• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 31
  • 26
  • 18
  • 17
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Localisation et fonction de CHK2 en mitose

Chouinard, Guillaume 10 1900 (has links)
Les centrosomes dont le rôle principal est d’organiser le cytosquelette de microtubules et le fuseau mitotique servent aussi de sites d’interaction pour plusieurs protéines régulatrices du cycle cellulaire et de la réponse aux dommages à l’ADN. Une de ces protéines est la kinase CHK2 et plusieurs publications montrent une sous-population de CHK2 localisée aux centrosomes dans les cellules en interphase et en mitose. Toutefois, la localisation de CHK2 aux centrosomes demeure controversée, car des doutes subsistent en ce qui concerne la spécificité des anticorps utilisés en immunocytochimie. En utilisant des lignées cellulaires du cancer du côlon, les cellules HCT116 sauvages et HCT116 CHK2-/- ainsi que différentes lignées d’ostéosarcome humain dans lesquelles l’expression de CHK2 a été inhibée par ARN interférence, nous montrons que les anticorps anti-CHK2 qui donnent un signal centrosomal sont non spécifiques et reconnaissent un antigène inconnu sur les centrosomes. Cependant, par des expériences d’immunofluorescence réalisées avec des cellules U2OS qui expriment les protéines de fusion GFP-CHK2 ou FLAG-CHK2, nous révélons une localisation centrosomale de CHK2 dans les cellules en mitose, mais pas en interphase. Ce résultat a été confirmé par vidéomicroscopie dans les cellules vivantes exprimant GFP-CHK2. Pour déterminer le ou les rôles potentiels de CHK2 en mitose nous avons réalisé des expériences pour explorer le rôle de CHK2 dans la progression de la mitose, la nucléation des microtubules aux centrosomes et la progression de la mitose en présence de problèmes d’attachement des chromosomes où de lésions génotoxiques. Nos données suggèrent que CHK2 n’est pas impliquée dans la régulation de la mitose dans les cellules U2OS. / Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Here, we clarify that CHK2 only localized at centrosomes during mitosis. Using wild-type and CHK2-/- HCT116 human colon cancer cells, or human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs, we show that several CHK2 antibodies are non-specific for immunofluorescence and cross-react with an unknown centrosomal protein(s). To analyse further CHK2 localization, we established cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with centrosomes in mitotic cells, from early mitotic stages until cytokinesis. In contrast to previous data obtained by A. Stolz and colleagues with the human colon carcinoma HCT116 cell line, our experiments exploring the possible functions for CHK2 during mitosis did not support a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis in human osteosarcoma U2OS cells.
72

Études fonctionnelles de deux nouvelles protéines centrosomales, NPHP5 et Cep76, et leurs implications dans les maladies humaines

