• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 15
  • 10
  • 8
  • 7
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 128
  • 77
  • 62
  • 50
  • 48
  • 33
  • 32
  • 29
  • 29
  • 29
  • 28
  • 28
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Propriétés de transport et de bruit à basse fréquence dans les structures à faible dimensionnalité

Jang, Do young 05 December 2011 (has links) (PDF)
Les propriétés électriques et physiques de structures à faible dimensionalité ont été étudiées pour des applications dans des domaines divers comme l'électronique, les capteurs. La mesure du bruit bruit à basse fréquence est un outil très utile pour obtenir des informations relatives à la dynamique des porteurs, au piègeage des charges ou aux mécanismes de collision. Dans cette thèse, le transport électronique et le bruit basse fréquence mesurés dans des structures à faible dimensionnalité comme les dispositifs multi-grilles (FinFET, JLT...), les nanofils 3D en Si/SiGe, les nanotubes de carbone ou à base de graphène sont présentés. Pour les approches " top-down " et " bottom-up ", l'impact du bruit est analysé en fonction de la dimensionalité, du type de conduction (volume vs surface), de la contrainte mécanique et de la présence de jonction metal-semiconducteur.
142

Crystal Nucleation in Binary Hard Sphere Mixtures

Rao, G Srinivasa January 2012 (has links) (PDF)
Homogeneous crystal nucleation in binary hard sphere mixtures is an active area of research for last two decades. Although Classical nucleation theory (CNT) gives a qualitative picture, it fails at high super saturations because of the following reasons. CNT assumes that the cluster formed is spherical in shape, its properties can be modeled using the bulk properties of the stable solid phase and the interfacial free energy γ between the nucleus and the surrounding metastable fluid is equal to the planar surface tension between two phases at coexistence. These assumptions get increasingly tenuous at higher degrees of super saturations where the critical nucleus formed is microscopic in size leading to breakdown in the predictions of CNT. In addition direct experimental observation of critical nucleus is very difficult because, 1. Critical nucleus is microscopic in size, consisting of few hundreds of particles. 2. Formation of critical cluster is very rare (typically of the order of 101– 106nuclei/cm3/s) 3. Its life time is very short (it either rapidly grows to form a solid phase or melts back to fluid) In these circumstances molecular simulations are an attractive tool to study the crystal nucleation, because in these simulations microscopic size critical nucleus properties can be calculated. However, brute force molecular dynamic (MD) simulation techniques to study the homogeneous crystal nucleation is currently not feasible due to long times involved. Hence, an indirect approach is needed. In this work, Monte Carlo Abstract v (MC) molecular simulation techniques are used to calculate free energy barrier height during the crystal nucleation. Phase behavior of Binary hard sphere mixtures with varying ratios of smaller diameter to larger diameter (α) is very similar to that of binary organic liquids. By studying the crystal nucleation in hard sphere system, the physics behind the nucleation for binary organic liquids can be understood. This is the key motivation to study the homogeneous crystal nucleation in binary hard sphere mixtures using MC simulations. Simulations were done using umbrella sampling in combination with local bond order analysis for the identification of crystal nuclei and to compute shape and height of nucleation barrier. Parallel tempering scheme of Geyer and Thomson was utilized to sample phase space more efficiently. Parallel tempering technique was implemented using Message passing interface (MPI) libraries. By using all the above Monte-Carlo simulation techniques, nucleation barrier was calculated during crystallization of binary hard sphere mixtures under the moderate degrees of super cooling in Isothermal-Isobaric semi grand ensembles. Crystal nucleation in binary hard sphere mixtures has been studied for size ratios α = 0.85, 0.42 and 0.43. For α=0.85, phase diagram contains eutectic point. In this system, the effect of eutectic composition on the nucleation barrier height was observed, by calculating nucleation barriers at various fluid mixture compositions keeping Laplace pressure constant. It is observed that as the fluid mixture composition move towards the eutectic point, free energy barrier height, surface tension and critical cluster sizes are increased and the nucleation rate is drastically decreased by a factor of 10-31. Thus the difficulty of homogenous crystal nucleation increases near the eutectic point. For α=0.42 and 0.43 in the hard sphere system, compound solids such as AB and AB2 solids are stable respectively. In these systems crystal nucleation study was done to observe the compound solid formation. It is observed that in these systems crystallization kinetics are very slow and more advanced simulation techniques need to be developed in order to study crystal nucleation.
143

