Spelling suggestions: "subject:"burgers"" "subject:"burgersi""
71 |
Proper Orthogonal Decomposition for Reduced Order Control of Partial Differential EquationsAtwell, Jeanne A. 20 April 2000 (has links)
Numerical models of PDE systems can involve very large matrix equations, but feedback controllers for these systems must be computable in real time to be implemented on physical systems. Classical control design methods produce controllers of the same order as the numerical models. Therefore, reduced order control design is vital for practical controllers. The main contribution of this research is a method of control order reduction that uses a newly developed low order basis. The low order basis is obtained by applying Proper Orthogonal Decomposition (POD) to a set of functional gains, and is referred to as the functional gain POD basis. Low order controllers resulting from the functional gain POD basis are compared with low order controllers resulting from more commonly used time snapshot POD bases, with the two dimensional heat equation as a test problem. The functional gain POD basis avoids subjective criteria associated with the time snapshot POD basis and provides an equally effective low order controller with larger stability radii. An efficient and effective methodology is introduced for using a low order basis in reduced order compensator design. This method combines "design-then-reduce" and "reduce-then-design" philosophies. The desirable qualities of the resulting reduced order compensator are verified by application to Burgers' equation in numerical experiments. / Ph. D.
|
72 |
Dynamic compensators for a nonlinear conservation lawMarrekchi, Hamadi 04 May 2006 (has links)
In this paper we consider the problem of designing dynamic compensators to control a class of nonlinear parabolic distributed parameter systems. We concentrate on a system with unbounded input and output operators governed by Burgers’ equation. This equation provide a one dimensional model for certain convection—diffusion phenomena. A linearized model is used to compute a robust controller (MinMax), a LQG controller and a fixed-order-finite-dimensional control law (Optimal Projection) by minimizing various energy functionals. These control laws are then applied to the nonlinear model. Different approximation schemes are used to design suboptimal active feedback controllers. This approach provides important practical information. In particular, we show how functional gains can be used to locate new sensors.
Numerical results are given to illustrate the basic ideas and to compare the various controllers. / Ph. D.
|
73 |
Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles / Matrix Krylov methods applied to partial differential equationsHached, Mustapha 07 December 2012 (has links)
Cette thèse porte sur des méthode de résolution d'équations matricielles appliquées à la résolution numérique d'équations aux dérivées partielles ou des problèmes de contrôle linéaire. On s'intéressen en premier lieu à des équations matricielles linéaires. Après avoir donné un aperçu des méthodes classiques employées pour les équations de Sylvester et de Lyapunov, on s'intéresse au cas d'équations linéaires générales de la forme M(X)=C, où M est un opérateur linéaire matriciel. On expose la méthode de GMRES globale qui s'avère particulièrement utile dans le cas où M(X) ne peut s'exprimer comme un polynôme du premier degré en X à coefficients matriciels, ce qui est le cas dans certains problèmes de résolution numérique d'équations aux dérivées partielles. Nous proposons une approche, noté LR-BA-ADI consistant à utiliser un préconditionnement de type ADI qui transforme l'équation de Sylvester en une équation de Stein que nous résolvons par une méthode de Krylox par blocs. Enfin, nous proposons une méthode de type Newton-Krylov par blocs avec préconditionnement ADI pour les équations de Riccati issues de problèmes de contrôle linéaire quadratique. Cette méthode est dérivée de la méthode LR-BA-ADI. Des résultats de convergence et de majoration de l'erreur sont donnés. Dans la seconde partie de ce travail, nous appliquons les méthodes exposées dans la première partie de ce travail à des problèmes d'équations aux dérivées partielles. Nous nous intéressons d'abord à la résolution numérique d'équations couplées de type Burgers évolutives en dimension 2. Ensuite, nous nous intéressons au cas où le domaine borné est choisi quelconque. Nous établissons des résultats théoriques de l'existence de tels interpolants faisant appel à des techniques d'algèbre linéaire. / This thesis deals with some matrix equations involved in numerical resolution of partial differential equations and linear control. We first consider some numerical resolution techniques of linear matrix equation. In the second part of this thesis, we apply these resolution techniques to problems related to partial differential equations.