Barbelanne, Marine 08 1900 (has links)
Les centrosomes sont de petits organites qui régulent divers processus cellulaires comme la polarité ou la mitose dans les cellules de mammifères. Ils sont composés de deux centrioles entourés par une matrice péricentriolaire. Ces centrosomes sont les principaux centres organisateurs de microtubules. De plus, ils favorisent la formation de cils, des protubérances sur la surface des cellules quiescentes qui sont critiques pour la transduction du signal. Une grande variété de maladies humaines telles que les cancers ou les ciliopathies sont liées à un mauvais fonctionnement des centrosomes et des cils. C’est pourquoi le but de mes projets de recherche est de comprendre les mécanismes nécessaires à la biogénèse et au fonctionnement des centrosomes et des cils. Tout d'abord, j’ai caractérisé une nouvelle protéine centrosomale nommée nephrocystine - 5 (NPHP5). Cette protéine est localisée dans les cellules en interphase au niveau de la région distale des centrioles. Sa déplétion inhibe la migration des centrosomes à la surface cellulaire lors de l’étape précoce de la formation des cils. NPHP5 interagit avec la protéine CEP290 via sa région C-terminale qui est essentielle pour la ciliogenèse. Elle interagit également avec la calmoduline ce qui empêche son auto-agrégation. J’ai démontré que les domaines de liaison de NHPH5 à CEP290 et à la calmoduline, ainsi que son domaine de localisation centrosomale sont séparables. De plus, j’ai démontré que les protéines NPHP5 présentant des mutations pathogènes ne peuvent plus interagir avec CEP290 et ne sont plus localisées aux centrosomes, rendant ainsi ces protéines non fonctionnelles. Enfin, en utilisant une approche pharmacologique pour moduler les événements en aval dans la voie ciliogénique, j’ai montré que la formation des cils peut être restaurée même en absence de NPHP5. D’autre part, j’ai étudié le rôle de NPHP5 dans l'assemblage et le trafic du complexe BBSome dans le cil. Le BBSome est composé de huit sous-unités différentes qui s’assemblent en un complexe fonctionnel dont on sait peu de chose sur la régulation spatiotemporelle de son processus d'assemblage. J’ai précédemment montré que NPHP5 favorisait la formation des cils et que son dysfonctionnement contribuait au développement de néphronophtise (NPHP). Bien que la NPHP et le syndrome de Bardet-Biedl (BBS) soient des ciliopathies qui partagent des caractéristiques cliniques communes, la base moléculaire de ces ressemblances phénotypiques n’est pas comprise. J’ai constaté que NPHP5, localisé à la base du cil, contient deux sites de liaison distincts pour le BBSome. De plus, j’ai démontré que NPHP5 et son partenaire CEP290 interagissent de façon dynamique avec le BBSome pendant la transition de la prolifération à la quiescence. La déplétion de NPHP5 ou CEP290 conduit à la dissociation d’au moins deux sous-unités du BBSome formant alors un sous-complexe dont la capacité de migration dans le cil n’est pas compromise. J’ai montré que le transport des cargos vers le compartiment ciliaire par ce sous-complexe n’est que partiellement altéré. Enfin, j’ai également concentré mes recherches sur une autre protéine centrosomale peu caractérisée. La protéine centrosomale de 76 kDa (Cep76) a été précédemment impliquée dans le maintien d’une duplication unique des centrioles par cycle cellulaire, et dans une interaction avec la kinase cycline-dépendante 2 (CDK2). Cep76 est préférentiellement phosphorylée par le complexe cycline A/CDK2 sur le site unique S83. Cet événement est essentiel pour supprimer l'amplification des centrioles en phase S. J’ai démontré que Cep76 inhibe cette amplification en bloquant la phosphorylation de Plk1 au niveau des centrosomes. D’autre part, Cep76 peut être acétylée au site K279 en phase G2, ce qui régule négativement son activité et sa phosphorylation sur le site S83. Ces études permettent d'améliorer notre compréhension de la biologie des centrosomes et des cils et pourraient conduire au développement de nouvelles applications diagnostiques et thérapeutiques. / Centrosomes are small organelles that regulate diverse cellular processes such as polarity or mitosis in mammalian cells. They are composed of two centrioles surrounded by a pericentriolar matrix. These centrosomes are the major microtubule organizing centers. Moreover, they promote the formation of cilia, protrusions on the surface of quiescent cells that are critical for signal transduction. A wide variety of human diseases such as cancers or ciliopathies are linked to a malfunction of centrosomes and cilia. Therefore the aim of my research is to understand the mechanisms necessary for the biogenesis and function of centrosomes and cilia. First, I have characterized a novel centrosomal protein called nephrocystin - 5 (NPHP5). This protein is localized, in interphase cells, in the distal region of centrioles. Its depletion inhibits the migration of centrosomes to the cell surface during the early stage of cilia formation. NPHP5 interacts with CEP290 via its C-terminal region that is essential for ciliogenesis. It also interacts with calmodulin, which prevents its self-aggregation. I have demonstrated that the Cep290- and CaM-binding domains as well as the centrosomal localization domain of NPHP5 are separable. Moreover, I have shown that NPHP5 proteins with pathogenic mutations can no longer interact with CEP290 and are not localized to centrosomes, rendering these proteins non-functional. Finally, using a pharmacological approach to modulate the downstream events in the ciliogenic pathway, I showed that cilia formation can be restored even without NPHP5. On the other hand, I studied the role of NPHP5 in the assembly and trafficking of the BBSome into the cilium. The BBSome consists of eight different subunits that assemble into a functional complex of which little is known about the spatiotemporal regulation of its assembly process. I have previously shown that NPHP5 favored the formation of cilia and its dysfunction contributes to the development of nephronophthisis (NPHP). Although the NPHP and BBS syndrome (BBS) are ciliopathies that share common clinical features, molecular basis of these phenotypic similarities is not understood. I found that NPHP5, located at the base of the cilium, contains two separate binding sites for BBSome. Furthermore, I demonstrated that NPHP5 and his partner CEP290 interact dynamically with the BBSome during the transition from quiescence to proliferation. Depletion NPHP5 or CEP290 leads to the dissociation of at least two subunits of BBSome forming a sub-complex that can still traffic into the cilium. I have shown that the transport of cargo to the ciliary compartment through this sub-complex is only partially altered. Finally, I have also focused my research on another centrosomal protein poorly characterized. The centrosomal protein of 76 kDa (Cep76) was previously involved in the maintenance of a single duplication of centrioles per cell cycle, and interacts with the cyclindependent kinase 2 (CDK2). Cep76 is preferentially phosphorylated by cyclin A/CDK2 on the single site S83. This event is essential to suppress centrioles amplification in S phase. I have demonstrated that Cep76 inhibits amplification by blocking the phosphorylation of Plk1 at the centrosome. Moreover, Cep76 can be acetylated at the K279 site in G2 phase, which negatively regulates its activity and phosphorylation on the site S83. These studies will improve our understanding of the biology of centrosomes and cilia and could lead to development of new diagnostic and therapeutic applications.
73

