• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 350
  • 247
  • 23
  • 22
  • 18
  • 12
  • 9
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 881
  • 881
  • 322
  • 317
  • 154
  • 152
  • 136
  • 118
  • 105
  • 98
  • 89
  • 83
  • 77
  • 66
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

The role of PDE2 as a potential target for antiarrhythmic therapy in cardiovascular diseases

Cachorro Puente, Eleder 26 July 2024 (has links)
Background and aim: Patients with heart failure and myocardial infarction have a significant risk of ventricular arrhythmia and sudden cardiac death, contributing to ∼20% of total deaths worldwide. However, pharmacological therapy of life-threatening arrhythmia remains limited and challenging. Consequently, there is a strong medical need for novel antiarrhythmic pharmacotherapy approaches that can effectively address fatal arrhythmias and reduce mortality rates. There is increasing evidence for cardioprotective effects of C-type natriuretic peptide (CNP) generating the intracellular second messenger cyclic guanosine monophosphate (cGMP) via its guanylyl cyclase receptor. While cGMP is proposed to mediate beneficial effects in the diseased myocardium, the second messenger cyclic adenosine monophosphate (cAMP) downstream of the chronically activated β-adrenoceptors provoke detrimental effects, such as cardiac remodelling and arrhythmia generation. Importantly, phosphodiesterase type 2 (PDE2) plays a crucial role in mediating the negative crosstalk between cGMP and cAMP signalling pathways within cardiomyocytes. As the only phosphodiesterase that is allosterically activated by cGMP to increase its cAMP-hydrolysing activity, PDE2 regulates the balance between these two signalling molecules. The aim of this study was to investigate the potential antiarrhythmic effect of CNP-cGMP-induced PDE2 stimulation at both organ and animal level in physiological as well as pathophysiological conditions. Material & methods: Hearts from mouse models with cardiomyocyte-specific PDE2 overexpression (PDE2 OE) or deletion (PDE2 KO) were isolated and subjected to ischemia/reperfusion (I/R) injuries using a Langendorff perfusion system. Thereby, the left descending coronary artery was ligated for 30 minutes to induce ischemia, followed by 30 minutes of reperfusion after removing the occlusion. The incidence of arrhythmic events during the reperfusion phase was examined following PDE2 activation with CNP or PDE2 inhibition with BAY 60-7550 using ex vivo ECG electrodes. To assess the potential antiarrhythmic effects of PDE2 modulation under pathophysiological conditions, two different experimental models were induced in mice: (i) Heart failure (HF) was induced through a 5-week regimen including a high-fat diet and the administration of the NO-synthase inhibitor L-NAME in drinking water to mediate metabolic and hypertensive stress, and (ii) diabetes was induced via 5 consecutive streptozotocin (STZ) i.p. injections, leading to the destruction of pancreatic β-cells and subsequent development of diabetes over a four-week period. In addition to ex vivo arrhythmia quantification after I/R, in vivo arrhythmia development was conducted by implanting ECG telemeters and provoking arrhythmias with double injections of the β adrenoceptor agonist isoprenaline (Iso). Additionally, atrial arrhythmia induction protocols were established to evaluate the development of atrial fibrillation (AF) using two different pacing protocols on the right atrium. The S1S2 protocol was used to detect the effective refractory period of the atria and the burst pacing protocol to determine the inducibility of AF, with simultaneous recording of monophasic action potentials from the left atrium. Results: WT hearts perfused with CNP exhibited a significant reduction in the number of arrhythmic events following I/R compared to control hearts. Importantly, this antiarrhythmic effect of CNP was reversed by pharmacological inhibition of PDE2 with BAY 60-7550 (Cachorro et al., 2023). Interestingly, no differences in arrhythmia development were observed between control and perfusion with BAY (Wagner et al., 2021). In contrast, inhibition of PDE3 resulted in markedly increased number of arrhythmic events compared to control. Hearts with cardiomyocyte-specific PDE2 deletion displayed a significantly higher incidence of arrhythmias after I/R, including ventricular extrasystole, bigeminy, and tachycardia. However, in vivo experiments did not demonstrate increased arrhythmia development after acute β-adrenergic stress in PDE2 KO mice with HF potentially due to desensitization of chronically activated β-adrenergic receptors in this pathophysiological model. Furthermore, hearts from diabetic mice exhibited a significantly higher number of arrhythmic events ex vivo, although those with PDE2 OE were protected against diabetes-induced arrhythmias compared to diabetic controls. However, the established pacing protocols revealed a low AF induction rate in ex vivo perfused mouse hearts, limiting the ability to observe a significant antiarrhythmic effect of CNP. Nonetheless, control hearts perfused with CNP plus BAY or with cardiac-specific deletion of PDE2 showed a trend towards increased AF compared to WT hearts and those perfused with CNP alone. Under diabetic conditions, PDE2 KO mice also displayed a trend to have higher AF inducibility compared to control diabetic hearts. As observed under physiological conditions, simultaneous perfusion of diabetic hearts with CNP plus BAY also showed a trend to have enhanced AF development compared to CNP or control perfusion. Conclusions: In conclusion, the findings of this study provide strong evidence that cGMP-induced PDE2 activation plays a crucial role in protecting the heart from ventricular arrhythmias in both physiological and pathophysiological conditions. Thus, CNP-mediated PDE2 stimulation could provide a novel therapeutic strategy to reduce life-threatening arrhythmias. However, further research should be performed to elucidate the effects of PDE2 stimulation on other tissues expressing PDE2, such as fibroblasts, neurons, endothelial cells, or circulating immune cells. Additionally, the impact of CNP-induced cGMP on the protein kinase G (PKG) pathway in cardiomyocytes should be investigated. The results of this work may provide a new approach for the development of novel antiarrhythmic therapies targeting the CNP-PDE2 axis, improving clinical outcomes for patients with HF and myocardial infarction.:Abbreviations I List of figures V List of tables VII 1. Introduction 1 1.1. Diabetes and diabetic cardiomyopathy 1 1.1.1. Aetiology, epidemiology and classification 1 1.1.2. Pathophysiology mechanisms 2 1.1.3. Diagnosis and treatment 3 1.2. Myocardial Infarction 4 1.2.1. Aetiology, epidemiology and classification 