Polymer Assisted Dispersion of Carbon Nanotubes (CNTs) and Structure, Electronic Properties of CNT - Polymer Composite

Pramanik, Debabrata January 2017 (has links) (PDF)
Carbon nanotubes possess various unique and interesting properties. They have very high thermal and electrical conductivities, high stiffness, mechanical strength, and optical properties. Due to these properties, CNTs are widely used materials in a variety of fields. It is used for biotechnological and biomedical applications, as chemical and biosensor, in energy storage and field emission transistor. Experimentally synthesized CNTs are generally found in bundle form due to the strong vander Waals (vdW) at-traction between the individual tubes. To use CNTs in real life applications, we often require specific nanotubes with particular characteristics. The nanotube bundle is a mixture of various chirality, diameters and electronic properties (metallic and semiconducting). Only thermal energy is not sufficient to disperse nanotubes from the bundle geometry overcoming the strong vdW attraction between nanotubes. The hydrophobic and insoluble nature of CNTs in the aqueous medium makes the dispersion of CNTs even more difficult. So, it is a big challenge to get single pristine nanotube from the bundle geometry. Many experimental and theoretical studies have addressed the problem of nanotube dispersion from the bundle geometry. Ultrasonic dispersing method is a widely used technique for this purpose where ultrasonic sound is applied to agitate particles in a system. Other methods include using different organic and inorganic solutions, various surfactant molecules, different polymers as dispersing agents. In this study we extend our e orts to develop some better methods and improved dispersing agents. In this thesis, we address the problem of CNT dispersion. To address this issue, we rst give a quantitative estimation of the effective interaction between nanotubes. Next, we introduce different polymers (ssDNA and dendrimers) as external agents and show that they help to overcome the strong adhesive interaction between CNTs and make nanotube dispersion possible from the bundle geometry. For all of the works presented in this thesis, we have used fully atomistic MD simulation and DFT level calculations. We study ssDNA-CNT complex using all-atom MD simulation and calculate various structural quantities to show the stability of ssDNA-CNT complex in aqueous medium. The adsorption of ssDNA bases on CNT surface is driven by - interaction between nucleic bases and CNT. Using the potential of mean forces (PMF) calculation, we study the binding strength of the polynucleotide ssDNA for poly A, T, G, and C with CNT of chirality (6,5). From the PMF calculation, we show the binding sequence to be A > T > C > G. Except for poly G, our result is in good agreement with earlier reported single molecule force spectroscopy results where the sequence of binding interaction was reported to be A > G > T > C. To explore how the interaction between two CNTs mod-i ed in presence of ssDNA between them, we perform PMF calculation between the two ssDNA-wrapped CNTs. The PMF shows the sequence of interaction strength between two ssDNA-wrapped CNTs for different nucleic bases to be T > A > C > G. Thus, from PMF calculations we show the poly T to have the highest dispersion efficiency, which is consistent with earlier reported experimental study. Our PMF calculation shows that poly C and poly G reduce the attraction between two CNTs drastically, whereas poly A and poly T make the interaction fully repulsive in nature. We also present microscopic pictures of the various binding conformations for ssDNA adsorbed on CNT surface. We also study the dendrimer-CNT complex for both the PAMAM and PETIM dendrimers of different generations at various protonation states and present microscopic pictures of the complex. We calculate PMF between two dendrimer wrapped CNTs and show that protonated and higher generations (G3, G4, and so forth) non-protonated PAMAM dendrimers can be used as e ective agents to disperse CNTs from bundle geometry. We also study the chirality dependence of PMF respectively. Finally, we study the interaction of mannose dendrimer with CNTs and show that the wrapping of mannose dendrimer can drive a metal to semiconducting transition in a metallic CNT. We attribute the carbon-carbon bond length assymetry in CNT due to the wrapping of mannose dendrimer as the reason for this band gap opening which leads to metal-semiconductor transition in CNT. Thus, the wrapping of mannose dendrimer on CNT can change its electronic properties and can be used in the band gap engineering of CNT in future nanotechnology. Thus, the works carried out here in this dissertation will help to address the problem of nanotube dispersion from the bundle geometry which will in turn help to use CNT for various applications in diverse fields.
144

On the stability of carbon nanotube and titania nanowire based catalyst materials:from synthesis to applications

