• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 598
  • 221
  • 143
  • 89
  • 38
  • 37
  • 35
  • 28
  • 17
  • 11
  • 7
  • 6
  • 5
  • 5
  • 2
  • Tagged with
  • 1393
  • 300
  • 199
  • 197
  • 196
  • 193
  • 179
  • 161
  • 153
  • 147
  • 144
  • 129
  • 128
  • 114
  • 112
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Quantum Mechanical Effects on MOSFET Scaling

Wang, Lihui 10 July 2006 (has links)
This thesis describes advanced modeling of nanoscale bulk MOSFETs incorporating critical quantum mechanical effects such as gate direct tunneling and energy quantization of carriers. An explicit expression of gate direct tunneling for thin gate oxides has been developed by solving the Schroinger equation analytically. In addition, the impact of different gate electrode as well as gate insulation materials on the gate direct tunneling is explored. This results in an analytical estimation of the potential solutions to excessive gate leakage current. The energy quantization analysis involves the derivation of a quantum mechanical charge distribution model by solving the coupled Poisson and Schroinger equations. Based on the newly developed charge distribution model, threshold voltage and subthreshold swing models are obtained. A transregional drain current model which takes into account the quantum mechanical correction on device parameters is derived. Results from this model show good agreement with numeric simulation results of both long-channel and short-channel MOSFETs.The models derived here are used to project MOSFET scaling limits. Tunneling and quantization effects cause large power dissipation, low drive current, and strong sensitivities to process variation, which greatly limit CMOS scaling. Developing new materials and structures is imminent to extend the scaling process.
282

A 3D Fold-Up Non-Classical Unipolar CMOS and Its Mechanism

Kuo, Chih-hao 30 July 2010 (has links)
In this thesis, we propose a three-dimensional (3D) fold-up non-classical unipolar complementary metal-oxide semiconductor field-effect transistor (CMOS-FET) structure and its operation mechanism. We utilize a NMOS transistor having punch-through effect and a classical NMOS to realize our proposed CMOS circuit. In our proposed CMOS circuit, both driver and load transistors are based on the n-channel MOS (NMOS) structures, so, in this unipolar CMOS, the carrier used is the electron only. Hence, the delay time can be improved by 14% when compared with the conventional CMOS. Moreover, the p-channel MOS (PMOS) transistor can be eliminated in our proposed CMOS circuit. Thus, we do not need the traditional N-well technique and we also use the 3D device architecture to drastically reduce the total device area more than 69%, in comparison to a conventional CMOS. If our proposed CMOS architecture is implemented in the VLSI circuits, the packing density can be increased and the device fabrication cost can also be reduced significantly. Therefore, our proposed 3D fold-up non-classical single-carrier CMOS-FET can achieve three important requirements as follows: 1) area reduction, 2) enhanced speed, and 3) decrease cost in the system fabrication.
283

Simulation and Fabrication of a Non-Classical Unipolar CMOS with Embedded Oxide

Sun, Chih-hung 30 July 2010 (has links)
In this paper, we propose a novel Unipolar CMOS device in which the transport carriers are electron only. And we achieve good inverter output waveform and logic circuit applications by simulation. Duo to all n-channel (NMOS) structures are used, we call this proposed CMOS as a Unipolar CMOS. A new basic theory of utilizing the punch through effect is demonstrated to enhance the tPLH in our proposed Unipolar CMOS. The average delay time compared with the classical CMOS circuit can be improved 23% for high-performance applications. For our proposed Unipolar CMOS, all n-channel MOS are used to eliminate the N- and P-well processes and ignore the difference between the carrier mobility. In addition, the common electrodes are also exploited, hence, the layout area can be reduced to about 75%, which leads to significantly increase the packing density of CMOS circuits in the same chip.
284

A low Jitter Wide-range Delay-Locked Loop with the Rail to Rail Differential Multi Control Delay Line Implementation

Tsai, Yi-Sing 12 August 2010 (has links)
A Rail to Rail Differential Control Delay Line using multi-band technology can provide wider range on a delay-locked loop (DLL) is proposed in this thesis. Delay-Locked Loops (DLLs) have been widely used for clock deskew instead of Phase-Locked Loop (PLLs) because of easy design and inherent stable. The main object of this thesis is the description and discussion in Delay-Locked Loop and Rail to Rail Differential Control Delay Line; uses TSMC 0.18£gm 1P6M CMOS process to design a 70 MHz¡ã750 MHz DLL and the supply voltage is 1.8V. This thesis is characterized by utilizing rail to rail input to reduce noise interference and enhance the signal integrity¡]low distortion, low noise, low power and high gain¡^.By the phase selection circuit is used to extend operation frequency. The operate frequency range of DLL is 70MHz to 750MHz, the power consumption of the Entire system is less than 32mW. The phase error is 10 ps at 70MHz and <10 ps at 750MHz in lock. The proposed DLL can provide wider range and lower jitter in this thesis.
285