4 1.2.2. Pathophysiology mechanisms 5 1.2.3. Diagnosis and treatment 7 1.3. Heart failure 9 1.3.1. Aetiology, epidemiology and classification 9 1.3.2. Pathophysiology mechanisms 10 1.3.3. Diagnosis and treatment 11 1.4. Cardiac arrhythmia 13 1.4.1. Aetiology, epidemiology and classification 13 1.4.2. Cellular mechanism and pathophysiology 15 1.4.3. Arrhythmia diagnosis and treatment 16 1.5. Cyclic nucleotide signalling in cardiomyocytes 17 1.5.1. cAMP signalling 17 1.5.2. cGMP signalling 19 1.5.3. Compartmentalization of secondary messengers and phosphodiesterase superfamily 20 1.5.4. The increasing clinical significance of CNP 23 1.6. Phosphodiesterase 2 23 1.6.1. Molecular aspects 23 1.6.2. PDE2 regulation in cardiomyocytes 25 1.6.3. PDE2-mediated cGMP/cAMP crosstalk in cardiomyocytes 26 1.6.4. Antiarrhythmic potential of PDE2 27 2. Aims of the study 28 3. Materials & methods 29 3.1. Materials 29 3.1.1. Chemicals 29 3.1.2. PCR primers 30 3.1.3. Kits and reagents 31 3.1.4. Laboratory consumables 31 3.1.5. Devices and experimental hardware 32 3.1.6. Computer software 34 3.2. Methods 34 3.2.1. Animal models 34 3.2.2. Murine pathophysiological models 38 3.2.3. Ex vivo ischemia/reperfusion injuries 39 3.2.4. Characterization of heart hypertrophy and lung congestion 41 3.2.5. TTC staining 42 3.2.6. Ex vivo atrial fibrillation induction 42 3.2.7. In vivo ECG telemetry 43 3.2.8. Acute arrhythmia induction in vivo 44 3.2.9. Echocardiography 45 3.2.10. Biostatistical analysis 45 4. Results 47 4.1. Impact of PDE2 modulation on cardiac arrhythmia following ischemia/reperfusion injuries in ex vivo perfused murine hearts 47 4.1.1. PDE2 modulation and arrhythmogenesis in wild type mice 47 4.1.2. Impact of different phosphodiesterases and protein kinase G on arrhythmia development after ex vivo I/R 52 4.2. Role of PDE2 in murine heart failure model 54 4.2.1. Characterization of the murine heart failure model in different genetic backgrounds 55 4.2.2. Role of PDE2 on arrhythmia development upon acute β-AR stimulation in vivo 61 4.3. Role of PDE2 in mice with STZ-induced diabetic cardiomyopathy 62 4.3.1. Effect of cardiac PDE2 overexpression and deletion on cardiac function and development of STZ-induced diabetes 62 4.3.2. Impact of cardiac-specific overexpression of PDE2 in diabetic mice after I/R injuries 70 4.4. Atrial fibrillation 73 4.4.1. Effects of PDE2 modulation on atrial fibrillation under physiological and pathophysiological conditions after STZ-induced diabetes 73 4.4.2. Effects of cardiomyocyte-specific PDE2 deletion on atrial fibrillation induction in hearts from mice with STZ-induced diabetes 79 5. Discussion 82 5.1. CNP-induced PDE2 stimulation protects from arrhythmia after I/R injuries ex vivo 82 5.2. PDE2-/- mice did not show significant increased arrhythmia development in vivo upon HF induction 86 5.3. PDE2 OE mice are protected against I/R injuries-induced arrhythmia development after diabetes induction with STZ 86 5.4. PDE2 pharmacological inhibition and PDE2 genetic deletion might lead to more atrial fibrillation episodes after burst pacing 90 5.5. Limitations 93 5.6. Conclusions 95 6. Summary 97 7. Zusammenfassung 99 8. Bibliography 102 9. Acknowledgements 124 10. Declaration 126 / Hintergrund und Ziel: Patienten mit Herzinsuffizienz und Myokardinfarkt haben ein hohes Risiko für ventrikuläre Arrhythmien und plötzlichen Herztod, welche weltweit für ∼20 % der Todesfälle verantwortlich sind. Die pharmakologische Therapie lebensbedrohlicher Herzrhythmusstörungen ist jedoch nach wie vor begrenzt und schwierig. Daher besteht ein dringender medizinischer Bedarf an neuen Ansätzen für die antiarrhythmische Pharmakotherapie, um letale Herzrhythmusstörungen zu reduzieren und die Sterblichkeitsrate zu senken. Verschiedene Studien belegen, dass das C-Typ natriuretischem Peptid (CNP) über die Stimulation des Guanylatzyklase-Rezeptors B und die Bildung des intrazellulären Botenstoffs zyklisches Guanosinmonophosphat (cGMP) kardioprotektive Wirkungen vermittelt. Während cGMP im erkrankten Herzmuskel positive Wirkungen vermittelt, fördert zyklisches Adenosinmonophosphat (cAMP) als intrazellulärer Botenstoff der chronisch aktivierten β-Adrenozeptoren schädliche Wirkungen, wie kardiales Remodelling und die Entstehung von Herzrhythmusstörungen. Die Phosphodiesterase 2 (PDE2) spielt eine entscheidende Rolle bei der Vermittlung des negativen Crosstalks zwischen dem cGMP- und dem cAMP-vermittelten Signalweg in Kardiomyozyten. Als einzige Phosphodiesterase wird die PDE2 durch cGMP allosterisch aktiviert, um dann verstärkt cAMP abzubauen und zum Gleichgewicht zwischen beiden Signalmolekülen beizutragen. Ziel dieser Arbeit war es, die potenzielle antiarrhythmische Wirkung der CNP-cGMP-induzierten PDE2-Stimulation unter physiologischen und pathophysiologischen Bedingungen sowohl auf Organebene als auch im Mausmodell in vivo zu untersuchen. Material & Methoden: Für diese Arbeit wurden murine Herzen aus Mäusen mit Kardiomyozyten-spezifischer PDE2-Überexpression (PDE2 OE) oder -Deletion (PDE2 KO) verwendet und ex vivo einer Ischämie/Reperfusion (I/R) am Langendorff-Perfusionssystem unterzogen. Zur Ischämie-Induktion wurde zunächst die linke absteigende Koronararterie für 30 Minuten ligiert. Im Anschluss wurde die Okklusion aufgehoben und für 30 Minuten reperfundiert. Mithilfe von EKG-Elektroden wurde ex vivo während der Reperfusionsphase das Auftreten von Herzrhythmusstörungen nach PDE2-Aktivierung mit CNP oder PDE2-Hemmung mit BAY 60-7550 untersucht. Um die potenziellen antiarrhythmischen Wirkungen der PDE2-Modulation unter pathophysiologischen Bedingungen zu evaluieren, wurden zwei verschiedene experimentelle Modelle in Mäusen induziert: (i) eine Herzinsuffizienz (HF) wurde mittels metabolischem und hypertensivem Stress durch eine 5-wöchige Hochfettdiät und die Verabreichung des NO-Synthase-Inhibitors L-NAME im Trinkwasser induziert, und (ii) Diabetes wurde durch 5 aufeinanderfolgende i. p. -Injektionen von Streptozotocin induziert, was zur Zerstörung der β-Zellen in der Bauchspeicheldrüse und dadurch zur Entstehung eines Diabetes über einen Zeitraum von vier Wochen führte. Zusätzlich zur Quantifizierung der Arrhythmien ex vivo nach I/R wurde die Entstehung von Arrhythmien in vivo nach Provokation durch die zweifache Injektionen des β-Adrenozeptor-Agonisten Isoprenalin mittels implantierter EKG-Telemeter untersucht. Darüber hinaus wurden Protokolle zur Induktion von Vorhofarrhythmien etabliert, um die Entwicklung von Vorhofflimmern (AF) mit zwei verschiedenen Pacing-Protokollen am rechten Vorhof zu untersuchen. Das S1S2-Protokoll wurde verwendet, um die effektive Refraktärzeit der Vorhöfe zu ermitteln, und das Burst-Pacing-Protokoll, um die Induzierbarkeit von Vorhofflimmern bei gleichzeitiger Aufzeichnung monophasischer Aktionspotenziale aus