Rautio, A.-R. (Anne-Riikka) 08 March 2016 (has links)
Abstract Degradation of the support and sintering of catalyst nanoparticles inherently leads to a loss of functionality of catalyst materials in converters and sensors. Malfunction in such devices may lead to serious economic and environmental damage. The quest for novel and sustainable catalyst materials with better durability is thus ongoing. In this thesis, one-dimensional nanomaterials such as carbon nanotubes and titanium dioxide nanowires are studied and compared to their conventional zero-dimensional counterparts in regard to their structural and functional stability. With the combination of several catalyst nanomaterials and supporting surfaces, aging properties of more than 70 different materials are assessed by the means of X-ray diffraction, transmission electron microscopy and energy-dispersive X-ray analyses. Although CNTs were shown to be thermally the most stable carbonaceous supports for metal nanoparticles, they are, similar to other carbon supports, more sensitive to high temperatures than metal oxide supports and can suffer deactivation by catalytic oxidation and gasification even at moderate temperatures. In addition, the irradiation of the samples with e-beams caused the most dramatic changes in CNT based materials, where nanosized deformities (voids, channels) were formed when either nanoparticles or defects were present. The prepared nanocompositions have been utilized successfully in three different applications including (i) synthesis of hydrogen from ethanol via a steam reforming reaction, (ii) hydrogenation of citral to form value added chemicals and (iii) the application of advanced electrode materials in electric double-layer capacitors. Both CNT and TiO₂ nanowire based nanomaterials were shown to outperform their conventional nano- and microparticle based counterparts in the studied catalytic reactions, i.e. in citral hydrogenation and steam reforming of ethanol, respectively. Furthermore, nanostructured CNTs obtained by catalytic partial oxidation of the material showed an increased specific surface area, which could be exploited in supercapacitor electrodes with enhanced specific capacitance. / Tiivistelmä Katalyyttitukimateriaalin pilaantuminen ja katalyyttinanopartikkelien sintrautuminen johtavat siihen, että muuntajissa ja sensoreissa käytettävät katalyyttiset materiaalit eivät enää toimi, mikä voi aiheuttaa sekä vakavia taloudellisia haittoja että ympäristöhaittoja. Tämän vuoksi kehitetään uusia kestävämpiä katalyyttimateriaaleja. Tässä väitöskirjassa tutkittiin yksiulotteisia nanomateriaaleja, kuten hiilinanoputkia sekä titaanidioksidinanojohtimia ja verrattiin niiden rakenteellista ja toiminnallista stabiiliutta perinteisiin nollaulotteisiin vastineisiin. Erilaisten katalyyttinanomateriaalien ja tukimateriaalien yhdistelmien ikääntymistä arvioitiin röntgendiffraktion, läpäisyelektronimikroskopian ja energiadispersiivisen röntgenanalyysin avulla yli 70 erilaisesta näytteestä. Vaikka hiilinanoputket osoittautuivat termisesti stabiileimmaksi hiilipohjaiseksi tukimateriaaliksi metallinanopartikkeleille, ne ovat kuten kaikki hiilimateriaalit, metallioksiditukimateriaaleja herkempiä korkeille lämpötiloille. Hiilinanoputkipohjaiset katalyytit voivat deaktivoitua katalyyttisen hapettumisen tai kaasuuntumisen vuoksi jo kohtalaisissa lämpötiloissa. Lisäksi elektronisäteellä säteilytetyt nanopartikkelit tai pintavirheitä sisältävät hiilinanoputkipohjaiset katalyytit olivat tutkituista nanomateriaaleista herkimpiä muodostamaan nanorakenteita (koloja, kanavia). Valmistettuja nanokomposiitteja käytettiin onnistuneesti kolmessa eri sovelluksessa: i) vedyn valmistuksessa etanolista höyryreformointireaktiolla, ii) hienokemikaalien valmistuksessa sitraalin hydrauksella sekä iii) elektrodimateriaalina EDLC-kondensaattorissa. Sekä hiilinanoputki- sekä TiO₂-nanojohdinpohjaiset nanomateriaalit toimivat testatuissa katalyyttisissa reaktioissa (etanolin reformointi sekä sitraalin hydraus) paremmin kuin niiden perinteiset vastineet. Lisäksi superkondensaattorin ominaiskapasitanssia onnistuttiin nostamaan lisäämällä hiilinanoputkipohjaisen elektrodin ominaispinta-alaa katalyyttisella hapetusreaktiolla.
145

Synthesis Of Various Carbon Nanostructures And The Transport Properties Of Carbon Nanotubes

