• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 9
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 65
  • 49
  • 48
  • 40
  • 28
  • 21
  • 20
  • 18
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Processing of Sub-micrometer Features for Rear Contact Passivation Layer of Ultrathin Film Solar Cells Using Optical Lithography

Roxner, Evelina, Olsmats Baumeister, Ronja January 2019 (has links)
Thin film copper, indium, gallium, selenide (CIGS) solar cells are promising in the field of photovoltaic technology. To reduce material and fabrication cost, as well as increasing electrical properties of the cell, research is ongoing towards ultra-thin film solar cells (absorption layer thickness less than 500 nm). Ultra-thin CIGS solar cells has shown a decrease in interface recombination and improved optical properties when adding a rear contact passivation layer of aluminium oxide. In this work, the process of creating sub-micrometer features of a passivation layer using conventional optical lithography is investigated. To specify, the objective was to optimize the development conditions in the optical lithography process when fabricating equidistant line contacts in aluminium oxide with 800 nm feature size. It was found that line contacts with smaller feature sizes require longer development time, than line contacts with larger feature sizes. The experiments conducted showed that the pre-set development and exposure conditions used by the NOA group are not optimized for 800 nm or smaller line contacts. Further, for the optical lithography process, silicon substrates are not comparable with substrates of soda lime glass coated with molybdenum. Slight underdevelopment of a sample, showed line contacts smaller than the resolution of the laser used in the exposure – suggesting an alternative method of processing small line contacts with optical lithography.
92

Modelling Band Gap Gradients and Cd-free Buffer Layers in Cu(In,Ga)Se2 Solar Cells

Pettersson, Jonas January 2012 (has links)
A deeper understanding of Cu(In,Ga)Se2 (CIGS) solar cells is important for the further improvement of these devices. This thesis is focused on the use of electrical modelling as a tool for pursuing this aim. Finished devices and individual layers are characterized and the acquired data are used as input in the simulations. Band gap gradients are accounted for when modelling the devices. The thesis is divided into two main parts. One part that treats the influence of cadmium free buffer layers, mainly atomic layer deposited (Zn,Mg)O, on devices and another part in which the result of CIGS absorber layer modifications is studied. Recombination analysis indicates that interface recombination is limitting the open circuit voltage (Voc) in cells with ZnO buffer layers. This recombination path becomes less important when magnesium is introduced into the ZnO giving a positive conduction band offset (CBO) towards the CIGS absorber layer. Light induced persistent photoconductivity (PPC) is demonstrated in (Zn,Mg)O thin films. Device modelling shows that the measured PPC, coupled with a high density of acceptors in the buffer-absorber interface region, can explain light induced metastable efficiency improvement in CIGS solar cells with (Zn,Mg)O buffer layers. It is shown that a thin indium rich layer closest to the buffer does not give any significant impact on the performance of devices dominated by recombination in the CIGS layer. In our cells with CdS buffer the diffusion length in the CIGS layer is the main limitting factor. A thinner CIGS layer improves Voc by reducing recombination. However, for thin enough absorber layers Voc deteriorates due to recombination at the back contact. Interface recombination is a problem in thin devices with Zn(O,S) buffer layers. This recombination path is overshadowed in cells of standard thickness by recombination in the CIGS bulk. Thin cells with Zn(O,S) buffer layers have a higher efficiency than CdS cells with the same absorber thickness.
93

Copper gallium diselenide solar cells [electronic resource] : processing, characterization and simulation studies / by Pushkaraj R Panse.

