1 |
La prévention de la dépendance : facteurs associés à l'observance d'une intervention multidomaine / Prevention of dependency : associated factors of multidomaine interventionDupuy, Charlotte 20 October 2015 (has links)
Entre 2000 et 2040, la population âgée fragile sera multipliée par 2,5 et touchera 10 millions de sujets âgés de 65 ans et plus. Les études épidémiologiques récentes ont illustré que la dépendance est fréquente et multidimensionnelle (impliquant des déficits fonctionnels, cognitifs et sensoriels). Récemment, des éléments tels que l'effet protecteur de l'activité physique ou encore de la nutrition (en action isolée) sur le déclin cognitif et fonctionnel sont bien connus cependant peu d'études se sont intéressées à l'impact d'une intervention multidomaine. L'efficacité de ces interventions est actuellement en cours d'étude dans des études randomisées et contrôlées (MAPT, Do-health, Mid-frail, Finger, preVida). Ainsi, il semble important d'étudier l'observance et les facteurs prédicteurs (la motivation et les obstacles pour ces personnes âgées fragiles) de la participation à un programme de prévention à long terme. Pour déterminer la population cible à risque de perte d'autonomie chez les personnes âgées, l'étude de la définition la plus pertinente de la sarcopénie est nécessaire. La conception des essais liés à des facteurs nutritionnels pertinents (la vitamine D et les compléments nutritionnels oraux(CNO)) est également discutée actuellement. / Between 2000 and 2040, the elderly frail population will be multiplied by 2,5 to affect 10 million people aged 65 years and over. Previous epidemiologic studies have highlighted that functional limitations are frequent and multidimensional (associated with functional, cognitive and sensorial decline). Currently, the evidence for the protective role of physical activity or nutrition (action isolated) on cognitive and functional decline are well known but few studies have examined the impact of multidomain interventions. The effectiveness of such interventions must be demonstrated in the current randomized trials. It seems important to study rates of adherence and attrition factors (motivation and barriers for these frail elderly) to participate in a prevention program of long-term. To determine the target population to prevent disability in elderly, consideration of the most relevant definition of sarcopenia is necessary. The design of trials related to the relevant nutritional factors (vitamin D and the Oral Nutritional Supplement (ONS)) is also currently discussed.
|
2 |
The 14N(p,γ)O15 reaction studied at low and high beam energyMarta, Michele 08 August 2012 (has links) (PDF)
The Bethe-Weizsäcker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters’ age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun’s luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision.
The 14N(p,γ)15O reaction is the slowest reaction of the Bethe-Weizs¨acker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in 15O. Recent experiments studied the region of the resonance at Ep = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies.
The present research work studied the 14N(p,γ)15O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range Ep = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors.
At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states at 5181, 6172, and 6792 keV in 15O have been determined. An R-matrix fit was performed for capture to the ground state, that resolved the literature discrepancy of a factor two on the extrapolated S-factor. New precise branching ratios for the decay of the Ep = 278 keV resonance were measured.
In Dresden, the strength of the Ep = 1058 keV resonance was measured relative to the well-known resonance at Ep = 278 keV, after checking the angular distribution. Its uncertainty is now half of the error quoted in literature. The branching ratios were also measured, showing that their recommended values should be updated. Preliminary data for the two most intense transitions off resonance are provided.
The presence in the targets of the other stable nitrogen isotope 15N with its well- known isotopic abundance, allowed to measure the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12 C reaction, improving the precision for hydrogen depth profiling.
|
3 |
The 14N(p,γ)O15 reaction studied at low and high beam energyMarta, Michele January 2012 (has links)
The Bethe-Weizsäcker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters’ age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun’s luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision.
The 14N(p,γ)15O reaction is the slowest reaction of the Bethe-Weizs¨acker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in 15O. Recent experiments studied the region of the resonance at Ep = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies.
The present research work studied the 14N(p,γ)15O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range Ep = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors.
At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states at 5181, 6172, and 6792 keV in 15O have been determined. An R-matrix fit was performed for capture to the ground state, that resolved the literature discrepancy of a factor two on the extrapolated S-factor. New precise branching ratios for the decay of the Ep = 278 keV resonance were measured.