dem linken Vorhof zu bestimmen. Ergebnisse: Wildtyp (WT)-Herzen, die mit CNP perfundiert wurden, wiesen eine signifikant verringerte Anzahl von arrhythmischen Ereignissen nach I/R im Vergleich zu Kontroll-Herzen auf. Diese antiarrhythmische Wirkung von CNP wurde durch pharmakologische PDE2-Hemmung mit BAY 60-7550 (BAY) aufgehoben (Cachorro et al., 2023). Interessanterweise konnten keine Unterschiede in der Entwicklung von Arrhythmien zwischen Kontrollbedingungen und Perfusion mit BAY beobachtet werden (Wagner et al., 2021). Im Gegensatz dazu führte die Hemmung der PDE3 zu einer deutlich erhöhten Anzahl an Arrhythmien verglichen mit der Kontrolle. Herzen mit Kardiomyozyten-spezifischer PDE2-Deletion wiesen eine signifikant höhere Inzidenz von Arrhythmien nach I/R auf, einschließlich ventrikulärer Extrasystolen, Bigemini und Tachykardien. In-vivo-Experimente zeigten dagegen kein verstärktes Auftreten von Arrhythmien nach akuter β-adrenerger Belastung in PDE2 KO-Mäusen mit HF, was möglicherweise auf eine Desensibilisierung chronisch aktivierter β adrenerger Rezeptoren in diesem pathophysiologischen Modell zurückzuführen ist. Darüber hinaus wiesen die Herzen diabetischer Mäuse eine signifikant höhere Anzahl von Arrhythmien ex vivo auf, wobei die Herzen von diabetischen PDE2 OE-Mäusen im Vergleich zu diabetischen Kontroll-Mäusen vor Arrhythmien geschützt waren. Durch die etablierten AF-Pacing-Protokolle konnte insgesamt nur eine niedrige AF-Induktionsrate in ex vivo perfundierten Mausherzen erzielt werden, sodass die antiarrhythmische Wirkung von CNP hier nicht gezeigt werden konnte. Dennoch wiesen gesunde Kontrollherzen, die mit CNP plus BAY perfundiert wurden, und Herzen mit einer kardiospezifischen PDE2 Deletion eine Tendenz zu gesteigertem Auftreten von Vorhofflimmern im Vergleich zu CNP-perfundierten und WT-Herzen auf. Unter diabetischen Bedingungen zeigten PDE2 KO-Herzen im Vergleich zu diabetischen Kontroll-Herzen ebenfalls einen Trend zu höherer AF-Induzierbarkeit. Wie unter physiologischen Bedingungen beobachtet, zeigte sich auch bei der gleichzeitigen Perfusion diabetischer Herzen mit CNP plus BAY eine Tendenz zur verstärkten Entwicklung von Vorhofflimmern im Vergleich zu CNP- oder Kontroll-Perfusion. Schlussfolgerungen: Die Ergebnisse dieser Studie liefern deutliche Hinweise darauf, dass die cGMP-induzierte PDE2-Aktivierung sowohl unter physiologischen als auch pathophysiologischen Bedingungen eine entscheidende Rolle für den Schutz des Herzens vor ventrikulären Arrhythmien spielt. Somit könnte die CNP-vermittelte PDE2-Stimulation eine neue therapeutische Strategie zur Verringerung lebensbedrohlicher Arrhythmien darstellen. Weitere Untersuchungen sollten jedoch durchgeführt werden, um die Auswirkungen der PDE2-Stimulation auf andere Gewebe, welche PDE2 exprimieren, wie Fibroblasten, Neuronen, Endothelzellen oder zirkulierende Immunzellen, zu klären. Darüber hinaus sollten die Auswirkungen von CNP-induziertem cGMP auf den Proteinkinase G-Signalweg in Kardiomyozyten untersucht werden. Die Ergebnisse dieser Arbeit könnten einen Ansatz für die Entwicklung neuer antiarrhythmischer Therapien bieten, welche die CNP-PDE2-Achse modulieren und die klinische Behandlung von Patienten mit Herzinsuffizienz und Herzinfarkt verbessern.:Abbreviations I List of figures V List of tables VII 1. Introduction 1 1.1. Diabetes and diabetic cardiomyopathy 1 1.1.1. Aetiology, epidemiology and classification 1 1.1.2. Pathophysiology mechanisms 2 1.1.3. Diagnosis and treatment 3 1.2. Myocardial Infarction 4 1.2.1. Aetiology, epidemiology and classification 4 1.2.2. Pathophysiology mechanisms 5 1.2.3. Diagnosis and treatment 7 1.3. Heart failure 9 1.3.1. Aetiology, epidemiology and classification 9 1.3.2. Pathophysiology mechanisms 10 1.3.3. Diagnosis and treatment 11 1.4. Cardiac arrhythmia 13 1.4.1. Aetiology, epidemiology and classification 13 1.4.2. Cellular mechanism and pathophysiology 15 1.4.3. Arrhythmia diagnosis and treatment 16 1.5. Cyclic nucleotide signalling in cardiomyocytes 17 1.5.1. cAMP signalling 17 1.5.2. cGMP signalling 19 1.5.3. Compartmentalization of secondary messengers and phosphodiesterase superfamily 20 1.5.4. The increasing clinical significance of CNP 23 1.6. Phosphodiesterase 2 23 1.6.1. Molecular aspects 23 1.6.2. PDE2 regulation in cardiomyocytes 25 1.6.3. PDE2-mediated cGMP/cAMP crosstalk in cardiomyocytes 26 1.6.4. Antiarrhythmic potential of PDE2 27 2. Aims of the study 28 3. Materials & methods 29 3.1. Materials 29 3.1.1. Chemicals 29 3.1.2. PCR primers 30 3.1.3. Kits and reagents 31 3.1.4. Laboratory consumables 31 3.1.5. Devices and experimental hardware 32 3.1.6. Computer software 34 3.2. Methods 34 3.2.1. Animal models 34 3.2.2. Murine pathophysiological models 38 3.2.3. Ex vivo ischemia/reperfusion injuries 39 3.2.4. Characterization of heart hypertrophy and lung congestion 41 3.2.5. TTC staining 42 3.2.6. Ex vivo atrial fibrillation induction 42 3.2.7. In vivo ECG telemetry 43 3.2.8. Acute arrhythmia induction in vivo 44 3.2.9. Echocardiography 45 3.2.10. Biostatistical analysis 45 4. Results 47 4.1. Impact of PDE2 modulation on cardiac arrhythmia following ischemia/reperfusion injuries in ex vivo perfused murine hearts 47 4.1.1. PDE2 modulation and arrhythmogenesis in wild type mice 47 4.1.2. Impact of different phosphodiesterases and protein kinase G on arrhythmia development after ex vivo I/R 52 4.2. Role of PDE2 in murine heart failure model 54 4.2.1. Characterization of the murine heart failure model in different genetic backgrounds 55 4.2.2. Role of PDE2 on arrhythmia development upon acute β-AR stimulation in vivo 61 4.3. Role of PDE2 in mice with STZ-induced diabetic cardiomyopathy 62 4.3.1. Effect of cardiac PDE2 overexpression and deletion on cardiac function and development of STZ-induced diabetes 62 4.3.2. Impact of cardiac-specific overexpression of PDE2 in diabetic mice after I/R injuries 70 4.4. Atrial fibrillation 73 4.4.1. Effects of PDE2 modulation on atrial fibrillation under physiological and pathophysiological conditions after STZ-induced diabetes 73 4.4.2. Effects of cardiomyocyte-specific PDE2 deletion on atrial fibrillation induction in hearts from mice with STZ-induced diabetes 79 5. Discussion 82 5.1. CNP-induced PDE2 stimulation protects from arrhythmia after I/R injuries ex vivo 82 5.2. PDE2-/- mice did not show significant increased arrhythmia development in vivo upon HF induction 86 5.3. PDE2 OE mice are protected against I/R injuries-induced arrhythmia development after diabetes induction with STZ 86 5.4. PDE2 pharmacological inhibition and PDE2 genetic deletion might lead to more atrial fibrillation episodes after burst pacing 90 5.5. Limitations 93 5.6. Conclusions 95 6. Summary 97 7. Zusammenfassung 99 8. Bibliography 102 9. Acknowledgements 124 10. Declaration 126
512