|
74 |
Controlabilidade para alguns modelos da mecânica dos fluidosSouza, Diego Araújo de 20 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T14:37:42Z
No. of bitstreams: 1
arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5) / Made available in DSpace on 2016-03-28T14:37:42Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5)
Previous issue date: 2014-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The aim of this thesis is to present some controllability results for some fluid
mechanic models. More precisely, we will prove the existence of controls that steer the
solution of our system from a prescribed initial state to a desired final state at a given
positive time. The two first Chapters deal with the controllability of the Burgers-α
and Leray-α models. The Leray-α model is a regularized variant of the Navier-Stokes
system (α is a small positive parameter), that can also be viewed as a model for
turbulent flows; the Burgers-α model can be viewed as a related toy model of Leray-α.
We prove that the Leray-α and Burgers-α models are locally null controllable, with
controls uniformly bounded in α. We also prove that, if the initial data are sufficiently
small, the pair state-control (that steers the solution to zero) for the Leray-α system
(resp. the Burgers-α system) converges as α → 0+ to a pair state-control(that steers
the solution to zero) for the Navier-Stokes equations (resp. the Burgers equation). The
third Chapter is devoted to the boundary controllability of inviscid incompressible fluids
for which thermal effects are important. They will be modeled through the so called
Boussinesq approximation. In the zero heat diffusion case, by adapting and extending
some ideas from J.-M. Coron [14] and O. Glass [45], we establish the simultaneous
global exact controllability of the velocity field and the temperature for 2D and 3D
flows. When the heat diffusion coefficient is positive, we present some additional results
concerning exact controllability for the velocity field and local null controllability of
the temperature. In the last Chapter, we prove the local exact controllability to the
trajectories for a coupled system of the Boussinesq kind, with a reduced number of
controls. In the state system, the unknowns are: the velocity field and pressure of the
fluid (y, p), the temperature θ and an additional variable c that can be viewed as the
concentration of a contaminant solute. We prove several results, that essentially show
that it is sufficient to act locally in space on the equations satisfied by θ and c. / O objetivo desta tese é apresentar alguns resultados controlabilidade para alguns
modelos da mecânica dos fluidos. Mais precisamente, provaremos a existência
de controles que conduzem a solução do nosso sistema de um estado inicial prescrito
à um estado final desejado em um tempo positivo dado. Os dois primeiros Capítulos
preocupam-se com a controlabilidade dos modelos de Burgers-α e Leray-α. O modelo
de Leray-α é uma variante regularizada do sistema de Navier-Stokes (α é umparâmetro
positivo pequeno), que pode também ser visto como um modelo de fluxos turbulentos;
já o modelo Burgers-α pode ser visto como um modelo simplificado de Leray-α.
Provamos que os modelos de Leray-α e Burgers-α são localmente controláveis a zero,
com controles limitados uniformemente em α. Também provamos que, se os dados
iniciais são suficientemente pequenos, o par estado-controle (que conduz a solução a
zero) para o sistema de Leray-α (resp. para o sistema de Burgers-α) converge quando
α → 0+ a um par estado-controle (que conduz a solução a zero) para as equações de
Navier-Stokes (resp. para a equação de Burgers). O terceiro Capítulo é dedicado à
controlabilidade de fluidos incompressíveis invíscidos nos quais os efeitos térmicos são
importantes. Estes fluidos são modelados através da então chamada Aproximação de
Boussinesq. No caso emque não há difusão de calor, adaptando e estendendo algumas
idéias de J.-M. Coron [14] e O. Glass [45], estabelecemos a controlabilidade exata global
simultaneamente do campo velocidade e da temperatura para fluxos em 2D e 3D.