In Dresden, the strength of the Ep = 1058 keV resonance was measured relative to the well-known resonance at Ep = 278 keV, after checking the angular distribution. Its uncertainty is now half of the error quoted in literature. The branching ratios were also measured, showing that their recommended values should be updated. Preliminary data for the two most intense transitions off resonance are provided.
The presence in the targets of the other stable nitrogen isotope 15N with its well- known isotopic abundance, allowed to measure the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12 C reaction, improving the precision for hydrogen depth profiling.
|
4 |
The 14N(p,γ)15O reaction studied at low and high beam energyMarta, Michele 04 June 2012 (has links) (PDF)
The CNO cycle consists of a set of nuclear reactions that convert hydrogen into helium and releases energy in stars. The cycle contributes less than 1% to our Sun's luminosity, but it is responsible for detectable neutrino fluxes that can bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision.
The 14N(p,γ)15O is the slowest reaction in the CNO cycle and estabilishes its rate. The experimental study has been performed both at the LUNA 400 kV accelerator deep underground in the Gran Sasso mountain in Italy and at a 3 MV Tandetron in the Helmholtz-Zentrum Dresden-Rossendorf. A proton beam was sent on solid TiN targets and the prompt photons were collected by a composite HPGe detector (at LUNA) or by up to four HPGe detectors (Dresden).
The obtained results improve the fit of the excitation function in the R-matrix framework, that is used to extrapolate the S-factor at the very low astrophysical energies. In addition, the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12C reaction were measured, improving the precision for hydrogen depth profiling.
|
5 |
The 14N(p,γ)15O reaction studied at low and high beam energyMarta, Michele 01 November 2011 (has links)
The CNO cycle consists of a set of nuclear reactions that convert hydrogen into helium and releases energy in stars. The cycle contributes less than 1% to our Sun's luminosity, but it is responsible for detectable neutrino fluxes that can bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision.
The 14N(p,γ)15O is the slowest reaction in the CNO cycle and estabilishes its rate. The experimental study has been performed both at the LUNA 400 kV accelerator deep underground in the Gran Sasso mountain in Italy and at a 3 MV Tandetron in the Helmholtz-Zentrum Dresden-Rossendorf. A proton beam was sent on solid TiN targets and the prompt photons were collected by a composite HPGe detector (at LUNA) or by up to four HPGe detectors (Dresden).
The obtained results improve the fit of the excitation function in the R-matrix framework, that is used to extrapolate the S-factor at the very low astrophysical energies. In addition, the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12C reaction were measured, improving the precision for hydrogen depth profiling.
|
6 |
Caractérisation du séparateur de recul ARES et application à l'étude de la réaction 19Ne(p,g)20NCouder, Manoel 04 June 2004 (has links)
Dans les milieux astrophysiques explosifs tels que les novae ou les sursauts X, la densité d'hydrogène et la température sont suffisamment grandes pour que le temps entre deux réactions impliquant un proton soit plus court que le temps de vie de certains ions radioactifs. La connaissance de la section efficace des réactions de capture d’un proton par un ion radioactif est un des ingrédients important permettant la modélisation de tels milieux.
Dans ce travail, un nouveau dispositif expérimental permettant d'étudier la force de résonance de réactions (p,gamma) en cinématique inverse est présenté. Ce dispositif, baptisé ARES (Astrophysical REcoil Separator), a été d’abord caractérisé à l'aide de l'étude de la réaction 19F(p,gamma)20Ne et plus particulièrement de la mesure de la force de la résonance bien connue à 635 keV au dessus du seuil 19F+p. De plus, la simulation de cette expérience est en accord avec les mesures effectuées.
Une première mesure de force de résonance d'une réaction impliquant un faisceau d'ions radioactifs est ensuite présentée. Il s'agit de la réaction 19Ne(p,gamma)20Na et plus particulièrement de la résonance à 448 keV au dessus du seuil 19Ne+p. Une limite supérieure de 15.2 meV avec un niveau de confiance de 90% est obtenue. Cette limite supérieure améliore légèrement les résultats de mesures antérieures. / In explosive astrophysical environments such as novae or X-ray bursts, the temperature and the hydrogen density are so large that the time between two reactions involving protons is smaller than the live time of radioactive ions. The cross section of such reactions is an important ingredient of the modeling of such environments.