Herz-Kreislauf-Medikamente als Kofaktoren der Anaphylaxie

Nassiri, Maria 08 April 2015 (has links)
Die Anaphylaxie, eine potentiell lebensbedrohliche Reaktion, kann durch Kofaktoren beeinflusst werden. ACE-Inhibitoren, ß-Blocker und Acetylsalicylsäure (ASS) werden häufig in der Therapie von Herz-Kreislauferkrankungen eingesetzt. In der vorliegenden Arbeit wurde überprüft, ob diese anaphylaktische Reaktionen begünstigen. Das Modell der passiv systemischen Anaphylaxie (PSA) wurde speziell angepasst, um die Behandlung einer Herz-Kreislauf-Therapie nachzubilden. Die orale Gabe von Metoprolol oder Ramipril verstärkte die Anaphylaxie geringfügig. Die Kombination der Medikamente steigerte die Anaphylaxie deutlich, was im Modell der passiv kutanen Anaphylaxie (PCA) bestätigt werden konnte. Gleichzeitig waren Mastzellmediatoren im Serum der Tiere erhöht. Die Inkubation muriner Mastzellen (MZ) mit den Medikamenten, steigerte die FcεRI-vermittelten Histaminfreisetzung in vitro. ASS-Vorbehandlung der Mäuse verstärkte die Ausprägung der PSA und der PCA, was mit einer Steigerung von MZ-Mediatoren im Serum assoziiert war. Die FcεRI-induzierte Histaminfreisetzung muriner MZ wurde hingegen nach ASS-Inkubation gehemmt, was auf einen indirekten Mechanismus hinweist. Die Reduktion der Prostaglandine (PG) durch ASS ist mit einer gesteigerten Leukotriensynthese verbunden. Der Leukotrienantagonist Montelukast konnte die, durch ASS verstärkte, PSA nicht mildern, was zeigt, dass dieser Effekt unabhängig von Leukotrienen ist. PGE2 kann die MZ-Degranulation über EP1-EP4-Rezeptoren modulieren. Tatsächlich schwächten EP3- und EP4-Rezeptoragonisten die durch ASS gesteigerte Anaphylaxie ab. PGE2 nimmt somit eine wichtige Rolle in der pro-anaphylaktischen Wirkung von ASS ein. Zusammenfassend wurde erstmals gezeigt, dass Metoprolol und Ramipril die Anaphylaxie über eine Steigerung der MZ-Reaktivität verstärken. ASS hingegen erhöht anaphylaktische Reaktionen über einen indirekt steigernden Effekt auf die MZ. PGE2 ist zumindest teilweise an der pro-anaphylaktischen Wirkung von ASS beteiligt. / Cofactors contribute to the severity of anaphylaxis, a potential life-threatening hypersensitivity reaction. ACE-inhibitors, ß-blockers and acetylsalicylic acid (asa) are frequently used drugs in cardiovascular therapy. Whether they affect systemic anaphylactic reactions has been addressed within this thesis. To this aim, the passive systemic anaphylaxis model (PSA) was employed here and specially designed to mimic a long term treatment in cardiovascular therapy. The data demonstrate that oral treatment of mice with ramipril or metoprolol alone slightly aggravated anaphylaxis. However, the combination clearly potentiated anaphylactic reactions, which was also confirmed in the passive cutaneous anaphylaxis model (PCA). In line with this, elevated amounts of mast cell (MC) mediators were detected in mice sera upon combined drug treatment. In vitro, FcεRI-mediated histamine release of murine MCs was likewise enhanced by the respective drugs. Pre-treatment of mice with asa aggravated the symptoms of PSA and PCA; simultaneously MC-mediators in sera were elevated. In contrast, FcεRI-mediated histamine release of MCs was reduced by asa in vitro, pointing to an indirect mechanism. Asa reduces prostaglandins (PGs) and increases leukotriene synthesis. The leukotriene antagonist montelukast failed to attenuate PSA, aggravated by asa, suggesting that the pro-anaphylactic effect of asa might be independent of leukotrienes. PGE2 can modulate MC degranulation via EP1-EP4 receptor. Indeed, EP3 and EP4 receptor agonists alleviated anaphylaxis enhanced by asa. Therefore PGE2 might play an important role in the pro-anaphylactic effect of asa. In conclusion, the data demonstrate for the first time that metoprolol and ramipril exacerbate anaphylactic symptoms by a direct increase in MC reactivity. In contrast, asa aggravates anaphylactic reactions by priming MCs through an indirect mechanism. PGE2 is at least partly involved in this process.
513

Exploring underlying mechanisms driving the onset of stress-induced insulin resistance

