifika energianvändningen för uppvärmningen är 73 kWh/m2. Fördelningen av värmeförluster i byggnaden indikerar att de bästa potentiella energieffektiviseringsåtgärderna är byte till fönster med bättre U-värde, tilläggsisolering av ytterväggarna, bättre lufttäthet i byggnadsskalet och ny styrning av det mekaniska ventilationssystemet.
|
204 |
Evaluation of Thermal Comfort and Night Ventilation in a Historic Office Building in Nordic ClimateBakhtiari, Hossein January 2020 (has links)
Envelopes with low thermal performance are common characteristics in European historic buildings resulting in insufficient thermal comfort and higher energy use compared to modern buildings. There are different types of applications for the European historic buildings such as historic churches, historic museums, historic theatres, etc. In historic buildings refurbished to offices, it is vital to improve thermal comfort for the staff. Improving thermal comfort should not increase, preferably reduce, energy use in the building. The overall aim in this research is to explore how to improve thermal comfort in historic buildings without increasing, preferably reducing, energy use with the application of non-intrusive methods. This is done in form of a case study in Sweden. Thermal comfort issues in the case study building are determined through a field study. The methods include field measurements with thermal comfort equipment, data logging on BMS, and evaluating the occupant’s perception of a summer and a winter period indoor environment using a standardized questionnaire. According to questionnaire and thermal comfort measurements results, it is revealed that the summer period has the most dissatisfied occupants, while winter thermal comfort is satisfactory – but not exceptionally good. Accordingly, natural heat sinks could be used in form of NV, as a non/intrusive method, in order to improve thermal comfort in the building. For the historic building equipped with mechanical ventilation, NV strategy has the potential to both improve thermal comfort and reduce the total electricity use for cooling (i.e. electricity use in the cooling machine + the electricity use in the ventilation unit’s fans). It could decrease the percentage of exceedance hours in offices by up to 33% and reduce the total electricity use for cooling by up to 40%. The optimal (maximum) NV rate (i.e. the potential of NV strategy) is dependent on the thermal mass capacity of the building, the available NV cooling potential (dependent on the ambient air temperature), COP value of the cooling machine, the SFP model of the fans (low SFP value for high NV rate is optimal), and the offices’ door scheme (open or closed doors).
|
205 |
NANDRAD 1.4 building simulation modelPaepcke, Anne 01 December 2017 (has links)
NANDRAD is a dynamic building energy simulation program. It calulates heating/cooling requirements and electric power consumption with respect to realistic climatic conditions and dynamic room usage. The model includes one-dimensional spatially resolved heat transport through multi-layered walls and thermal storage of solid components (room furniture/building walls). Consequently, massive constructions forms in the European area are very well represented. Further, NANDRAD calculates geometrical long radiation heat exchange inside the room. Heating systems may be modeled with a high level of geometrical detail, i.e. surface heating systems as part of the wall constructions and radiant heaters inside the room. NANDRAD can be applied for passive building simulation, energy optimization and thermal comfort analysis with respect to a very detailed building representation. In this terms, the model supports the simulation of a large number of zones and walls without need for subgrouping or other model reduction strategies.:1 Introduction
2 NANDRAD multi-zone building model
2.1 Fundamentals
2.2 Building component models
2.3 Building services and usage
2.4 Climatic model
3 Model equations
3.1 Balance equations
3.2 Construction balance boundary conditions
3.3 Construction energy sources/sinks
3.4 Windows
3.5 Ambient environment
3.6 Zone internal loads
3.7 Construction internal heat sources
3.8 Loads on inside interfaces
3.9 Evaluation of thermal comfort
|
206 |
Environmentální řešení objektu domu s kavárnou v Zaječí / Environmental solution of a house with a café in ZaječíMedková, Tereza January 2022 (has links)
In my master's project I design a nearly zero energy consumption house with a café in Zaječí. The 1ST part of this project deals with a structural part of the building, which has two above-ground floors and basement. On the basement are storerooms and rooms for technical equipment, on the ground floor is café and living room with kitchen, and on the second floor are bedrooms, bathrooms and cloakrooms. Footings are from cast-in-place concrete, the load bearing walls on basement are from formwork blocks with cast-in-place concrete, on above-ground floors are from ceramic blocks and every non-load bearing walls are also from ceramic blocks. On whole floor are reinforced concrete floor slab and flat green roof. The 2ND part deals with technical equipment of the building. There are gas boiler, floor heating, air conditioning, mechanical ventilation (HVAC), photovoltaics panels with energy storage, retention tank, external blinds and biodynamic lighting. The 3RD part compares several options for using solar energy in combination with different heat sources in terms of energy and economic efficiency of the building.