Singh, Laishram Tomba 11 1900 (has links) (PDF)
Different carbon nanostructures have different properties and different applications. It is needed to synthesize good quality and also on large scale. From the point of industrial applications, highly productive and low cost synthesis method is very essential. Research has been done extensively on the intrinsic and individual properties of both single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWC-NTs) in the range of nanometer to micrometer length scale. The important question is how the properties change beyond this length scale and if they are used in group in the form of an array instead of the individual carbon nanotubes (CNTs). Some applications require large current output, large energy production etc. For such kind of applications, it becomes essential to use CNTs in large number in the form of arrays or array, instead of using large numbers of CNTs in individual level. Future nanotechnology scope requires large scale application using the very rich intrinsic properties of the CNTs and nanomaterials. Keeping these problems and challenges in front, this thesis work is devoted to the research of the large scale synthesis of mm long MWCNTs, having different morphology and studies on various physical properties of MWCNTs in the form of arrays. Synthesis of mm long aligned and buckled MWCNTs have been reported for the first time. Generally buckled CNTs were obtained by compressing the straight CNTs. Apart from this, different morphologies like, aligned straight, helical or coiled CNTs are also synthesized. Resistance of the individual CNT increases with the increase in length. Resistance versus length of an array of CNT also shows similar behaviour. The thermal conductivity of CNT array is observed to decrease with the increase of array diameter (diameter �100 µm). There are few reports of the similar behaviour with the experiments done on small diameter CNT arrays (diameter �100 nm). From these observations, it seems that in the arrays of CNT, their intrinsic individual property is preserved though the magnitudes are different. The conductance measurements done on buckled CNT array by compressing it to apply uniaxial strain, shows the conductance oscillation. This conductance oscillation seems to be originating from the band gap change due to strain when the CNTs bend during compression. Recent research focuses on the arrays of CNT as they can carry large current of the order of several milliamperes that make the arrays suitable in nanoscale electronics and in controlling macroscopic devices such as light emitting diodes and electromotors. Regarding this aspect, a part of this thesis work is devoted on the application of CNT array to field effect transistor (FET) and study of thermoelectric power generation using CNT arrays. The entire thesis is based on the works discussed above. It has been organized as follows: Chapter 1 deals with introduction about the different carbon nanostructures and different synthesis methods. A brief introduction about the different current-voltage (IV) characteristics of SWCNTs and MWCNTs, length and diameter dependence and effect of the mode of contacts, are given. Some applications of the array of CNTs like buckling effect on compression, stretching of CNT into the form of rope, and conduction change on compression are discussed. Application of CNT as FET, as a thermometer, and thermoelectric effect of CNT are discussed. The electromechanical effect of CNT is also discussed briefly. Chapter 2 deals with experimental setup for synthesis of different morphologies of carbon nanostructures. The samples are characterized using common characterization techniques like, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A brief introduction about Raman Spectroscopy of CNT is given. Chapter 3 reports the unusual IV characteristics and breakdown of long CNT arrays. The current carrying ability and the threshold voltage as a function of array diameter are reported. The effect of the ambient like temperature and pressure are discussed. Chapter 4 deals with theoretical models to analyze the IV characteristics reported in Chapter 3. It has been shown that a set of classical equations are applicable to quantum structures and the band gap can be evaluated. Chapter 5 describes with application of CNT arrays as temperature sensors. It has been shown that CNT arrays of suitable diameters are used as temperature sensors after calibration. Chapter 6 reports the high current FET application of CNT arrays. Effects of temperature and ambient pressure are discussed. The type of the majority charge carrier is determined. Chapter 7 deals with application of CNT arrays as thermoelectric power generator to get large thermoelectric current. Effects of different array diameter are discussed. Modulation of thermoemf with gate voltage is discussed. The type of the majority charge carrier is determined. Chapter 8 reports the effect of compressive strain on buckled MWCNT arrays. Conductance is measured during the compression of the array. Quantum electromechanical conductance oscillation is observed. The structural changes are observed with SEM. Raman spectroscopic study supports the explanation of the effect. Chapter 9 provides the conclusion and overall summary of the thesis.
146

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Borkar, Tushar Murlidhar 05 1900 (has links)
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net shaping (LENSTM) process. These composites consist of an in situ formed and homogeneously distributed titanium carbide (TiC) as well as graphite phase reinforcing the nickel matrix. 3D microstructure helps in determining true morphology and spatial distribution of TiC and graphite phase as well as the phase evolution sequence. These Ni-TiC-C composites exhibit excellent tribological properties (low COF), while maintaining a relatively high hardness.
147