Otto, Delita 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Physical and psychological stressors trigger activation of the hypothalamo-pituitary-adrenocortical (HPA) axis that leads to enhanced secretion of glucocorticoids e.g. cortisol. Moreover, chronic activation of this pathway may elevate oxidative stress that is linked to the onset of insulin resistance and cardiovascular diseases (CVD). Our laboratory previously found that oxidative stress increases flux through metabolic circuits such as the hexosamine biosynthetic pathway (HBP), in effect increasing its modification of target proteins post-transcriptionally with O-GlcNAc moeities. This in turn may alter protein function and contribute to the onset of myocardial insulin resistance and impaired contractile function. Since the underlying mechanisms linking chronic stress to cardiometabolic pathophysiology are poorly understood, we hypothesised that cortisol elicits myocardial oxidative stress, HBP activation, and decreased glucose uptake (due to attenuated glucose transport functionality) with detrimental outcomes, i.e. insulin resistance and apoptosis. To investigate this hypothesis we established an in vitro model using HL-1 cardiomyocytes, with which we evaluated the degree of O-GlcNAcylation and oxidative stress in response to a range of time-dose treatments with dexamethasone (synthetic glucocorticoid). Glucose transporter 4 (GLUT4) translocation to the sarcolemma was also assessed. In agreement with the literature, results suggest that GLUT4 translocation is significantly decreased subsequent to dexamethasone treatment. Although no significant differences were observed with regards to oxidative stress or O-GlcNAcylation, the data show that dexamethasone increased the latter with a maximal effect after two hours exposure to the 10-6 M dose. Although our results were not conclusive, the data suggest a potential novel link between dexamethasone exposure, HBP activation and decreased GLUT4 translocation. Based on our findings we propose that detrimental effects of chronic stress on the heart may be mediated by increased HBP flux. Given that glucocorticoid excess and GLUT4 dysregulation have been associated with insulin resistance (and related metabolic derangements and diseases), these results provide new targets for potential therapeutic agents. / AFRIKAANSE OPSOMMING: Fisiese sowel as psigologiese stressors veroorsaak die aktivering van die hipotalamiese-hipo seale-bynier (HHB) pad wat lei tot die verhoogde sekresie van glukokortikoïede soos kortisol. Kroniese aktivering van hierdie pad kan ook oksidatiewe stres verhoog wat weer tot insulienweerstandigheid en kardiovaskulêre siektes (KVS) kan lei. Navorsing uit ons laboratorium het voorheen bewys dat oksidatiewe stres 'n toename in vloei deur metaboliese paaie soos die heksoamine biosintetiese pad (HBP) kan veroorsaak deur die modi sering van teikenproteïene met O-GlcNAc motiewe. Dit kan weer proteïen funksie verander en bydra tot die ontstaan van miokardiale insulienweerstandigheid en verswakte kontraktiele funksie. Die onderliggende meganismes wat kroniese stres aan kardiometaboliese pato siologie verbind word nog nie goed verstaan nie, daarom is ons hipotese dat kortisol miokardiale oksidatiewe stres veroorsaak, die HBP pad aktiveer, en glukose opname verminder (deur die funksionele onderdrukking van glukose transport), wat nadelige uitkomste soos insulienweerstandigheid en apoptose tot gevolg kan hê. Om hierdie hipotese te ondersoek, is 'n in vitro model van HL-1 kardiomiosiete gebruik waarmee die graad van O-GlcNAsilering en oksidatiewe stres in reaksie op 'n reeks tyd-konsentrasie behandelings met deksametasoon (sintetiese glukokortikoïed), bepaal is. Glukose transporter 4 (GLUT4) translokasie na die sarkolemma is ook geasseseer. In ooreenstemming met die literatuur, is GLUT4 translokasie insiggewend onderdruk tydens deksometasoon behandeling. Alhoewel geen insiggewende verskille rakende oksidatiewe stres en O-GlcNAsilering gevind is nie, het ons data aangedui dat laasgenoemde deur deksametasoon vermeerder het na twee ure van blootstelling aan die 10-6 M konsentrasie. Alhoewel ons resultate geen afdoende bewys lewer nie, stel dit wel voor dat daar 'n potensiële verbintenis tussen deksametasoon behandeling en 'n afname in GLUT4 translokasie is. Gebasseer op ons bevindings, stel ons voor dat die nadelige e ekte van kroniese stres op die hart bemiddel kan word deur 'n toename in vloei deur die HBP. Gegewe dat 'n oormaat glukokortikoïede en GLUT4 wanregulering geassosieer is met insulien weerstandigheid (en verbandhoudende metaboliese veranderinge en siektes), verskaf hierdie resultate nuwe teikens vir potensiële terapeutiese ingrepe.
514

Sarcomeric modifiers of hypertrophy in hypertrophic cardiomyopathy (HCM)