Association of Pericentrin with the γ Tubulin Ring Complex: a Dissertation

Zimmerman, Wendy Cherie 03 June 2004 (has links)
Pericentrin is a molecular scaffold protein. It anchors protein kinases, (PKB, (Purohit, personal communication), PKC, (Chen et al., 2004), PKA Diviani et al., 2000), the γ tubulin ring complex, (γ TuRC) (Zimmerman et al., 2004), and possibly dynein (Purohit et al., 1999) to the spindle pole. The γ TuRC is a ~ 2 MDa complex which binds the minus ends of microtubules and nucleates microtubules in vitro, (Zheng et al., 1995). Prior to this work, nothing was known about the association of the γTuRC with pericentrin. Herein I report the biochemical identification of a large protein complex in Xenopus extracts containing pericentrin, the γ TuRC, and other as yet unidentified proteins. Immunodepletion of γ tubulin results in co-depletion of pericentrin, indicating that virtually all the pericentrin in a Xenopus extract is associated with γ tubulin. However, pericentrin is not a member of the, γ TuRC, since isolated γ TuRCs do not contain pericentrin. The association of pericentrin with the γ TuRC is readily disrupted, resulting in two separable complexes, a small pericentrin containing complex of approximately 740 KDa and the the γ TuRC, 1.9 MDa in Xenopus. Co overexpression/ coimmunoprecipitation and yeast two hybrid studies demonstrate that pericentrin binds the γTuRC through interactions with both GCP2 and GCP3. When added to Xenopus mitotic extracts, the GCP2/3 binding domain uncoupled γ TuRCs from centrosomes, inhibited microtubule aster assembly and induced rapid disassembly of pre-assembled asters. All phenotypes were significantly reduced in a pericentrin mutant with diminished GCP2/3 binding, and were specific for mitotic centro somal asters as I observed little effect on interphase asters or on asters assembled by the Ran-mediated centrosome-independent pathway. Overexpression of the GCP2/3 binding domain of pericentrin in somatic cells perturbed mitotic astral microtubules and spindle bipolarity. Likewise pericentrin silencing by small interfering RNAs in somatic cells disrupted γ tubulin localization and spindle organization in mitosis but had no effect on γ tubulin localization or microtubule organization in interphase cells. Pericentrin silencing or overexpression induced G2/antephase arrest followed by apoptosis in many but not all cell types. I conclude that pericentrin anchoring of γ tubulin complexes at centrosomes in mitotic cells is required for proper spindle organization and that loss of this anchoring mechanism elicits a checkpoint response that prevents mitotic entry and triggers apoptotic cell death. Additionally, I provide functional and in vitro evidence to suggest that the larger pericentrin isoform (pericentrin B/ Kendrin) is not functionally homologous to pericentrin/pericentrin A in regard to it's interaction with the γ TuRC.
74

Ανοσοσήμανση πρωτεϊνικών δομών (μικροσωληνίσκοι-κεντρόσωμα-κινητοχώρος) και in situ υβριδοποίηση με φθοροχρώματα σε κυτταρικές σειρές ανθρώπου και μυός επιβεβαιώνουν την ανευπλοειδογόνο δράση της φαρμακευτικής ένωσης υδροχλωροθειαζίδιο / Immunodetection of protein structures (microtubules-centrosome-kinetochore) and fluorescence in situ hybridization in houman and mouse cell lines confirm the aneugenic activity of the pharmaceutical compound hydrochlorothiazide