Carbon Nanotube Devices

Seidel, Robert Viktor 20 December 2004 (has links)
Eine Reihe wichtiger Wachstums- und Integrationsaspekte von Kohlenstoff-Nanoröhren wurde im Rahmen dieser Arbeit untersucht. Der Schwerpunkt der experimentellen Arbeit lag dabei hauptsächlich bei einschaligen Kohlenstoffnanoröhren (SWCNT). Das große Potential dieser Nanoröhren für Transistor-Anwendungen wurde durch die Herstellung einer Vielzahl funktionierender Bauelemente aus diesen Kohlenstoffnanoröhren mittels relativ einfacher Herstellungsprozesse demonstriert. Ein fundiertes Verständnis für die Abhängigkeiten des Nanoröhrenwachstums von einer Vielzahl an Parametern wurde mit Hilfe mehrerer tausend Wachstumsexperimente gesammelt. Verschiedene Katalysatormetalle, Kohlenstoffquellen und Katalysatorunterlagen wurden detailliert untersucht. Ein Hauptaugenmerk wurde dabei auf eine Reduzierung der Wachstumstemperatur gerichtet. Die niedrige Wachstumstemperatur spielt eine große Rolle für eine möglichst hohe Kompatibilität mit konventionellen Herstellungsverfahren der Silizium-Halbleitertechnik. Ein einfaches phänomenologisches Wachstumsmodell wurde für die Synthese von Nanoröhren mittels katalytisch-chemischer Gasphasen-Abscheidung (CCVD) formuliert. Dieses Modell basiert hauptsächlich auf der Oberflächendiffusion von adsorbierten Kohlenstoffverbindungen entlang der Seitenwände der Nanoröhren sowie auf der Oberfläche der Katalysatorunterlage. Das Modell ist eine wichtige Ergänzung zu dem VLS-Mechanismus. Ein Wachstumsverfahren zur Herstellung von Nanoröhren für niedrigere Temperaturen bis zu 600 °C wurde entwickelt. Experimentell wurde nachgewiesen, dass der Durchmesser des Katalysatorteilchens fast ausschließlich bestimmt, wie viele Schalen eine wachsende Nanoröhre bei geeigneten Wachstumsbedingungen hat. Es wurde zum ersten Mal gezeigt, dass einschalige Kohlenstoffnanoröhren auf Metallelektroden wachsen werden können, insofern eine dünne Aluminiumschicht als Trennschicht verwendet wird. Dadurch können in-situ kontaktierte Nanoröhren einfach hergestellt werden, was deren elektrische Charakterisierung weitaus erleichtert. Mittels stromloser Abscheidung von Nickel oder Palladium aus einer Lösung konnte eine deutliche Verbesserung der Kontaktwiderstände der in-situ-kontaktierten Nanoröhren erreicht werden. Durch Einbettung von Nanoröhren in eine Tantaloxidschicht konnten Transistoren mit einem Dielektrikum mit hoher relativer Dielektrizitätskonstante hergestellt werden. Die Tantaloxidschicht wurde mit einem neu entwickelten Tauchprozess abgeschieden. Erstmalig wurden Transistoren basierend auf Kohlenstoffnanoröhren hergestellt, die relativ hohe Ströme (Milliampere) mit einer Modulation bis zu einem Faktor 500 schalten können. Diese Transistoren beruhen auf einer Parallelschaltung einer großen Anzahl an Nanoröhren. Mit Hilfe der hergestellten Transistoren konnten die Eigenschaften einer großen Zahl von Nanoröhren untersucht werden, wobei große Unterschiede in den elektronischen Eigenschaften von metallischen Nanoröhren, halbleitenden Nanoröhren und Nanoröhren mit einer kleinen Bandlücke beobachtet wurden. / A number of very important growth and integration aspects of carbon nanotubes have been investigated during the course of this thesis. The focus was mainly on single-walled carbon nanotubes. Their potential for transistor applications was demonstrated by the successful fabrication of a variety of devices using rather simple processes. A detailed understanding of the dependence of SWCNT growth on a variety of parameters was obtained as the result of several thousand growth experiments. Various catalyst materials, gaseous carbon sources, and catalyst supports have been investigated. Special attention was paid to a considerable reduction of the growth temperature. A simple phenomenological growth model could be derived for CCVD of SWCNTs taking into account a number of effects observed during the various growth experiments. The model presented is mainly based on the surface diffusion of carbon species along the sidewalls of the carbon nanotubes or on the catalyst support and is an addition to the vapor-liquid-solid (VLS) mechanism. Growth methods for the CCVD synthesis of SWCNTs were developed for temperatures as low as 600 °C. It has been found that the size of the catalyst particle alone determines whether a SWCNT, DWCNT, or MWCNT will nucleate from a specific particle under suitable growth conditions. It could be demonstrated for the first time that SWCNTs can be grown on a variety of conducting materials if the catalyst is separated from the electrode by a thin Al layer. In-situ contacted SWCNTs can be easily obtained that way, largely facilitating the electronic characterization of as-grown SWCNTs. A tremendous improvement of the contacts of in-situ contacted SWCNTs could be achieved by electroless deposition. SWCNT growth on appropriate electrodes allowed the encapsulation of the nanotubes by electroless deposition of Ni and Pd, yielding good and reliable contacts. SWCNT transistors with a high-k dielectric could be fabricated by encapsulation of the nanotube with a tantalum oxide layer. The tantalum oxide was deposited by a newly developed dip-coat process. High-current SWCNT transistors consisting of a large number of SWCNTs in parallel were demonstrated for the first time during this work. Finally, the properties of a large number of CCVD grown SWCNTs have been investigated by electronic transport measurement. Large differences in the electronic transport have been observed for metallic, small band gap semiconducting (SGS), and semiconducting SWCNTs with small diameters.
148

Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement

Yao, Shulong 05 1900 (has links)
This thesis aims to develop a new type of highly stretchable strain sensor to measure large deformation of a specimen subjected to dynamic loading. The sensor was based on the piezo-resistive response of carbon nanotube(CNT)/polydimethysiloxane (PDMS) composites thin films, some nickel particles were added into the sensor composite to improve the sensor performance. The piezo-resistive response of CNT composite gives high frequency response in strain measurement, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measuring large strain (up to 26%) with an excellent linearity and a fast frequency response under quasi-static test, the delay time for high strain rate test is just 30 μs. This stretchable strain sensor is also able to exhibit much higher sensitivities, with a gauge factor of as high as 80, than conventional foil strain gauges.
149

Development of Nanocomposites Based Sensors Using Molecular/Polymer/Nano-Additive Routes

Liu, Chang 30 May 2019 (has links)
No description available.
150

Münzmetallbasierte Präkursoren zur Herstellung von Nanopartikeln und leitfähigen Schichten

Adner, David 24 March 2015 (has links)
Die vorliegende Arbeit beschreibt die Synthese und Charakterisierung ethylenglykolfunktionalisierter Carboxylate der Münzmetalle sowie deren Verwendung als Präkursoren in der Herstellung von Nanopartikeln und leitfähigen Metallschichten. Ein Schwerpunkt der Arbeit liegt auf der Verwendung von Kupfer(II)-carboxylaten zur Herstellung von druckbaren Kupfertinten. Es wird gezeigt, wie zentrale Präkursoreigenschaften durch Variation der Carboxylatreste optimiert werden können. Einen zweiten Schwerpunkt bildet die Herstellung von Kupfernanopartikeln durch thermische Zersetzung ethylenglykolfunktionalisierter Kupfercarboxylate. Der Einsatz von Bis- und Tris(triphenylphosphan)kupfer(I)-carboxylaten ermöglicht hierbei die Herstellung von oxidfreien sphärischen Kupfernanopartikeln sowie von Kupferstäbchen unter einfachen experimentellen Bedingungen. Weitere Arbeiten widmen sich der Verwendung von ethylenglykolfunktionalisierten Silber(I)-carboxylaten zur Synthese von Silbernanopartikeln. Der entwickelte Prozess erlaubt die Herstellung blättchenförmiger Silbernanopartikel bei vergleichsweise niedrigen Temperaturen. Auch die Herstellung von blättchenförmigen Kupfersulfidpartikeln durch Thermolyse eines ethylenglykolfunktionalisierten Bis(triphenylphosphan)kupfer(I)-thiocarboxylates wird beschrieben. Schließlich wird gezeigt, wie thermolytisch hergestellte Goldnanopartikel an ethylenglykolfunktionalisierten Kohlenstoffnanoröhren abgeschieden werden können. Der Prozess wurde auf einem Wafer durchgeführt. Die erhaltenen Strukturen ermöglichen eine Verwendung als optischer Sensor.

Page generated in 0.0307 seconds