Quando o coeficiente de difusão do calor é positivo, apresentamos alguns resultados
sobre a controlabilidade exata global para o campo velocidade e controlabilidade nula
local para a temperatura. No último Capítulo, provamos a controlabilidade exata local
à trajetórias de um sistema acoplado do tipo Boussinesq, com um número reduzido de
controles. Nesse sistema, as incógnitas são: o campo velocidade e a pressão do fluido
(y, p), a temperatura θ e uma variável adicional c que pode ser vista como a concentração
de um soluto contaminante. Provamos vários resultados, que essencialmente
mostram que é suficiente atuar localmente no espaço sobre as equações satisfeitas por
θ e c.
|
75 |
Controle hierárquico via estratégia de Stackelberg-Nash para controlabilidade de sistemas parabólicos e hiperbólicosSilva, Luciano Cipriano da 31 March 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-05-03T13:44:12Z
No. of bitstreams: 1
Arquivototal.pdf: 1150863 bytes, checksum: a7e25ab87986c9d088c0fe224303f97f (MD5) / Made available in DSpace on 2018-05-03T13:44:12Z (GMT). No. of bitstreams: 1
Arquivototal.pdf: 1150863 bytes, checksum: a7e25ab87986c9d088c0fe224303f97f (MD5)
Previous issue date: 2017-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we presents results on the exact controllability of the partial Di erential Equations
(PDEs) of the parabolic and hyperbolic type, in the context of hierarchic control, using
the Stackelberg-Nash strategy. In every problems we consider a main control (leader) and
two secondary controls (followers). To each leader we obtain a correnponding Nash equilibrium,
associated to a bi-objective optimal control problem; then we look for a leader of
minimal cost that solves the exact controllability problem. For the parabolic problems we
have distributed and boundary controls, now in the hyperbolics every controls are distributed.
We consider linear and semilinear cases, which we solve using observability inequality
obtained combining right Carleman inequalities. Also we use a xed point method. / Nesta tese apresentamos resultados sobre controlabilidade exata de Equações Diferenciais
Parciais (EDPs) dos tipos parabólico e hiperbólico, no contexto de controle hierárquico,
usando a estratégia de Stackelberg-Nash. Em todos os problemas consideramos um controle
principal (líder) e dois controles secundários (seguidores). Para cada líder obtemos um equil
íbrio de Nash correspondente, associado a um problema de controle ótimo bi-objetivo; então
buscamos o líder de custo que resolve o problema de controlabilidade. Para os problemas
parabólicos temos controles distribuídos e na fronteira, já nos hiperbólico todos os controles
são distribuídos. Consideramos casos lineares e semilineares, os quais resolvemos usando
desigualdade de observabilidade obtidas combinando desigualdades de Carleman adequadas.
Também usamos um método de ponto xo.
|
76 |
Data Assimilation in Fluid Dynamics using Adjoint OptimizationLundvall, Johan January 2007 (has links)
Data assimilation arises in a vast array of different topics: traditionally in meteorological and oceanographic modelling, wind tunnel or water tunnel experiments and recently from biomedical engineering. Data assimilation is a process for combine measured or observed data with a mathematical model, to obtain estimates of the expected data. The measured data usually contains inaccuracies and is given with low spatial and/or temporal resolution. In this thesis data assimilation for time dependent fluid flow is considered. The flow is assumed to satisfy a given partial differential equation, representing the mathematical model. The problem is to determine the initial state which leads to a flow field which satisfies the flow equation and is close to the given data. In the first part we consider one-dimensional flow governed by Burgers’ equation. We analyze two iterative methods for data assimilation problem for this equation. One of them so called adjoint optimization method, is based on minimization in L2-norm. We show that this minimization problem is ill-posed but the adjoint optimization iterative method is regularizing, and represents the well-known Landweber method in inverse problems. The second method is based on L2-minimization of the gradient. We prove that this problem always has a solution. We present numerical comparisons of these two methods. In the second part three-dimensional inviscid compressible flow represented by the Euler equations is considered. Adjoint technique is used to obtain an explicit formula for the gradient to the optimization problem. The gradient is used in combination with a quasi-Newton method to obtain a solution. The main focus regards the derivation of the adjoint equations with boundary conditions. An existing flow solver EDGE has been modified to solve the adjoint Euler equations and the gradient computations are validated numerically. The proposed iteration method are applied to a test problem where the initial pressure state is reconstructed, for exact data as well as when disturbances in data are present. The numerical convergence and the result are satisfying.