The Design and Simulation of a 24 GHz Class-A Cascode Configured Power Amplifier

Wang, Shun-Hong 20 February 2012 (has links)
Abstract Recently, the proliferating needs of high data rate communication systems are increasing the demand for higher frequency bands with broader bandwidth. The K-band (18~26.5 GHz), which include point to point communications (18~23 GHz), ISM band (24 GHz), and automotive radar applications (24 GHz and 22~29 GHz) is one of the most important frequency bands in modern wireless communication systems. This thesis mainly includes three parts. The first part of the thesis is the introduction to the principles and characteristics for active and passive components of CMOS process and the description of common transistors , such as BJT, CMOSFET, HBT and pHEMT. The principles of resistors, capacitors and inductors in simulations is shown. It is useful for the microwave circuit design to understand the structure and characteristics of active components and passive components in CMOS process. The second part describes the design principles and characteristics of power amplifier. The third part is the design and simulation of the 2 stages cascode configuration Class A power amplifier and the 3 stages cascode configuration Class A power amplifier with power combination. There are two important scaling trends that are making CMOS increasingly attractive for RF applications. One is the well known dramatic shrinkage of device size, so that transistors in the advanced process generation of CMOS have peak fT values in excess of 55 GHz.The other is the reverse scaling of interconnect. The thicker metal layer and more layers of wiring are enabling the realization of high-quality passive components which are critical for RF circuits. CMOS is the most attractive technology for its low cost, high yield and high level of integration. However, It is challenging to design a power amplifier with high output power. In the sub-micron CMOS technology, the challenges of CMOS power amplifier design include the low breakdown voltage, low transconductance (gm), and high substrate loss as compared with SiGe HBTs GaAs HBTs and InP-GaAs HBTs technologies. We made efforts in implementing a power amplifier at K-band. The design and simulation of two power amplifier is present. One is the 2 stages power amplifier, the other is the 3 stages power amplifier with power combination. In order to realize the inductive element and capacitive element in sub-milimeter wave or millimeter wave circuit design, the short stub microstrip line and open stub mircrostrip line are used in matching networks between all stages. The cascade configuration is effective structure to minimize Miller effect in high frequency. The peak gain of 2 stages power amplifier is 17 dB at 24 GHz and the saturation output power is 20 dBm. The OP1dB is over 16 dBm. The peak gain of 3 stages power amplifier with power combination is 20 dB at 24 GHz and the saturation output power is 20.5 dBm. The OP1dB is over 15 dBm.The power amplifier with the cascode configuration and power combination techniques is designed and simulated in TSMC 0.18 um CMOS process, which provides deep n-well, and MiM capacitors.
286

Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications

Chirala, Mohan Krishna 15 May 2009 (has links)
The permeation of CMOS technology to radio frequencies and beyond has fuelled an urgent need for a diverse array of passive and active circuits that address the challenges of rapidly emerging wireless applications. While traditional analog based design approaches satisfy some applications, the stringent requirements of newly emerging applications cannot necessarily be addressed by existing design ideas and compel designers to pursue alternatives. One such alternative, an amalgamation of microwave and analog design techniques, is pursued in this work. A number of passive and active circuits have been designed using a combination of microwave and analog design techniques. For passives, the most crucial challenge to their CMOS implementation is identified as their large dimensions that are not compatible with CMOS technology. To address this issue, several design techniques – including multi-layered design and slow wave structures – are proposed and demonstrated through experimental results after being suitably tailored for CMOS technology. A number of novel passive structures - including a compact 10 GHz hairpin resonator, a broadband, low loss 25-35 GHz Lange coupler, a 25-35 GHz thin film microstrip (TFMS) ring hybrid, an array of 0.8 nH and 0.4 nH multi-layered high self resonant frequency (SRF) inductors are proposed, designed and experimentally verified. A number of active circuits are also designed and notable experimental results are presented. These include 3-10 GHz and DC-20 GHz distributed low noise amplifiers (LNA), a dual wideband Low noise amplifier and 15 GHz distributed voltage controlled oscillators (DVCO). Distributed amplifiers are identified as particularly effective in the development of wideband receiver front end sub-systems due to their gain flatness, excellent matching and high linearity. The most important challenge to the implementation of distributed amplifiers in CMOS RFICs is identified as the issue of their miniaturization. This problem is solved by using integrated multi-layered inductors instead of transmission lines to achieve over 90% size compression compared to earlier CMOS implementations. Finally, a dual wideband receiver front end sub-system is designed employing the miniaturized distributed amplifier with resonant loads and integrated with a double balanced Gilbert cell mixer to perform dual band operation. The receiver front end measured results show 15 dB conversion gain, and a 1-dB compression point of -4.1 dBm in the centre of band 1 (from 3.1 to 5.0 GHz) and -5.2 dBm in the centre of band 2 (from 5.8 to 8 GHz) with input return loss less than 10 dB throughout the two bands of operation.
287