Bloem, Liezl Margaretha 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) is an independent predictor of cardiovascular morbidity and allcause mortality. Significantly, it is considered a modifiable cardiovascular risk factor as its regression increases overall survival and reduces the frequency of adverse cardiac events. A clear understanding of LVH pathogenesis is thus imperative to facilitate improved risk stratification and therapeutic intervention. Hypertrophic cardiomyopathy (HCM), an inherited cardiac disorder, is a model disease for elucidating the molecular mechanisms underlying LVH development. LVH, in the absence of increased external loading conditions, is its quintessential clinical feature, resulting from mutations in genes encoding sarcomeric proteins. The LVH phenotype in HCM exhibits marked variability even amongst family members who carry the same disease-causing mutation. Phenotypic expression is thus determined by the causal mutation and additional determinants including the environment, epigenetics and modifier genes. Thus far, factors investigated as potential hypertrophy modifiers in HCM have been relatively removed from the primary stimulus for LVH; and the few studies that have been replicated yielded inconsistent results. We hypothesized that the factors that closely interact with the primary stimulus of faulty sarcomeric functioning, have a greater capacity to modulate it, and ultimately the LVH phenotype in HCM. Plausible candidate modifiers would include factors relating to the structure or function of the sarcomere, including known HCM-causal genes; and the enzymes that function in sarcomere-based energetics. Indeed, the literature highlights the relevance of sarcomeric proteins, Ca2+-handling and myocardial energetics in the development of LVH in HCM. This study, therefore, set out to evaluate the hypertrophy-modifying capacity of such factors by means of family-based genetic association testing in 27 South African HCM families in which one of three unique HCM-causing founder mutations segregates. Moreover, the single and combined effects of 76 variants within 26 candidate genes encoding sarcomeric or sarcomere-associated proteins were investigated. The study identified a modifying role in the development of hypertrophy in HCM for each of the candidate genes investigated with the exception of the metabolic protein-encoding gene, PRKAG1. More specifically, single variant association analyses identified a modifying role for variants within the genes MYH7, TPM1 and MYL2, which encode proteins of the sarcomere, as well as the genes CPT1B, CKM, ALDOA and PRKAB2, which encode metabolic proteins. Haplotype-based association analyses identified combined modifying effects for variants within the genes ACTC, TPM1, MYL2, MYL3 and MYBPC3, which encode proteins of the sarcomere, as well as the genes CD36, PDK4, CKM, PFKM, PPARA, PPARG, PGC1A, PRKAA2, PRKAG2 and PRKAG3, which encode metabolic proteins. Moreover, a number of variants and haplotypes showed statistically significant differences in effect amongst the three HCM founder mutation groups. The HCM-modifier genes identified were prioritised for future studies according to the number of significant results obtained for the four tests of association performed. The genes TPM1 and MYBPC3, which encode sarcomeric proteins, as well as the genes PFKM and PRKAG2, which encode metabolic proteins, were identified as stronger candidates for future studies as they delivered multiple significant results for various statistical tests. This study makes a novel contribution to the field of hypertrophy research as it tested the hypothesis that structural or energy-related factors located within the sarcomere may act as modifiers of cardiac hypertrophy in HCM, and succeeded in identifying a modifying role for many of the candidate genes selected. The significant results include substantial single and within-genecontext variant effects; and identified sizeable variation in the risk of developing LVH owing to the compound effect of the modifier and the individual founder mutations. Collectively, these findings enhance the current understanding of genotype/phenotype correlations and may, as consequence, improve patient risk stratification and choice of treatment. Moreover, these findings emphasize the potential for modulation of disease by further elucidation of some of the avenues identified. / AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) is ‘n onafhanklike voorspeller van kardiovaskulêre morbiditeit en van mortaliteit weens alle oorsake. Van belang is dat dit ‘n wysigbare kardiovaskulêre risiko faktor is, aangesien die afname daarvan algehele oorlewing verhoog en die frekwensie van nadelige kardiale voorvalle verlaag. ‘n Duidelike begrip van LVH patogenese is dus noodsaaklik om verbeterde risiko stratifikasie en terapeutiese intervensie te fasiliteer. Hipertrofiese kardiomiopatie (HKM), ‘n oorerflike hart-siekte, is ‘n model-siekte vir die uitpluis van die molekulêre meganismes onderliggend aan die ontwikkeling van LVH. LVH, in die afwesigheid van verhoogde eksterne lading, is die kern kliniese simptoom van HKM en die gevolg van mutasies in die gene wat kodeer vir sarkomeriese proteïene. Die LVH fenotiepe in HKM toon merkbare veranderlikheid selfs in familie-lede wat dieselfde siekte-veroorsakende mutasie dra. Die fenotiepe word dus bepaal deur die siekte-veroorsakende mutasie asook addisionele determinante insluitend die omgewing, epigenetika en modifiserende gene. Potensiële hipertrofie-modifiseerders wat tot dusver bestudeer is, is betreklik verwyder van die primêre stimulus vir LVH en die paar studies wat gerepliseer is, het teenstrydige resultate gelewer. Ons hipoteseer dat die faktore wat in noue interaksie met die primêre stimulus van foutiewe sarkomeriese funksionering is, ‘n groter kapasitieit het om dit en uiteindelik die LVH fenotiepe in HKM, te moduleer. Aanneemlike kandidaat-modifiseerders sou insluit faktore wat betrekking het tot die struktuur en funksie van die sarkomeer insluitend HKM-oorsaaklike gene en die ensieme wat funksioneer in sarkomeer-gebaseerde energetika. Die literatuur beklemtoon inderdaad die relevansie van sarkomeriese proteïene, Ca2+-hantering en miokardiese energetika in die ontwikkeling van LVM in HKM. Hierdie studie het beoog om die hipertrofie-modifiserende kapasiteit van sulke faktore te evalueer deur middel van familie-gebaseerde genetiese assosiasie toetse in 27 Suid-Afrikaanse HKM families waarin een van drie unieke HKM-stigter mutasies segregeer. Verder was die enkel en gekombineerde effekte van 76 variante binne 26 kandidaat gene wat kodeer vir sarkomeer en sarkomeer-geassosieerde proteïene, ondersoek. Hierdie studie het ‘n modifiserende rol in die ontwikkeling van hipertrofie in HKM geïdentifiseer vir elk van die kandidaat gene wat ondersoek is, met uitsluiting van die PRKAG1, wat kodeer vir ‘n metaboliese proteïen. Meer spesifiek, enkel variant assosiasie analises het ‘n modifiserende rol geïdentifiseer vir variante in die gene MYH7, TPM1 en MYL2, wat kodeer vir sarkomeriese proteïene, asook die gene CPT1B, CKM, ALDOA en PRKAB2, wat kodeer vir metabolise proteïene. Haplotipe-gebaseerde assosiasie-analises het gekombineerde modifiserende effekte geïdentifiseer vir variante in die gene ACTC, TPM1, MYL2, MYL3 en MYBPC3, wat kodeer vir strukturele proteïene van die sarkomeer asook die gene CD36, PDK4, CKM, PFKM, PPARA, PPARG, PGC1A, PRKAA2, PRKAG2 en PRKAG3, wat kodeer vir metabolise proteïene. Verder het ‘n aantal variante en haplotipes statisties betekenisvolle verskille in effek tussen die drie HKM-stigter mutasie groepe getoon. Die HKM-modifiserende gene wat geïdentifiseer is, is verder geprioritiseer vir toekomstige studies volgens die aantal beduidende resultate wat vir die vier assosiasie toetse verkry is. Die gene TPM1 and MYBPC3, wat kodeer vir sarkomeriese proteïene, asook die gene PFKM and PRKAG2, wat kodeer vir metaboliese proteïene, is geïdentifiseer as sterker kandidate vir verdere studies omdat veelvuldige beduidende resultate vir die verskeie statistiese toetse deur hulle gelewer is. Hierdie studie maak ‘n nuwe bydrae tot die veld van hipertrofie navorsing omdat dit die hipotese dat strukturele en energie-verwante faktore, wat binne die sarkomeer geposisioneer is, potensieel as modifiseerders van kardiale hipertropfie in HKM kan optree, ondersoek het. Dit slaag ook daarin om ‘n modifiserende rol vir baie van die geselekteerde kandidaatgene te identifiseer. Die beduidende resultate sluit in aansienlike enkel en binne-geen-konteks variant-effekte en aansienlike variasie in die risiko vir LVH ontwikkeling verskuldig aan die gekombineerde effek van modifiseerder en individuele stigter mutasies. Gesamentlik verbeter hierdie bevindinge die huidige begrip van genotipe/fenotipe korrelasies en dit mag tot gevolg hê verbeterde pasiënt risiko stratifikasie en keuse van behandeling. Verder beklemtoon hierdie bevindinge die potensiaal vir siekte modulering deur verdere uitpluis van sekere van hierdie geïdentifiseerde navorsingsrigtings. / National Research Foundation / Dr. Paul van Helden / Stellenbosch University
515

NONINVASIVE ASSESSMENT AND MODELING OF DIABETIC CARDIOVASCULAR AUTONOMIC NEUROPATHY

Wang, Siqi 01 January 2012 (has links)
Noninvasive assessment of diabetic cardiovascular autonomic neuropathy (AN): Cardiac and vascular dysfunctions resulting from AN are complications of diabetes, often undiagnosed. Our objectives were to: 1) determine sympathetic and parasympathetic components of compromised blood pressure regulation in patients with polyneuropathy, and 2) rank noninvasive indexes for their sensitivity in diagnosing AN. Continuous 12-lead electrocardiography (ECG), blood pressure (BP), respiration, regional blood flow and bio-impedance were recorded from 12 able-bodied subjects (AB), 7 diabetics without (D0), 7 with possible (D1) and 8 with definite polyneuropathy (D2), during 10 minutes supine control, 30 minutes 70-degree head-up tilt and 5 minutes supine recovery. During the first 3 minutes of tilt, systolic BP decreased in D2 while increased in AB. Parasympathetic control of heart rate, baroreflex sensitivity, and baroreflex effectiveness and sympathetic control of heart rate and vasomotion were reduced in D2, compared with AB. Baroreflex effectiveness index was identified as the most sensitive index to discriminate diabetic AN. Four-dimensional multiscale modeling of ECG indexes of diabetic autonomic neuropathy: QT interval prolongation which predicts long-term mortality in diabetics with AN, is well known. The mechanism of QT interval prolongation is still unknown, but correlation of regional sympathetic denervation of the heart (revealed by cardiac imaging) with QT interval in 12-lead ECG has been proposed. The goal of this study is to 1) reproduce QT interval prolongation seen in diabetics, and 2) develop a computer model to link QT interval prolongation to regional cardiac sympathetic denervation at the cellular level. From the 12-lead ECG acquired in the study above, heart rate-corrected QT interval (QTc) was computed and a reduced ionic whole heart mathematical model was constructed. Twelve-lead ECG was produced as a forward solution from an equivalent cardiac source. Different patterns of regional denervation in cardiac images of diabetic patients guided the simulation of pathological changes. Minimum QTc interval of lateral leads tended to be longer in D2 than in AB. Prolonging action potential duration in the basal septal region in the model produced ECG and QT interval similar to that of D2 subjects, suggesting sympathetic denervation in this region in patients with definite neuropathy.
516