Panse, Pushkaraj. January 2003 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 204 pages. / Thesis (Ph.D.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: The goal of this research project was to contribute to the understanding of CuGaSe2/CdS photovoltaic devices, and to improve the performance of these devices. The initial part of the research dealt with the optimization of a Sequential Deposition process for CuIn(Ga)Se2 absorber formation. As an extension of this, a recipe (Type I Process) for CuGaSe2 absorber layer fabrication was developed, and the deposition parameters were optimized. Electrical characterization of the thin films and completed devices was carried out using techniques such as Two-Probe and Three-Probe Current-Voltage, Capacitance-Frequency, Capacitance-Voltage, and Spectral Response measurements. Structural/chemical characterization was done using XRD and EDS analysis. Current densities of up to 15.2 mA/cm2, and Fill Factors of up to 58% were obtained using the Type I CuGaSe2 Process. VOC's, however, were limited to less than 700 mV. / ABSTRACT: Several process variations, such as changes in the rate/order/temperature of depositions and changes in the thickness of layers, resulted in little improvement. With the aim of breaking through this VOC performance ceiling, a new absorber recipe (Type II Process) was developed. VOC's of up to 735 mV without annealing, and those of up to 775 mV after annealing, were observed. Fill Factors were comparable to those obtained with Type I Process, whereas the Current Densities were found to be reduced (typically, 10-12 mA/cm2, with the best value of 12.6 mA/cm2). This performance of Type II devices was correlated to a better intermixing of the elements during the absorber formation. To gain an understanding of the performance limitations, two simulation techniques, viz. SCAPS and AMPS, were used to model our devices. / ABSTRACT: Several processing experiments and SCAPS modeling indicate that a defective interface between CuGaSe2 and CdS, and perhaps a defective absorber layer, are the cause of the VOC limitation. AMPS simulation studies, on the other hand, suggest that the back contact is limiting the performance. Attempts to change the physical back contact, by changes in the absorber processing, were unsuccessful. Processing experiments and simulations also suggest that the CuGaSe2/CdS solar cell involves a true heterojunction between these two layers. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
94

By Means of Beams : Laser Patterning and Stability in CIGS Thin Film Photovoltaics

Westin, Per-Oskar January 2011 (has links)
Solar irradiation is a vast and plentiful source of energy. The use of photovoltaic (PV) devices to convert solar energy directly to electrical energy is an elegant way of sustainable power generation which can be distributed or in large PV plants based on the need. Solar cells are the small building blocks of photovoltaics and when connected together they form PV modules. Thin film solar cells require significantly less energy and raw materials to be produced, as compared to the dominant Si wafer technologies. CIGS thin film solar cells are considered to be the most promising thin film alternative due to its proven high efficiency. Most thin film PV modules utilise monolithic integration, whereby thin film patterning steps are included between film deposition steps, to create interconnection of individual cells within the layered structure. The state of the art is that CIGS thin film modules are made using one laser patterning step (P1) and two mechanical patterning steps (P2 and P3). Here we present work which successfully demonstrates the replacement of mechanical patterning by laser patterning methods. The use of laser ablation promises such advantages as increased active cell area and reduced maintenance and downtime required for regular replacement of mechanical tools. The laser tool can also be used to transform CIGS into a conducting compound along a patterned line. We have shown that this process can be performed after all semiconductor layers are deposited using a technique we call laser micro-welding. By performing patterning at the end of the process flow P2 and P3 patterning could be performed simultaneously. Such solutions will further reduce manufacturing times and may offer increased control of semiconductor interfaces. While showing promising performance on par with reference processes there are still open questions of importance for these novel techniques, particularly that of long term stability. Thin film modules are inherently sensitive to moisture and require reliable encapsulation. Before the techniques introduced here can be seen industrially they must have achieved proven stability. In this work we present a proof of existence of stable micro-welded interconnections. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 731
95

ALD Buffer Layer Growth and Interface Formation on Cu(In,Ga)Se2 Solar Cell Absorbers

Sterner, Jan January 2004 (has links)
Cu(In,Ga)Se2 (CIGS) thin film solar cells contain a thin layer of CdS. To avoid toxic heavy-metal-containing waste in the module production the development of a cadmium-free buffer layer is desirable. This thesis considers alternative Cd-free buffer materials deposited by Atomic Layer Deposition (ALD). Conditions of the CIGS surface necessary for ALD growth are investigated and the heterojunction interface is characterized by band alignment studies of ZnO/CIGS and In2S3/CIGS interfaces. The thesis also includes investigations on the surface modification of the CIGS absorber by sulfurization. According to ALD theory the growth process is limited by surface saturated reactions. The ALD growth on CIGS substrates shows nucleation failure and generally suffers from surface contaminations of the CIGS layer. The grade of growth disturbance varies for different ALD precursors. The presence of surface contaminants is related to the substrate age and sodium content. Improved growth behavior is demonstrated by different pretreatment procedures. The alignment of the energy bands in the buffer/absorber interface is an important parameter for minimization of the losses in a solar cell. The valence band and conduction band offsets was determined by in situ X-ray and UV photoelectron spectroscopy during layer by layer formation of buffer material. The conduction band offset (ΔEc) should be small but positive for optimal solar cell electrical performance according to theory. The conduction band offset was determined for the ALD ZnO/CIGS interface (ΔEc = -0.2 eV) and the ALD In2S3/CIGS interface (ΔEc = -0.25 eV). A high temperature process for bandgap grading and a low temperature process for surface passivation by post deposition sulfurization in H2S were investigated. It is concluded that the high temperature sulfurization of CuIn(1-x)GaxSe2 leads to phase separation when x>0. The low temperature process did not result in enhanced device performance.
96