|
77 |
Structure of grain boundaries in hexagonal materialsSarrazit, Franck January 1998 (has links)
No description available.
|
78 |
Buttermilk and Bible Burgers: More Stories from the Kitchens of AppalachiaSauceman, Fred W. 01 January 2014 (has links)
In his latest collection of writings about the foodways of the Appalachian region, Fred W. Sauceman guides readers through country kitchens and church fellowship halls, across pasture fields and into smokehouses, down rows of vegetable gardens at the peak of the season and alongside ponds resonant with the sounds of a summer night. The scenes and subjects are oftentimes uniquely personal, and they combine to tell a love story, a chronicle of one person's affection for a region and its people, its products, and its places. Traversing Appalachia from an Italian kitchen in Pennsylvania to a soda shop in South Carolina, BUTTERMILK AND BIBLE BURGERS is a tribute to people loyal to the land and proud of their culinary heritage. Sauceman describes the common bond of breaking beans, the dignity of the barbecue pit, the nobility of the black-iron skillet, and the transformative power of a glass of Tennessee buttermilk. Sauceman also shares recipes from a teacher who lived to be 116. He explains Kentucky banana croquettes and Virginia Ju-Ju burgers. He samples trout caviar in the mountains of North Carolina and sorghum on the Cumberland Plateau in Tennessee. From a notebook stained by Nehi, Sauceman calls forth stories of Hungarian immigrants who gather every fall to make cabbage rolls in Virginia and Cubans who converge in Tennessee to roast a pig and to remember. BUTTERMILK AND BIBLE BURGERS is most of all an expression of gratitude for the persistence of the people who feed us. / https://dc.etsu.edu/etsu_books/1031/thumbnail.jpg
|
79 |
Contrôlabilité d'équations issues de la mécanique des fluidesChapouly, Marianne 23 June 2009 (has links) (PDF)
Dans cette thèse on étudie la contrôlabilité globale de quelques équations non linéaires issues de la mécanique des fluides, précisément des équations de type Burgers, une équation de Korteweg-de Vries, et un système de Navier-Stokes 2-D. La stratégie employée consiste, d'une part, à appliquer la méthode du retour de J.-M. Coron, et d'autre part, à jouer sur la non linéarité de l'équation considérée. <br />De cette manière, on montre dans la première partie la contrôlabilité globale exacte pour tout temps d'équations de type Burgers non visqueuses puis on utilise ensuite ce résultat pour obtenir un résultat de contrôlabilité globale approchée pour l'équation de Burgers visqueuse. Cette propriété, combinée avec un résultat de contrôlabilité locale, entraîne ainsi la contrôlabilité globale aux trajectoires de l'équation de Burgers visqueuse, pour tout temps. <br />Dans la deuxième partie, on procède d'une manière similaire pour obtenir la contrôlabilité globale exacte d'une équation de Korteweg-de Vries non linéaire, pour tout temps. <br />Enfin, dans la dernière partie on s'intéresse à un système de Navier-Stokes 2-D avec conditions aux bords de type Navier. On obtient, en utilisant cette fois des résultats sur l'équation d'Euler des fluides incompressibles, la contrôlabilité globale à zéro, pour tout temps.
|
80 |
Challenging Green Capitalism : An ideology Critique of Max Burgers' Environmental StrategiesHedenqvist, Robin, Johansson, Hannah January 2018 (has links)
Environmental strategies implemented today are strongly influenced by the ideologies capitalism, neoliberalism and ecomodernism. As such, they should promote global economic expansion while mitigating environmental impact. This is in line with the prevailing environmental political discourse of sustainable development, in which economic, ecological and social dimensions are considered compatible and dependent on each other. However, this essay challenges the normative assumption regarding the win-win-win narrative by examining the economic, ecological and social consequences of Max Burgers’ environmental strategies through three critical scientific theories. By posing an ideology critique and through the lens of our theoretical framework, we find that Max Burgers mystifies the apparent relation between local economic growth, global ecological impact and divided social progress, thus reinforcing unequal power dynamics and patterns of uneven development.
|
Page generated in 0.7093 seconds