Σαλαμαστράκης, Σπυρίδων 28 June 2007 (has links)
Η ακεραιότητα και η λειτουργία της μιτωτικής συσκευής διαδραματίζει ουσιώδη ρόλο για τον ορθό προσανατολισμό και την ολίσθηση των χρωμοσωμάτων στους πόλους της ατράκτου, οδηγώντας στον ισομερή διαχωρισμό των χρωμοσωμάτων κατά τη μιτωτική ή μειωτική διαίρεση. Τροποποιήσεις του δικτύου των μικροσωληνίσκων (α- και β-τουμπουλίνη) και των κέντρων οργάνωσης αυτών (ΜΤΟC, γ-τουμπουλίνη) είναι δυνατόν να προκαλέσουν βλάβες στη μιτωτική συσκευή, διαταράσσοντας το χρωμοσωματικό αποχωρισμό, με αποτέλεσμα το σχηματισμό ανευπλοειδικών κυττάρων. Η διουρητική φαρμακευτική ένωση υδροχλωροθειαζίδιο (HCTZ) χορηγείται κατά της υπέρτασης και είναι γνωστό ότι προκαλεί μη αποχωρισμό σε διπλοειδή στελέχη του μύκητα Aspergillus nidulans. Πρόσφατες μελέτες της ερευνητικής μας ομάδας έχουν δείξει ότι επάγει αυξημένες συχνότητες μικροπυρήνων και διαταράσσει το χρωμοσωματικό αποχωρισμό σε καλλιέργειες ανθρωπίνων λεμφοκυττάρων in vitro. Στην παρούσα εργασία μελετήθηκε η επίδραση του HCTZ στην οργάνωση του δικτύου των μικροσωληνίσκων κατά τη μεσόφαση και τη μίτωση, με συνδυασμένη εφαρμογή μεθόδων διπλής ανοσοσήμανσης των πρωτεϊνών των μικροσωληνίσκων, του κεντροσώματος και του κινητοχώρου. Εφαρμόστηκε επίσης in situ υβριδοποίηση με φθοροχρώματα (FISH), με α-satellite πανκεντρομερικό ανιχνευτή, για τον εντοπισμό μη ενσωματωμένου (lagging) χρωμοσωματικού υλικού. Η μελέτη πραγματοποιήθηκε σε κυτταρικές σειρές μυός C2C12 και ανθρώπου HFFF2. Παρατηρήθηκε ότι το HCTZ προκαλεί μείωση του ρυθμού διαίρεσης, αποδιοργάνωση του δικτύου των μικροσωληνίσκων και αυξημένη συχνότητα ανώμαλων μεταφάσεων με ποικίλο αριθμό σημάτων γ-τουμπουλίνης. Αυξάνει το ποσοστό των μεταφάσεων και μειώνει το ποσοστό των ανα-τελοφάσεων, προκαλώντας συσσώρευση των κυττάρων στο στάδιο της μετάφασης. Επίσης, επάγει τη χρωμοσωματική καθυστέρηση, καθώς αυξάνει τη συχνότητα των μικροπυρήνων που παρουσιάζουν τόσο σήμα κινητοχώρου όσο και σήμα κεντρομέρους. Η γενετική δράση του στα κύτταρα C2C12 δε φαίνεται να επηρεάζεται σημαντικά από τη χρονική διάρκεια έκθεσης των κυττάρων σ’ αυτό. Από τις δυο κυτταρικές σειρές που χρησιμοποιήθηκαν φαίνεται ότι τα κύτταρα C2C12 είναι περισσότερο ευαίσθητα στην απόκριση στο HCTZ. Τα αποτελέσματα μας, υποδεικνύουν ανευπλοειδογόνο δράση της φαρμακευτικής ένωσης, επιβεβαιώνοντας και ενισχύοντας προηγούμενα ευρήματα της ερευνητικής μας ομάδας. / The integrity and function of mitotic apparatus play essential role for the equitable orientation and the slipping of chromosomes to the spindle poles, indicating normal distribution of chromosomes during mitotic or meiotic division. Modifications of the microtubule network (α- and β- tubulin) and microtubule-organizing centers (MTOC, γ- tubulin) may cause severe damage to the mitotic apparatus, disturbing the segregation of chromosomes and resulting to aneuploid cells. The diuretic drug hydrochlorothiazide (HCTZ) is used for the treatment of hypertension and has been found to induce non-disjunction in diploid strains of Aspergillus nidulans. Recent studies of our team have shown that HCTZ produces increased frequencies of micronuclei and disturbs chromosome segregation in human lymphocytes cultures treated in vitro. In the present study was investigated the effect of HCTZ on the organization of the microtubule network during mesophase and mitosis, with combined application of double immunofluorescence staining assay, for the visualization of microtubules, centrosomes and kinetochore proteins. Fluorescence in situ hybridization (FISH), with α-satellite pancentromeric probe, was also applied, for the localization of not integrated (lagging) nuclear material. The study was realized in C2C12 mouse cells and HFFF2 human cells. Our results revealed that HCTZ causes decrease of the cell division rate, disorganization of the microtubule network and increased frequency of abnormal metaphases with various γ-tubulin signals. HCTZ increases the percentage of metaphases and decreases the percentage of ana-telophases, indicating a metaphase arrest. Also, induces chromosome delay, as was shown from the high frequency of micronuclei that presents kinetochore and centromere signal. The genetic activity of HCTZ in C2C12 cells does not appear to be significantly influenced by the duration of the cell’s exposure time to the drug. It appears that C2C12 mouse cells are more sensitive in their response to the HCTZ. These results indicate aneugenic activity of this drug, confirming and enhancing our previous findings.
75