Material property study on dye sensitized solar cells and cu(ga,in)se2 solar cells

Pan, Jie. January 2008 (has links)
Thesis (M.S.)--Miami University, Dept. of Paper and Chemical Engineering, 2009. / Title from first page of PDF document. Includes bibliographical references (p. 64-69).
97

Damp Heat Degradation of CIGS Solar Modules

Cano Garcia, Jose January 2017 (has links)
Due to the short period that some photovoltaic technologies have taken part on the solar energy market, it is crucial to evaluate the long term stability of solar cells belonging to those technologies in order to ensure a minimum lifetime of their performance. Accelerated degradation tests are thus carried out to achieve such goals. The present study analyzes the encapsulation effects on co-evaporated manufactured Copper Indium Gallium Selenide (CIGS) solar cells under damp heat conditions, consisting in 85 °C and 85 % relative humidity, during an approximated period of 1000 hours. The experimental procedure has been carried out at Solliance Solar Research facilities. Since the encapsulation packages play a critical role as a protection to achieve long term stability of the solar cells and modules, several packaging structures and materials has been taken into study. Thus, eighteen types of mini modules were manufactured including different combinations of encapsulants, front sheet foils, thin film protective barriers and CIGS cells from different manufacturers. The design of these mini modules and the manufacturing process to obtain them is also presented in this work. Various characterization techniques were carried out in order to acquire the required information about the solar cells and encapsulants performance along the damp heat degradation process. The results exposed that encapsulation packages including thin film barriers between the encapsulant and the front sheet foil allowed a longer solar cell lifetime due to their remarkable protection against moisture ingress. Moreover, the degradation of the molybdenum layer included in the CIGS cells was found as principal cause of efficiency decrement and end of performance of solar cells protected by regular encapsulant and front sheet foils. Some other findings in relation with the evaluated components are shown along the present study.
98

Etude et optimisation d'un procédé plasma basse puissance pour le dépôt de ZnO dopé et non dopé à propriétés photovoltaïques à partir d'une solution aqueuse / Study and optimization of a low power plasma reactor for the deposition of ZnO doped and undoped with photovoltaic properties from an aqueous solution

Ma, Alexandre 10 December 2015 (has links)
Ce travail de thèse s'insère dans la Recherche et Développement du Photovoltaïque. L'objectif était d'étudier, développer et optimiser un nouveau procédé plasma de dépôt pour l'élaboration de couches minces d'oxyde de zinc (ZnO) pour l'application de couche fenêtre dans les cellules solaires de type Cu(In,Ga)Se2. La particularité de ce procédé est de réaliser rapidement des couches d'oxyde (≥ 0,6 nm/s) à partir d'une solution aqueuse de précurseurs non toxiques, interagissant, sous forme de gouttes, avec le plasma. La faisabilité du dépôt de ZnO par le réacteur plasma basse puissance (LPPR) a été vérifiée en obtenant des couches de ZnO homogènes, cristallines et transparentes grâce à l'optimisation des paramètres du réacteur. Le diagnostic du réacteur plasma et la modélisation/simulation du réacteur nous ont permis de constater que l'état physique et la taille des gouttes influent sur la qualité des couches d'oxyde. Des cellules solaires ont été réalisées permettant de valider la qualité des couches de ZnO obtenues via notre procédé plasma. Les meilleurs rendements sont d'environ 14 % ce qui est très prometteur pour les recherches futurs. L'étude du dopage de type N du ZnO a été abordé dans le but de réaliser une couche fenêtre complète par le réacteur LPPR. Cependant beaucoup d'améliorations et d'études restent à faire telles que la mise en place d'un système d'injection sophistiqué, ou encore l'investigation approfondie sur le dopage. Néanmoins une étude des coûts matières/énergie du procédé a été réalisée afin de pouvoir positionner le réacteur plasma parmi les autres techniques employées pour la réalisation de cellules CIGS. / This work is part of the Research and Development of Photovoltaic. The aim was to study, develop and optimize a new deposition plasma process for the elaboration of zinc oxide thin layers (ZnO) as the window layer in Cu(In,Ga)Se2 solar cells of. The particularity of this process is to quickly realize oxide layers (≥ 0.6 nm/s) from an aqueous solution of non-toxic precursors, interacting in the form of droplets, with the plasma. The feasibility of the ZnO deposition by the low power plasma reactor (LPPR) was checked by obtaining homogeneous, crystalline and transparent layers of ZnO thanks to the optimization of reactor parameters. The diagnostic and modeling / simulation of the plasma reactor allowed us to see that the physical state and droplet size affect the quality of the oxide layers. Solar cells were created to validate the quality of ZnO layers obtained via our plasma process. The best obtained efficiency is about 14% which is very promising for future research. The study of doping N type ZnO was addressed in order to achieve a complete window layer by LPPR reactor. However many improvements and studies are still needed, such as the establishment of a sophisticated injection system, or the thorough investigation on doping. Nevertheless a cost study about material/energy of the process was conducted in order to place the plasma reactor among other techniques used for the production of CIGS solar cells.
99