CMOS Integrated Circuit Design for Ultra-Wideband Transmitters and Receivers

Xu, Rui 2009 August 1900 (has links)
Ultra-wideband technology (UWB) has received tremendous attention since the FCC license release in 2002, which expedited the research and development of UWB technologies on consumer products. The applications of UWB range from ground penetrating radar, distance sensor, through wall radar to high speed, short distance communications. The CMOS integrated circuit is an attractive, low cost approach for implementing UWB technology. The improving cut-off frequency of the transistor in CMOS process makes the CMOS circuit capable of handling signal at multi-giga herz. However, some design challenges still remain to be solved. Unlike regular narrow band signal, the UWB signal is discrete pulse instead of continuous wave (CW), which results in the occupancy of wide frequency range. This demands that UWB front-end circuits deliver both time domain and frequency domain signal processing over broad bandwidth. Witnessing these technique challenges, this dissertation aims at designing novel, high performance components for UWB signal generation, down-conversion, as well as accurate timing control using low cost CMOS technology. We proposed, designed and fabricated a carrier based UWB transmitter to facilitate the discrete feature of the UWB signal. The transmitter employs novel twostage -switching to generate carrier based UWB signal. The structure not only minimizes the current consumption but also eliminates the use of a UWB power amplifier. The fabricated transmitter is capable of delivering tunable UWB signal over the complete 3.1GHz -10.6GHz UWB band. By applying the similar two-stage switching approach, we were able to implement a novel switched-LNA based UWB sampling receiver frontend. The proposed front-end has significantly lower power consumption compared to previously published design while keep relatively high gain and low noise at the same time. The designed sampling mixer shows unprecedented performance of 9-12dB voltage conversion gain, 16-25dB noise figure, and power consumption of only 21.6mW(with buffer) and 11.7mW(without buffer) across dc to 3.5GHz with 100M-Hz sampling frequency. The implementation of a precise delay generator is also presented in the dissertation. It relies on an external reference clock to provide accurate timing against process, supply voltage and temperature variation through a negative feedback loop. The delay generator prototype has been verified having digital programmability and tunable delay step resolution. The relative delay shift from desired value is limited to within 0.2%.
288

Three improved operational amplifiers with low power low voltage

Kuo, Huan-Chou 10 July 2001 (has links)
Three improved operational amplifiers with low voltage and rail-to-rail constant are proposed. Two of the amplifiers are modified from the amplifier with a level shifting circuit. One improved amplifier has fewer devices, higher speed, and reduced area and the other improved amplifier is added an additional adjustable gain. The third amplifier is a floating voltage controlled voltage source (FVCVS) amplifier, which has reduced area and improved frequency response. The first two level shifting operational amplifiers are designed in a 0.5£gm UMC CMOS process. They use about half number of devices. The supply voltage is 1.3V, and the current consumes just only 22.6¢H of the original circuits. The unity gain frequency increases 56.8%. The slew rate, CMRR and PSRR are higher. The 2nd amplifier still has a rail-to-rail constant gm; however, the gm can be adjusted. The third amplifier uses the 0.35£gm UMC CMOS process with 1.2V operating voltage. The gain-bandwidth product is 53.8¢H larger than the original circuits. No frequency compensation is used and the devices are fewer. The results are obtained in HSPICE simulation.
289

Design of large time constant switched-capacitor filters for biomedical applications

Tumati, Sanjay 17 February 2005 (has links)
This thesis investigates the various techniques to achieve large time constants and the ultimate limitations therein. A novel circuit technique for the realization of large time constants for high pass corners in switched-capacitor filters is also proposed and compared with existing techniques. The switched-capacitor technique is insensitive to parasitic capacitances and is area efficient and it requires only two clock phases. The circuit is used to build a typical switched-capacitor front end with a gain of 10. The low pass corner is fixed at 200 Hz. The high pass corner is varied from 0.159Hz to 4 Hz and various performance parameters, such as power consumption, silicon area etc., are compared with conventional techniques and the advantages and disadvantages of each technique are demonstrated. The front-ends are fully differential and are chopper stabilized to protect against DC offsets and 1/f noise. The front-end is implemented in AMI0.6um technology with a supply voltage of 1.6V and all transistors operate in weak inversion with currents in the range of tens of nano-amperes.
290

A 200-MHz fully-differential CMOS front-end with an on-chip inductor for magnetic resonance imaging

Ayala, Julio Enqrique, II 25 April 2007 (has links)
Recently, there is a growing interest in applying electronic circuit design for biomedical applications, especially in the area of nuclear magnetic resonance (NMR). NMR has been used for many years as a spectroscopy technique for analytical chem- istry. Previous studies have demonstrated the design and fabrication of planar spiral inductors (microcoils) that serve as detectors for nuclear magnetic resonance mi- crospectroscopy. The goal of this research was to analyze, design, and test a prototype integrated sensor, which consisted of a similar microcoil detector with analog components to form a multiple-channel front-end for a magnetic resonance imaging (MRI) system to perform microspectroscopy. The research has succeeded in producing good function- ality for a multiple-channel sensor. The sensor met expectations compared to similar one-channel systems through experiments in channel separation and good signal-to- noise ratios.

Page generated in 0.3639 seconds