Localisation et fonction de CHK2 en mitose

Chouinard, Guillaume 10 1900 (has links)
Les centrosomes dont le rôle principal est d’organiser le cytosquelette de microtubules et le fuseau mitotique servent aussi de sites d’interaction pour plusieurs protéines régulatrices du cycle cellulaire et de la réponse aux dommages à l’ADN. Une de ces protéines est la kinase CHK2 et plusieurs publications montrent une sous-population de CHK2 localisée aux centrosomes dans les cellules en interphase et en mitose. Toutefois, la localisation de CHK2 aux centrosomes demeure controversée, car des doutes subsistent en ce qui concerne la spécificité des anticorps utilisés en immunocytochimie. En utilisant des lignées cellulaires du cancer du côlon, les cellules HCT116 sauvages et HCT116 CHK2-/- ainsi que différentes lignées d’ostéosarcome humain dans lesquelles l’expression de CHK2 a été inhibée par ARN interférence, nous montrons que les anticorps anti-CHK2 qui donnent un signal centrosomal sont non spécifiques et reconnaissent un antigène inconnu sur les centrosomes. Cependant, par des expériences d’immunofluorescence réalisées avec des cellules U2OS qui expriment les protéines de fusion GFP-CHK2 ou FLAG-CHK2, nous révélons une localisation centrosomale de CHK2 dans les cellules en mitose, mais pas en interphase. Ce résultat a été confirmé par vidéomicroscopie dans les cellules vivantes exprimant GFP-CHK2. Pour déterminer le ou les rôles potentiels de CHK2 en mitose nous avons réalisé des expériences pour explorer le rôle de CHK2 dans la progression de la mitose, la nucléation des microtubules aux centrosomes et la progression de la mitose en présence de problèmes d’attachement des chromosomes où de lésions génotoxiques. Nos données suggèrent que CHK2 n’est pas impliquée dans la régulation de la mitose dans les cellules U2OS. / Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Here, we clarify that CHK2 only localized at centrosomes during mitosis. Using wild-type and CHK2-/- HCT116 human colon cancer cells, or human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs, we show that several CHK2 antibodies are non-specific for immunofluorescence and cross-react with an unknown centrosomal protein(s). To analyse further CHK2 localization, we established cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with centrosomes in mitotic cells, from early mitotic stages until cytokinesis. In contrast to previous data obtained by A. Stolz and colleagues with the human colon carcinoma HCT116 cell line, our experiments exploring the possible functions for CHK2 during mitosis did not support a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis in human osteosarcoma U2OS cells.
76

Centriole amplification in brain multiciliated cells : high resolution spatiotemporal dynamics and identification of regulatory mechanisms / Amplification de centrioles dans les cellules multiciliées du cerveau : dynamique spatiotemporelle à haute résolution et identification des mécanismes régulateurs