Synthesis and characterization of some nano-selenides and their applications in solar cells

Kamal Abdelhamied Saber, Suzan 10 September 2018 (has links)
Resumen (Castellano) El aumento del consumo de energía global junto con las preocupaciones ambientales ha generado mucho interés por las fuentes de energía alternativas y limpias, como la energía solar fotovoltaica. Los investigadores en la comunidad fotovoltaica han estado buscando formas de reducir costos mientras mantienen o aumentan las eficiencias. Una mejor comprensión de los materiales implicados es esencial para el rápido desarrollo de nuevas tecnologías. Las películas delgadas I-III-VI2 ofrecen sistemas prometedores para lograr células solares de alta eficiencia a un costo menor. De hecho, al adaptar la composición de los compuestos, es posible cambiar la banda prohibida del material para captar la luz solar de manera más eficiente. Esta tesis se centra en la preparación y caracterización del material de la capa absorbente, especialmente las películas delgadas nanocristalinas y la consideración de las características estructurales y eléctricas de dicha capa principal absorbente de células. La tesis examina cómo las diferentes técnicas de preparación y uso del material podrían afectar las propiedades del películas delgadas sintetizadas. Películas delgadas CuInSe2 y CuInS2 se depositaron sobre sustratos de vidrio ITO usando la técnica de electrodeposición en solución acuosa. Las películas electrodepositadas se caracterizaron por difracción de rayos X (XRD), microscopía electrónica de barrido (SEM) y análisis de rayos X de energía dispersiva (EDS). Se investigaron los efectos de recocido sobre los precursores electrodepositados. La estructura de calcopirita de CuInSe2/CuInS2 mostró una mejora de la cristalinidad después del tratamiento posterior de selenización/sulfurización en atmósfera Se/S, respectivamente. Los estudios de XRD y SEM revelaron una mejora de la calidad cristalina de las películas de CIS después de los tratamientos térmicos. Las propiedades ópticas de las películas delgadas recocidas CuInSe2-Se y CuInSe2-S se han estudiado para determinar el efecto del proceso de recocido en diferentes ambientes de selenio y azufre. Además, modificamos el CuInxCryGa1-x-ySe2 de cobre indio, donde x = 0.4, y = (0.0, 0.1, 0.2, 0.3) la capa de superestrato por el proceso de recubrimiento por centrifugado. CuInxCryGa1-xySe2 donde x = 0.4, y = (0.0, 0.1, 0.2, 0.3) nanopartículas han sido sintetizadas en primer lugar usando un método hidrotermal químico húmedo que se basa en un proceso térmico sin vacío sin ningún proceso de selenización adicional. Introduciendo diferentes fuentes de metal en un autoclave con etilenamina como solvente, se obtuvieron nanopartículas de CIGS a diferentes temperaturas en un rango de 190-230 °C. Los resultados de la difracción de rayos X (XRD) confirmaron la formación de una estructura de calcopirita CuInxCryGa1-x-ySe2 tetragonal. Finalmente, se estudió el efecto de la temperatura de recocido en los materiales tipo Kesterita (como el Cu2ZnSnS4) que son materiales de muy bajo costo y que no dañan el medio ambiente. Estudiamos el crecimiento de las películas delgadas cuaternarias Cu2ZnSnS4 (CZTS) de kesterita mediante un depósito electroquímico de un solo paso seguido de un recocido a baja temperatura. La influencia de diferentes atmósferas de recocido a tiempos de recocido constantes (t = 45 min) y parámetros de control de preparación fijos; es decir, concentración de la solución de materiales de partida (sales de metales precursores), tiempo de deposición y potencial de electrodeposición. Se estudiaron las propiedades estructurales, de composición, morfológicas y ópticas, así como las propiedades fotoelectroquímicas. / Abstract Increasing global energy consumption together with environmental concerns has led to much interest in alternative, cleaner sources of energy such as solar photovoltaic. Researchers in the solar cell community have been