|
207 |
Advanced controllers for building energy management systems. Advanced controllers based on traditional mathematical methods (MIMO P+I, state-space, adaptive solutions with constraints) and intelligent solutions (fuzzy logic and genetic algorithms) are investigated for humidifying, ventilating and air-conditioning applications.Ghazali, Abu Baker MHD. January 1996 (has links)
This thesis presents the design and implementation of control strategies for building
energy management systems (BEMS). The controllers considered include the multi PI-loop controllers, state-space designs, constrained input and output MIMO adaptive
controllers, fuzzy logic solutions and genetic algorithm techniques. The control
performances of the designs developed using the various methods based on aspects such
as regulation errors squared, energy consumptions and the settling periods are
investigated for different designs. The aim of the control strategy is to regulate the room
temperature and the humidity to required comfort levels.
In this study the building system under study is a 3 input/ 2 output system subject to external disturbances/effects. The three inputs are heating, cooling and humidification,
and the 2 outputs are room air temperature and relative humidity. The external
disturbances consist of climatic effects and other stochastic influences. The study is
carried out within a simulation environment using the mathematical model of the test
room at Loughborough University and the designed control solutions are verified
through experimental trials using the full-scale BMS facility at the University of
Bradford.
|
208 |
A Study on Building Energy Modelling and Energy Efficiency Strategies for Educational Buildings / En Studie om Byggnadsenergimodellering och Energieffektivitetsstrategier för UtbildningsbyggnaderGil Castro, Robertson Manuel André, Vera Martínez, Raúl January 2023 (has links)
The building sector is one of the sectors with the highest energy utilization and is one of the largest sources of CO2 emissions worldwide. At the same time, energy prices in Europe have significantly increased in recent years. For these two reasons, energy efficiency in buildings has become highly relevant for public and private organizations aiming to reduce energy consumption for the operation of buildings and therebyd ecrease their carbon footprint and operation costs for users and owners. This master’s thesis aims to identify areas of opportunity for energy utilization reduction and the implementation of energy efficiency strategies in four buildings of the KTH Campus, owned by Akademiska Hus. First, an energy data analysis of the last years of the operation of the buildings was conducted to identify trends and atypical energy uses. Next, energy audits were performed on the most important energy-consuming equipment and major building facilities to understand the operation conditions and characteristics of electrical, heating, and cooling systems, aiming to identify areas of opportunity for reducing energy use from current operation of the buildings. Subsequently, after understanding the energy use in the four buildings, models of the buildings were created in IDA ICE. The approach involved two steps: first, modeling the buildings’ geometry and adapting their energy consumption to match the patterns identified in the previous data analysis; and secondly, modeling the implementation of energy efficiency strategies on the buildings that aim to improve the findings of the data analysis and energy audits performed previously. These energy efficient models were subjected to energy performance analysis, economic analysis, investment feasibility analysis, among others. The results obtained from the models with energy efficiency strategies showed energy and economic savings that varied from building to building through the automation of lighting systems in the buildings, with an average return on investment of 2.5 years. Likewise, significant savings were achieved by reducing the heating setpoint during nights, causing the district heating usage to differ from the daytime demand, resulting in