Mechanistic Basis for Atrial and Ventricular Arrhythmias Caused by KCNQ1 Mutations

Bartos, Daniel C. 01 January 2013 (has links)
Cardiac arrhythmias are caused by a disruption of the normal initiation or propagation of electrical impulses in the heart. Hundreds of mutations in genes encoding ion channels or ion channel regulatory proteins are linked to congenital arrhythmia syndromes that increase the risk for sudden cardiac death. This dissertation focuses on how mutations in a gene (KCNQ1) that encodes a voltage-gated K+ ion channel (Kv7.1) can disrupt proper channel function and lead to abnormal repolarization of atrial and ventricular cardiomyocytes. In the heart, Kv7.1 coassembles with a regulatory protein to conduct the slowly activating delayed rectifier K+ current (IKs). Loss-of-function KCNQ1 mutations are linked to type 1 long QT syndrome (LQT1), and typically decrease IKs, which can lead to ventricular action potential (AP) prolongation. In patients, LQT1 is often characterized by an abnormally long corrected QT (QTc) interval on an electrocardiogram (ECG), and increases the risk for polymorphic ventricular tachycardias. KCNQ1 mutations are also linked to atrial fibrillation (AF), but cause a gain-of-function phenotype that increases IKs. Surprisingly, patients diagnosed with both LQT1 and AF are increasingly identified as genotype positive for a KCNQ1 mutation. The first aim of this dissertation was to determine a unique functional phenotype of KCNQ1 mutations linked to both arrhythmia syndromes by functional analyses via the whole-cell patch clamp technique in HEK293 cells. A proportion of patients with LQT1-linked KCNQ1 mutations do not have abnormal QTc prolongation known as latent LQT1. Interestingly, exercise can reveal abnormal QTc prolongation in these patients. During exercise, beta-adrenergic activation stimulates PKA to phosphorylate Kv7.1, causing an increase in IKs to prevent ventricular AP prolongation. Therefore, the second aim of this dissertation was to determine a molecular mechanism of latent LQT1 through functional analyses in HEK293 cells while incorporating pharmacological and phosphomimetic approaches to study PKA regulation of mutant Kv7.1 channels. The findings in this dissertation provide new insight into how KCNQ1 mutations disrupt the function of Kv7.1 in a basal condition or during beta-adrenergic activation. Also, this dissertation suggests these approaches will improve patient management by identifying mutation specific risk factors for patients with KCNQ1 mutations.
517

Prescribing patterns of angiotensin-converting enzyme inhibitors for the period 2001 until 2006 / Lourens Johannes Rothmann

Rothmann, Lourens Johannes January 2007 (has links)
Thesis (M.Pharm. (Pharmacy Practice))---North-West University, Potchefstroom Campus, 2008.
518

NADPH Oxydase et Stress Oxydant au cours de l'Insuffisance Rénale Chronique : modulation par les HDL / NADPH Oxidase and Oxidative Stress during Chronic Kidney Disease : modulation by HDL

Goux, Aurélie 13 December 2010 (has links)
Les maladies cardiovasculaires (CV) représentent la première cause de mortalité lors de l'insuffisance rénale chronique (IRC). Cette morbidité apparat précocement lors de l'IRC et ne peut être explique par les facteurs de risque traditionnels. Le stress oxydant (SO), composante du cortège métabolique de l'IRC, représente un facteur de risque non traditionnel intriqué avec l'inflammation et la malnutrition. Le but de ce travail a été d'étudier la place du SO dans la survenue des complications CV au cours de l'IRC sur modale animal, puis de comparer le profil protéomique et la fonctionnalité des HDL in vitro entre sujets hémodialysés (HD) et témoins. Le SO au niveau CV a été étudié dans un modèle animal (adénine) d'IRC associé à la malnutrition. L'activité de la NADPH oxydase cardiaque est triple, alors que les activités des complexes de la chaîne respiratoire mitochondriale et de la SOD sont normales. Cette surproduction d'anion super oxyde est associé à une surexpression de l'ostéopontine et du pro-collagène de type I. L'étude protéomique des HDL de sujets HD et témoins a permis de préciser les anomalies qualitatives associées à la baisse des HDL induite par l'IRC. Les propriétés anti-oxydantes des HDL de ces mêmes sujets ont été étudiées in vitro sur un modèle d'oxydation des LDL au cuivre et sur un modèle cellulaire d'activation de la NADPH oxydase. En comparaison aux témoins, les HDL des sujets HD perdent leur capacité de protection des LDL contre l'oxydation. Par contre, la modulation de la NADPH oxydase sur modèle cellulaire est conservée avec les HDL de sujets HD mais serait moindre en présence d'une forte inflammation systémique. Ces résultats suggèrent que le SO est au cœur des complications cardiaques au cours de l'IRC. Parmi les mécanismes de défense endogènes, les propriétés anti-oxydantes des HDL sont en partie altérées chez le sujet HD. / Cardiovascular (CV) diseases are the first cause of mortality during chronic kidney disease (CKD) and cannot only be explained by traditional risk factors (age, gender, dyslipidemia, hypertension). Oxidative stress, which has been associated with CKD, appears as a non-traditional risk factor closely interconnected with inflammation and malnutrition.This study aimed at investigating oxidative stress in CV complications in uremic rats. Then, HDL proteomic profile and in vitro functionality of HDL were compared between hemodialyzed (HD) patients and control subjects.First, an animal model of CKD associated with malnutrition, the adenine-fed rats, was set up in order to study CV oxidative stress. NADPH oxidase activity was increased three-fold, but the maximal activity of mitochondrial respiratory chain complexes and SOD were not different between groups. Superoxide anion output was associated with accumulation of osteopontin and of pro-collagen type I. In a second part, HDL proteomic study from HD and control subjects was performed to characterize qualitative modifications associated with the decrease in HDL observed in CKD. HDL anti-oxidative activities from these subjects were studied in vitro in a model of copper-induced LDL oxidation and in a cellular model of NADPH oxidase activation. Compared to control, HDL from HD patients failed to protect LDL oxidation. By contrast, HDL modulation of NADPH activity is maintained in HD patients but could be impaired by elevated inflammation.These results suggest that oxidative stress is a key event in cardiac complications during CKD. Among protective endogenous mechanisms, HDL anti-oxidative properties could be impaired in HD patients.
519