looking for ways to reduce costs while maintaining or increasing already high efficiencies. A fundamental understanding of the materials under consideration is essential to rapid development of new technologies. The I-III-VI2 thin films offer promising systems for achieving high efficiency solar cells at lower costs. In fact, by tailoring the chemistry of the compounds it is possible to change the bandgap of the material in order to collect sunlight more efficiently. First of all, this thesis focuses on absorber layer material preparation and characterization, especially nanocrystalline thin films and consideration of both structural and electrical characteristics of such main cell absorber layer.The thesis examines how different preparation techniques and material usage could affect the properties of the synthesized thin films (absorber layer). In this study CuInSe2 and CuInS2 thin films were deposited onto ITO glass substrate using the electrodeposition technique in aqueous solution. The electrodeposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS). The annealing effects on the electrodeposited precursors were investigated. The chalcopyrite structure of CuInSe2/CuInS2 showed an enhancement of crystallinity after subsequent selenization/sulfurization treatment in Se/S atmosphere, respectively. XRD and SEM studies revealed a dramatic improvement of the crystalline quality of CIS films after annealing treatments. The optical properties of annealed CuInSe2-Se and CuInSe2-S thin films have been studied in order to determine the effect of annealing process in different selenium and sulfur atmosphere. In the second step we modified copper indium CuInxCryGa1-x-ySe2 where x=0.4, y= (0.0, 0.1, 0.2, 0.3)superstrate layer by spin coating process. CuInxCryGa1-x-ySe2 where x=0.4, y= (0.0, 0.1, 0.2, 0.3) nanoparticles have been synthesized firstly using a wet chemical hydrothermal method that is based on a non-vacuum thermal process without any additional selenization process. Introducing different metal sources in an autoclave with ethylenediamine as solvent, CIGS nanoparticles were obtained at different temperatures range 190-230°C. The X-ray diffraction (XRD) results confirmed the formation of a tetragonal CuInxCryGa1-x-ySe2 chalcopyrite structure. Finally, we turned again to the study of the annealing temperature effect onKesterite materials but this time in those of very low-cost materials and environmentally friendly Cu2ZnSnS4. We studied the growth of quaternary Cu2ZnSnS4 (CZTS) kesterite thin films by a single step electrochemical deposition followed by annealing at low temperature. The influence of different annealing atmospheres at constant annealing times (t = 45 min) and fixed preparation controlling parameters; i.e., starting materials (precursor metal salts) solution concentration, time of deposition and electrodeposition potential. Structural, compositional, morphological, and optical properties, as well as photoelectrochemical properties were studied. / Resum (Valencià) L'augment del consum d'energia global juntament amb les preocupacions ambientals ha generat molt d'interès per les fonts d'energia alternatives i netes, com ara l'energia solar fotovoltaica. Els investigadors de la comunitat fotovoltaica han estat buscant formes de reduir costos mentre mantenen o augmenten les eficiències. Una millor comprensió dels materials implicats és essencial per al ràpid desenvolupament de noves tecnologies. Les pel·lícules primes I-III-VI2 ofereixen sistemes prometedors per aconseguir cèl·lules solars d'alta eficiència a un cost menor. De fet, en adaptar la composició dels compostos, és possible canviar la banda prohibida del material per captar la llum solar de manera més eficient. Aquesta tesi se centra en la preparació i caracterització del material de la capa absorbent, especialment les pel·lícules primes nanocristal·lines i la consideració de les característiques estructurals i elèctriques d'aquesta capa principal