Al Jord, Adel 14 September 2016 (has links)
Les cellules multiciliées jouent un rôle essentiel dans la propulsion des fluides physiologiques. Leur dysfonctionnement provoque des maladies chroniques. Contrairement à la plupart des cellules de mammifères qui possèdent un centrosome composé de deux centrioles, les cellules multiciliées possèdent une centaine de centrioles qui servent de base à la nucléation des cils motiles. Les mécanismes d'amplification de centrioles ou de régulation du nombre de centrioles dans ce type cellulaire étaient jusque-là inconnus. Les centrioles nouvellement formés étaient considérés comme apparaissant " de novo ". Une approche de vidéomicroscopie et de microscopie de super-résolution corrélative nous a d'abord permis de déterminer que tous les procentrioles sont générés à partir du centrosome préexistant. Nous démontrons que le centriole fils du centrosome est le site principal de nucléation de 95% de centrioles nouvellement formés dans les cellules multiciliées. Ces résultats réfutent par conséquent l'origine " de novo " des centrioles dans ce type cellulaire. Puis, nous montrons que la machinerie mitotique orchestre la progression spatio-temporelle de la dynamique centriolaire dans ces cellules post-mitotiques et en phase terminale de différentiation. L'amortissement de l'activité de Cdk1 empêche la rentrée en mitose tout en permettant la coordination du nombre de centrioles, leur croissance, et leur désengagement par des transitions phasiques nécessaires à la nucléation de cils motiles. Cette thèse aide à mieux comprendre la différentiation des cellules multiciliées, les ciliopathies, ainsi que l'amplification centriolaire pathologique associée avec le cancer et la microcéphalie. / Multiciliated mammalian cells play a crucial role in the propulsion of physiological fluids. Their dysfunction causes severe chronic diseases. In contrast to the strict centriole number control in cycling cells, multiciliated cell differentiation is marked by the production of up to several hundred centrioles, each nucleating a motile cilium. The mechanisms of centriole amplification or centriole number control in these cells were unknown and new centrioles were thought to appear de novo in the cytoplasm. First, videomicroscopy combined with correlative super-resolution and electron microscopy has enabled us to determine that all procentrioles are generated via runs of nucleation from the pre-existing progenitor cell centrosome. We show that the daughter centriole of the centrosome is the primary nucleation site for 95% of the new centrioles in multiciliated cells and thus refute the de novo hypothesis. Then, we provide evidence of an activation of the mitosis regulatory network during the centriole dynamic. With single cell live imaging and pharmacological modulation of mitosis regulators, we show that the mitosis machinery orchestrates the spatiotemporal progression of centriole amplification in terminally differentiating multiciliated cell progenitors. The fine-tuning of Cdk1 activity prevents mitosis while allowing the timely coordination of centriole number, growth, and disengagement through checkpoint-like phase transitions necessary for subsequent functional motile ciliation. This PhD provides a new paradigm for studying multiciliated cell differentiation, cilia-related diseases and pathological centriole amplification associated with cancer and microcephaly.
77

The function and regulation of myosin-interacting guanine nucleotide exchange factor (MYOGEF) and centrosome/spindle pole associated protein (CSPP) during mitotic progression and cytokinesis

Asiedu, Michael Kwabena January 1900 (has links)
Doctor of Philosophy / Biochemistry Interdepartmental Program / Qize Wei / This dissertation describes the role of myosin-interacting guanine nucleotide exchange factor (MyoGEF) and centrosome/spindle pole associated protein (CSPP) in mitotic progression and cytokinesis. We have identified three mouse isoforms of CSPP, all of which interact and colocalize with MyoGEF to the central spindle in anaphase cells. The N-terminus of MyoGEF interacts with myosin whereas the C terminus interacts with the N-terminus of CSPP, forming a complex. The N-terminus of CSPP appears to be important for both localization and interaction with MyoGEF. CSPP plays a role in mitotic progression since its depletion by RNAi resulted in metaphase arrest. MyoGEF is required for completion of cytokinesis. Both MyoGEF and CSPP are phosphorylated by mitotic kinases including Plk1 and Aurora. Importantly, MyoGEF is phosphorylated at Thr-574 in mitosis by Polo-like kinase 1, and this phosphorylation is required for activation of RhoA. Thr-543 of MyoGEF is required for Plk1 binding in mitosis and phosphorylation of MyoGEF by Cdk1/cyclinB, possibly at Thr-543 may generate a Plk1 docking site, i.e., Cdk1 can phosphorylate MyoGEF at Thr-543, thereby allowing Plk1 to bind and phosphorylate MyoGEF at Thr-574. Finally, MyoGEF and CSPP are also phosphorylated by Aurora-B kinase in vitro. Taken together, we propose that Aurora-B may phosphorylate and recruit MyoGEF and CSPP to the central spindle, where phosphorylation of MyoGEF at Thr-543 promotes Polo kinase binding and additional phosphorylation of MyoGEF, leading to the activation of RhoA at the cleavage furrow.
78