In this work, a new experimental device, allowing the study of resonance strength of (p,gamma) reactions, is presented. This setup, called ARES (Astrophysical REcoil Separator), is first characterized using the study of the well known reaction, 19F(p,gamma)20Ne and more precisely the measurement of the resonance strength of the 635 keV level above the 19F+p threshold. The simulation of this experiment is found in good agreement with the measurement.
Then the first resonance strength measurement of a reaction involving radioactive ions beams is presented, i.e. the resonance strength of the 448 keV level above the 19Ne+p threshold in the 19Ne(p,gamma)20Na reaction. An upper limit of 15.2 meV with a confidence level of 90% is obtained. This upper limit improves slightly the results of previous measurements.
|
7 |
Concept of a dynamic organizational schema for a network-centric organizationMaguire, Gregory M. 06 1900 (has links)
Approved for public release, distribution is unlimited / Organizational structure has profound effects on a joint force commander's ability to perform military actions. Organizations and their environment exhibit an interdependent relationship, requiring a commander to evolve his organization to rapidly achieve mission accomplishment. The CNO Strategic Studies Group XIX report of September 2000 has identified the FORCEnet as being the basis for the U.S. Navy's future network-centric organization, and outlines a military environment that includes multitudes of manned and unmanned vehicles, platforms, sensors, weapons and warfighters. These naval elements will operate jointly, leveraging organizational structure to rapidly sense, assess, and respond to the defense of the nation's security interests as directed by the President. The focus of this research is to examine this envisioned future military environment, the military actions required to achieve success in that environment and the organizational structure(s) that will best fit those action requirements. / Lieutenant Commander, United States Navy
|
8 |
Precise nuclear physics for the SunBemmerer, Daniel 03 December 2012 (has links) (PDF)
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him.
Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests.
The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of light- years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation.
The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions.
The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun.
The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun.
In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astro- physics (LUNA) 0.4 MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
|
9 |
Precise nuclear physics for the SunBemmerer, Daniel 25 June 2012 (has links)
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him.
Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests.
The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of light- years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation.
The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions.
The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun.
The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun.
In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astro- physics (LUNA) 0.4 MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
|
10 |
Le Fonds des Voyageurs : un fonds de secours atypique, 1790-1823Simonet, Thierry 14 April 2022 (has links)
À la fin du XVIIIe siècle, l’embauche de Canadiens français, surnommés les voyageurs, s’inscrit dans un système de travail de la traite des fourrures qui s’articule à Montréal autour de contrats notariés. Les engagés se lient pour plusieurs mois, voire plusieurs années à un marchand qui les emploie afin d’acheminer en canot des marchandises dans les territoires du Nord-Ouest et en revenir chargé de pelleteries. Conscients des dangers encourus et de l’imprévoyance de leurs employés, les « négociants des Pays d’en haut » orchestrent une société de secours, dès 1790, appelé le « Fonds des voyageurs ». Ce dernier, atypique dans sa conception et dans son organisation, est le « soutien des voyageurs infirmes, de leurs veuves et des orphelins » dans la détresse. Cette étude a pour but de mettre en exergue l’atypie de cette institution d'aide. Elle apparaît dans une conjoncture de métamorphose sociale et économique du Bas-Canada, ainsi que dans le contexte d’une évolution culturelle de prévoyance et d’un communautarisme émergeant. Cette élite marchande venue d’Écosse est liée à une histoire commune de l’« habitus » avec ses employés. Elle applique les préceptes avant-gardistes des Lumières écossaises dans une société montréalaise confrontée à un courant libéral naissant. Ce faisant, ces bourgeois écossais de la société marchande, souvent décrits comme mercantiles, se présentent en fin de compte comme des membres d'un « monde du voyage » solidaires de leurs semblables. Cette nouvelle perspective invite à un ajustement des interprétations de l’historiographie sur la communauté qui exerce le commerce des fourrures à Montréal entre 1790 et 1821.
|
Page generated in 0.0171 seconds