savings between 5 % and 8 % of the total annual energy use in the buildings, without any required investment. Additionally, the implementation of renewable energy solutions was studied by modeling the use of solar panels in the buildings, leading to a reduction in electrical grid demand between 20 % and 48 %, depending on the available area for the panels, with an average return on investment of 5.5 years. Other strategies were also studied and discussed in this report. In conclusion, this study provides evidence of the energy, economic, and environmental feasibility of different energy efficiency strategies that can be implemented in the buildings of the KTH campus. These strategies contribute to achieving the environmental objectives of Akademiska Hus and KTH. / Byggnadssektorn är en av de sektorer som har högst energianvändning och är en av de största källorna till utsläpp globalt. Samtidigt har energipriserna i Europa ökat avsevärt de senaste åren. Av dessa två skäl har energieffektivitet i byggnader blivit mycket relevant för offentliga och privata organisationer som strävar efter att minska energiförbrukningen för byggnaders drift och därigenom minska deras koldioxidavtryck och driftskostnader för användare och ägare. Denna master avhandlingsyftar till att identifiera möjlighetsområden för minskning av energianvändning samt implementering av energieffektivitetsstrategier i fyra byggnader på KTH Campus, ägda av Akademiska Hus. Först genomfördes en analys av energidata från de senaste åren av byggnadernas drift för att identifiera trender och otypisk energianvändning. Därefter utfördes energirevisioner av de mest betydande energiförbrukande utrustningarna och huvudsakliga byggnadsanläggningarna för att förstå driftsförhållandena och egenskaperna hos elektriska, uppvärmnings- och kylsystem. Syftet var att identifiera möjlighetsområden för att minska energianvändningen från nuvarande drift av byggnaderna. Efter att ha förstått energianvändningen i de fyra byggnaderna skapades modeller av byggnaderna i IDA ICE. Tillvägagångssättet innefattade två steg: först att modellera byggnadernas geometri och anpassa deras energiförbrukning för att matcha de mönster som identifierades i den tidigare dataanalysen. Sedan modellering av implementeringen av energieffektivitetsstrategier på byggnaderna, som syftar till att förbättra resultaten av den tidigare utförda dataanalysen och energirevisionerna. Dessa energieffektiva modeller underkastades analys av energiprestanda, ekonomisk analys, investeringsmöjlighetsanalys, bland andra. Resultaten som erhölls från modellerna med energieffektivitetsstrategier visade på energi- och ekonomiska besparingar som varierade från byggnad till byggnad genom automatisering av belysningssystemen i byggnaderna, med en genomsnittlig avkastning på investeringen på 2.5 år. På samma sätt uppnåddes betydande besparingar genom att sänka uppvärmningsinställningen under nätterna, vilket fick fjärrvärmeförbrukningen att skilja sig från dagtidens efterfrågan och resulterade i besparingar mellan 5 % och 8 % av den totala årliga energianvändningen i byggnaderna, utan någon nödvändig investering. Dessutom studerades implementeringen av förnybara energilösningar genom modellering av användningen av solpaneler i byggnaderna, vilket ledde till en minskning av elnätets efterfrågan med mellan 20 % och 48 %, beroende på tillgänglig yta för panelerna, med en genomsnittlig avkastning på investeringen på 5.5 år. Andra strategier studerades också och diskuterades i denna rapport. Sammanfattningsvis ger denna studie bevis på energi-, ekonomi- och miljömässig genomförbarhet av olika energieffektivitetsstrategier som kan implementeras i byggnaderna på KTH Campus. Dessa strategier bidrar till att uppnå miljömålen för Akademiska Hus och KTH.
|
209 |
EDIFES 0.4: Scalable Data Analytics for Commercial Building Virtual Energy AuditsPickering, Ethan M. 13 September 2016 (has links)
No description available.
|
210 |
Reducing Airflow Energy Use in Multiple Zone VAV SystemsTukur, Ahmed Gidado 08 September 2016 (has links)
No description available.
|
Page generated in 0.0646 seconds