Regulační mechanizmy nukleace centrozomálních mikrotubulů / Regulatory mechanisms of centrosomal microtubule nucleation

Klebanovych, Anastasiya January 2021 (has links)
The spatio-temporal organization and dynamic behavior of microtubules accurately react to cellular needs during intracellular transport, signal transduction, growth, division, and differentiation. The cell generates centrosomal microtubules de novo with the help of γ-tubulin complexes (γTuRCs). The post-translational modifications fine-tune microtubule nucleation by targeting the proteins, interacting with γTuRCs. However, the exact signaling pathways, regulating centrosomal microtubule nucleation, remain mostly unknown. In the presented thesis, we functionally characterized protein tyrosine phosphatase SHP-1 and E3 UFM-protein ligase 1 (UFL1) with its interacting protein CDK5RAP3 (C53) in the regulation of centrosomal microtubule nucleation. We also elucidated the role of actin regulatory protein profilin 1 in this process. We found that SHP-1 formed complexes with γTuRC proteins and negatively regulated microtubule nucleation by modulating the amount of γ-tubulin/γTuRC at the centrosomes in bone marrow-derived mast cells (BMMCs). We suggested a novel mechanism with centrosomal tyrosine-phosphorylated Syk kinase, targeted by SHP-1 during Ag-induced BMMCs activation, regulating microtubules. We showed for the first time that UFL1/C53 protein complex is involved in the regulation of microtubule...
79

The sperm centrioles have unique structures and require poc1 for proper formation in Drosophila melanogaster

Jo, Kyoung Ha, Jo January 2018 (has links)
No description available.
80

Roles of Primary Cilia in the Oligodendrocyte Lineage

Subedi, Ashok 12 1900 (has links)
Primary cilia are nonmotile, hair-shaped organelles that extend from the basal body in the centrosome. The present study is the first investigation of this organelle in the oligodendrocyte lineage in vivo. I used immunohistochemical approaches in normal and cilia-deficient mutant mice to study cilia in relation to oligodendrogenesis and myelination. Primary cilia immunoreactive for Arl13b and ACIII were commonly present in NG2+ oligodendrocyte progenitor cells (OPCs), in which cilia-associated pathways control proliferation, differentiation, and migration. The loss of primary cilia is generally associated with enhanced Wnt/β-catenin signaling, and Wnt/β-catenin signaling has been shown to promote myelin gene expression. I examined whether the lack of cilia in the oligodendrocyte lineage is associated with elevated Wnt/β-catenin activity. I found that absence of a primary cilium was associated with with higher levels of TCF3, and with β-galactosidase in Axin2-lacZ Wnt reporter mice. This evidence supports the proposal that cilia loss in oligodendrocytes leads to enhanced Wnt/β-catenin activity, which promotes myelination. Cilia are dependent on the centrosome, which assembles microtubules for the cilium, the cytoskeleton, and the mitotic spindle. Centrosomes are the organizing center for microtubule assembly in OPCs, but this function is decentralized in oligodendrocytes. I found that the intensity of centrosomal pericentrin was reduced in oligodendrocytes relative to OPCs, and γ-tubulin was evident in centrosomes of OPCs but not in mature oligodendrocytes. These decreases in centrosomal proteins might contribute to functional differences between OPCs and oligodendrocytes. The importance of cilia in the oligodendrocyte lineage was examined in Tg737orpk mice, which have a hypomorphic IFT88 mutation resulting in decreased cilia numbers and lengths. These mice showed marked, differential decreases in numbers of oligodendrocytes and myelin, yet little or no change in OPC populations. It appears that sufficient cells were available for maturation, but lineage progression was stalled. There were no evident effects of the mutation on Wnt/β-catenin. Factors that might contribute to the abnormalities in the oligodendrocyte lineage of Tg737orpk mice include decreased cilia-dependent Shh mitogenic signaling and dysregulation in cilia-associated pathways such as Notch and Wnt/β-catenin.

Page generated in 0.0678 seconds