Vésicules extracellulaires et régulation de la réponse inflammatoire dans les pathologies cardiovasculaires / Extracellular vesicles and inflammatory regulation in cardiovascular diseases

Yin, Min 30 November 2015 (has links)
Les vésicules extracellulaires telles que les microvésicules et les exosomes sont libérées lors de l’apoptose ou de l’activation cellulaire. Ce sont des médiateurs importants dans la communication intercellulaire, suggérant que ces vésicules pourraient jouer un rôle physiopathologique, en particulier dans les maladies cardiovasculaires. L'athérosclérose est une maladie inflammatoire chronique de la paroi artérielle qui résulte de l’interaction entre les lipoprotéines, les cellules inflammatoires, et les cellules vasculaires. L'infarctus du myocarde est une complication aiguë et grave de l'athérosclérose. La réaction inflammatoire post-infarctus joue un rôle central dans la formation de néovaisseaux sanguins et la cicatrisation. Cependant, les mécanismes de l’inflammation sont encore mal connus dans ces pathologies. Mon travail de thèse a porté sur les effets des vésicules extracellulaires isolées de tissus pathologiques sur les cellules inflammatoires. Nous avons montré dans un premier travail que les microvésicules s’accumulant dans les lésions d’athérosclérose humaines contribuent à la surcharge en cholestérol et en triglycérides des macrophages et facilitent la formation de cellules spumeuses. L’accumulation des lipides intracellulaires induite par ces microvésicules est contrebalancée par une augmentation de l’efflux du cholestérol associée à une activation d’ABCA1. Dans un deuxième travail, nous avons examiné les effets des vésicules produites dans le cœur post-infarctus sur la réponse inflammatoire. Nos résultats montrent : 1- une augmentation de la libération in situ des microvésicules majoritairement d’origine cardiomyocytaire et des exosomes 15 heures après infarctus ; 2- la stimulation de la production de VEGF monocytaire par les vésicules extracellulaires ; 3- l’incapacité en ce qui concerne les vésicules isolées de cœur diabétique infarci à reproduire cet effet sur les monocytes des souris contrôles. Afin de clarifier les déterminants de l’angiogenèse post-ischémique, nous avons également étudié les profils de miARNs des vésicules contrôles et diabétiques. Après infarctus du myocarde, l’expression de miR-126-3p et de miR-92a-3p est significativement diminuée dans les vésicules diabétiques en comparaison avec les vésicules contrôles. Par ailleurs, nous avons observé une augmentation de miR-126-3p et de miR-92a-3p respectivement dans les microvésicules et les exosomes chez les souris contrôles post-infarctus. En conclusion, ce travail apporte des éléments nouveaux sur les fonctions des vésicules extracellulaires générées localement dans les tissus inflammatoires, en particulier leur capacité à promouvoir la transformation des macrophages en cellules spumeuses dans la plaque. Par ailleurs, les vésicules isolées du cœur ischémique pourraient favoriser l’angiogenèse post-infarctus en stimulant la production de VEGF monocytaire. La disparition de cet effet bénéfique dans le diabète pourrait être associée à des modifications d’adressage des miARNs dans les vésicules extracellulaires au cours de cette pathologie. / Extracellular vesicles, such as microvesicles and exosomes, are released during cell apoptosis or activation. They are important mediators of intercellular communication, suggesting that these vesicles could play a pathophysiological role, especially in cardiovascular diseases. Atherosclerosis is a chronic inflammatory disease of the arterial wall which results from the interaction between lipoproteins, inflammatory cells, and vascular cells. Myocardial infarction is an acute and severe complication of atherosclerosis. The postinfarction inflammatory response plays a central role in the formation of new blood vessels and scarring. However, the mechanisms of inflammation are still poorly known in these pathologies. My thesis concerned the effects of extracellular vesicles isolated from pathological tissues on inflammatory cells. We showed in the first work that microvesicles accumulating in human atherosclerotic lesions contribute to cholesterol and triglyceride overload in macrophages and facilitate foam cell formation. The accumulation of the intracellular lipids induced by those microvesicles is offset by an increase in cholesterol efflux associated with activation of ABCA1. In the second study, we examined the effect of vesicles produced in the infarcted heart on the inflammatory response. Our results showed : 1- an increased release in situ of microvesicles mostly of cardiomyocyte origin and exosomes 15 hours after infarction ; 2- the stimulation of monocyte VEGF production by extracellular vesicles ; 3- the incapacity of diabetic vesicles isolated from infarcted heart to reproduce that effect on control mice monocytes. In order to clarify the determinants of postischemic angiogenesis, we also studied miRNA profiles of control and diabetic vesicles. After myocardial infarction, the expression level of miR-126-3p and miR-92a-3p was significantly decreased in diabetic vesicles compared to control vesicles. Furthermore, we observed an increased expression of miR-126-3p and miR-92a-3p respectively in the microvesicles and the exosomes isolated from control mice heart after myocardial infarction. In conclusion, this work provides new information on the functions of extracellular vesicles locally generated in inflamed tissues, particularly in promoting macrophage transformation into foam cells in the atherosclerotic plaque. Furthermore, vesicles isolated from ischemic heart could enhance postinfarction angiogenesis by stimulating monocyte VEGF production. The loss of this beneficial effect in diabetes may be associated with changes of miRNA cargo in extracellular vesicles in this pathology.
520

Comparison of Two Different Sprint Interval Training Work-to-Rest Ratios on Acute Metabolic and Inflammatory Responses

HARNISH, CHRISTOPHER R 01 January 2014 (has links)
High intensity exercise is believed to yield greater results on health and human performance than moderate intensity exercise. Extensive research indicates that not only do high-intensity interval training (HIT) and sprint interval training (SIT) produce significant improvements in cardiovascular fitness and disease, they may be more effective at improving long-term metabolic function, including insulin sensitivity (Si), by producing more mitochondria. Moreover, compliance rates for HIT and SIT participation are reported to be the same or better than traditional moderate intensity exercise. Because lack of time is often cited as major hindrance to exercise participation, SIT is also seen as a time efficient option to improve health and performance. It does appear, however, that repeated sessions of SIT are needed before overall improvements can be measured. SIT protocols employing maximal 30 sec sprints with ~5 min rest [a 1:9 work-to-rest ratio (W:R)], have garnered much of the research focus, while those using minimal rest periods, like Tabata which uses 20 sec sprints and 10 sec rest (2:1 W:R), have been ignored. This may omit a possible SIT option that could influence acute and chronic adaptations. The role of inflammatory cytokines on Si remains an area of continued research. While endurance exercise is thought to create an overall anti-inflammatory environment that stimulates improvement in Si, SIT is often viewed as pro-inflammatory. However, few studies have provided significant insight into cytokine release following SIT, and none haveexplored its impact on Si. In addition, the impact of W:R on cytokine remains speculative at best. Therefore, the examination of the effect of different sprint protocols of similar total work (kJ) on performance, metabolic function, and inflammatory response may provide valuable insight into these adaptive processes.

Page generated in 0.023 seconds