absorbent de cèl·lules. La tesi examina com les diferents tècniques de preparació i ús del material podrien afectar les propietats del pel·lícules primes sintetitzades. Pel·lícules primes CuInSe2 i CuInS2 es van dipositar sobre substrats de vidre ITO usant la tècnica d'electrodeposició en solució aquosa. Les pel·lícules electrodepositadas es van caracteritzar per difracció de raigs X (XRD), microscòpia electrònica de rastreig (SEM) i anàlisi de raigs X d'energia dispersiva (EDS). Es van investigar els efectes de recuit sobre els precursors electrodepositados. L'estructura de calcopirita de CuInSe2/CuInS2 va mostrar una millora de la cristal·linitat després del tractament posterior de selenització/sulfurització en atmosfera de Se o S, respectivament. Els estudis de XRD i SEM van revelar una millora de la qualitat cristal·lina de les pel·lícules de CIS després dels tractaments tèrmics. Les propietats òptiques de les pel·lícules primes recuites CuInSe2-Es i CuInSe2-S s'han estudiat per determinar l'efecte del procés de recuit en diferents ambients de seleni i sofre. A més, modifiquem el CuInxCryGa1-x-ySe2 de coure indi, on x = 0.4, i = (0.0, 0.1, 0.2, 0.3) la capa d'superstrat pel procés de recobriment per centrifugat. CuInxCryGa1-x-ySe2 on x = 0.4, i = (0.0, 0.1, 0.2, 0.3) nanopartícules han estat sintetitzades en primer lloc fent servir un mètode hidrotermal químic humit que es basa en un procés tèrmic sense buit sense cap procés de selenización addicional. Introduint diferents fonts de metall en un autoclau amb etilenamina com solvent, es van obtenir nanopartícules de CIGS a diferents temperatures en un rang de 190- 230 °C. Els resultats de la difracció de raigs X (XRD) van confirmar la formació d'una estructura de calcopirita CuInxCryGa1-x-ySe2 tetragonal. Finalment, es va estudiar l'efecte de la temperatura de recuit en els materials tipus kesterita (com el Cu2ZnSnS4) que són materials de molt baix cost i que no danyen el medi ambient. Vam estudiar el creixement de les pel·lícules primes quaternàries Cu2ZnSnS4 (CZTS) de kesterita mitjançant un dipòsit electroquímic d'un sol pas seguit d'un recuit a baixa temperatura. La influència de diferents atmosferes de recuit a temps de recuit constants (t = 45 min) i paràmetres de control de preparació fixos; és a dir, concentració de la solució de materials de partida (sals de metalls precursors), temps de deposició i potencial d'electrodeposició. Es van estudiar les propietats estructurals, de composició, morfològiques i òptiques, així com les propietats fotoelectroquímiques / Kamal Abdelhamied Saber, S. (2018). Synthesis and characterization of some nano-selenides and their applications in solar cells [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107389 / TESIS
100

PREDICTION OF DELAMINATION IN FLEXIBLE SOLAR CELLS: EFFECT OF CRITICAL ENERGY RELEASE RATE IN COPPER INDIUM GALLIUM DISELENIDE (CIGS) SOLAR CELL

Roger Eduardo Ona Ona (11837192) 20 December 2021 (has links)
<div>In this thesis, we propose a model to predict the interfacial delamination in a flexible solar cell. The interface in a multilayer Copper Indium Gallium Diselenide (CIGS) flexible solar cell was studied applying the principles of fracture mechanics to a fixed-arm-peel test. </div><div>The principles of fracture mechanics ( J-integral and cohesive model) were implemented in a finite element software to compare the experimental with the numerical peeling force. A fixed-arm-peel test was used to obtain the peeling force for different peeling angles. This peel force and material properties from the CIGS solar cell were processed in several non-linear equations, so the energy required to start the delamination was obtained.The accuracy of the model was compared by fitting the experimental and numerical peeling force, which had a difference of 0.08 %. It is demonstrated that the peeling process for 90-degree could be replicated in COMSOL® software for a CIGS solar cell.</div>

Page generated in 0.0394 seconds