Spelling suggestions: "subject:"clinical trial"" "subject:"cilinical trial""
551 |
Prognosis of cancer patients : input of standard and joint frailty models / Pronostic en cancérologie : apport des modèles à fragilité standards et conjointsMauguen, Audrey 28 November 2014 (has links)
La recherche sur le traitement des cancers a évolué durant les dernières années principalement dans une direction: la médecine personnalisée. Idéalement, le choix du traitement doit être basé sur les caractéristiques dupatient et de sa tumeur. Cet objectif nécessite des développements biostatistiques, pour pouvoir évaluer lesmodèles pronostiques, et in fine proposer le meilleur. Dans une première partie, nous considérons le problèmede l’évaluation d’un score pronostique dans le cadre de données multicentriques. Nous étendons deux mesuresde concordance aux données groupées analysées par un modèle à fragilité partagée. Les deux niveaux inter etintra-groupe sont étudiés, et l’impact du nombre et de la taille des groupes sur les performances des mesuresest analysé. Dans une deuxième partie, nous proposons d’améliorer la prédiction du risque de décès en tenantcompte des rechutes précédemment observées. Pour cela nous développons une prédiction issue d’un modèleconjoint pour un événement récurrent et un événement terminal. Les prédictions individuelles proposées sontdynamiques, dans le sens où le temps et la fenêtre de prédiction peuvent varier, afin de pouvoir mettre à jourla prédiction lors de la survenue de nouveaux événements. Les prédictions sont développées sur une série hospitalièrefrançaise, et une validation externe est faite sur des données de population générale issues de registres decancer anglais et néerlandais. Leurs performances sont comparées à celles d’une prédiction issue d’une approchelandmark. Dans une troisième partie, nous explorons l’utilisation de la prédiction proposée pour diminuer ladurée des essais cliniques. Les temps de décès non observés des derniers patients inclus sont imputés en utilisantl’information des patients ayant un suivi plus long. Nous comparons trois méthodes d’imputation : un tempsde survie moyen, un temps échantillonné dans une distribution paramétrique et un temps échantillonné dansune distribution non-paramétrique des temps de survie. Les méthodes sont comparées en termes d’estimationdes paramètres (coefficient et écart-type), de risque de première espèce et de puissance. / Research on cancer treatment has been evolving for last years in one main direction: personalised medicine. Thetreatment choice must be done according to the patients’ and tumours’ characteristics. This goal requires somebiostatistical developments, in order to assess prognostic models and eventually propose the best one. In a firstpart, we consider the problem of assessing a prognostic score when multicentre data are used. We extended twoconcordance measures to clustered data in the context of shared frailty model. Both the between-cluster andthe within-cluster levels are studied, and the impact of the cluster number and size on the performance of themeasures is investigated. In a second part, we propose to improve the prediction of the risk of death accountingfor the previous observed relapses. For that, we develop predictions from a joint model for a recurrent event anda terminal event. The proposed individual prediction is dynamic, both the time and the horizon of predictioncan evolve, so that the prediction can be updated at each new event time. The prediction is developed ona French hospital series, and externally validated on population-based data from English and Dutch cancerregistries. Its performances are compared to those of a landmarking approach. In a third part, we explore theuse of the proposed prediction to reduce the clinical trial duration. The non-observed death times of the lastincluded patients are imputed using the information of the patients with longer follow-up. We compared threemethods to impute the data: a survival mean time, a time sampled from the parametric distribution and atime sampled from a non-parametric distribution of the survival times. The comparison is made in terms ofparameters estimation (coefficient and standard-error), type-I error and power.
|
552 |
Essais cliniques de recherche de dose en oncologie : d'un schéma d'essai permettant l'inclusion continue à l’utilisation des données longitudinales de toxicité / Dose-finding clinical trials in oncology : from continuous enrolment, to the integration of repeated toxicity measurementsDoussau de Bazignan, Adélaïde 31 March 2014 (has links)
L’objectif des essais de phase I en oncologie est d’identifier la dose maximale tolérée (DMT). Le schéma « 3+3 » nécessite d’interrompre les inclusions en attendant l’évaluation d’une cohorte de trois patients pour définir la dose à attribuer aux patients suivants. Les investigateurs d’oncologie pédiatrique ont proposé l’adaptation Rolling 6 pour éviter cette suspension temporaire des inclusions. Dans une étude de simulation, nous avons montré qu’un schéma adaptatif avec attribution des doses basées sur un modèle statistique permettait de pallier ce problème, et identifiait plus fréquemment la DMT. Néanmoins ces trois schémas restent limités pour identifier la DMT, notamment du fait que le critère de jugement est un critère binaire, la survenue de toxicité dose-limitante sur un cycle de traitement. Nous avons proposé un nouveau schéma adaptatif utilisant les données ordinales répétées de toxicité sur l’ensemble des cycles de traitement. La dose à identifier est celle associée au taux de toxicité grave maximal par cycle que l’on juge tolérable. Le grade maximal de toxicité par cycle de traitement, en 3 catégories (grave / modéré / nul), a été modélisé par le modèle mixte à cotes proportionnelles. Le modèle est performant à la fois pour détecter un effet cumulé dans le temps et améliore l’identification de la dose cible, sans risque majoré de toxicité, et sans rallonger la durée des essais. Nous avons aussi étudié l’intérêt de ce modèle ordinal par rapport à un modèle logistique mixte plus parcimonieux. Ces modèles pour données longitudinales devraient être plus souvent utilisés pour l’analyse des essais de phase I étant donné leur pertinence et la faisabilité de leur implémentation. / Phase I dose-finding trials aim at identifying the maximum tolerated dose (MTD). The “3+3” design requires an interruption of enrolment while the evaluation of the previous three patients is pending. In pediatric oncology, investigators proposed the Rolling 6 design to allow for a more continuous enrollment. In a simulation study, we showed that an adaptive dose-finding design, with dose allocation guided by a statistical model not only minimizes accrual suspension as with the rolling 6, and but also led to identify more frequently the MTD. However, the performance of these designs in terms of correct identification of the MTD is limited by the binomial variability of the main outcome: the occurrence of dose-limiting toxicity over the first cycle of treatment. We have then proposed a new adaptive design using repeated ordinal data of toxicities experienced during all the cycles of treatment. We aim at identifying the dose associated with a specified tolerable probability of severe toxicity per cycle. The outcome was expressed as the worst toxicity experienced, in three categories (severe / moderate / no toxicity), repeated at each treatment cycle. It was modeled through a proportional odds mixed model. This model enables to seek for cumulated toxicity with time, and to increase the ability to identify the targeted dose, with no increased risk of toxicity, and without delaying study completion. We also compared this ordinal model to a more parsimonious logistic mixed model.Because of their applicability and efficiency, those models for longitudinal data should be more often used in phase I dose-finding trials.
|
553 |
Efficacy of gamification-based smartphone application for weight loss in overweight and obese adolescents: study protocol for a phase II randomized controlled trialTimpel, Patrick, Cesena, Fernando Henpin Yue, da Silva Costa, Christiane, Dorigatti Soldatelli, Matheus, Gois Jr, Emanuel, Castrillon, Eduardo, Diaz, Lina Johana Jaime, Repetto, Gabriela M., Hagos, Fanah, Castillo Yermenos, Raul E., Pacheco-Barrios, Kevin Arturo, Musallam, Wafaa, Braid, Zilda, Khidir, Nesreen, Romo Guardado, Marcela, Longo Roepke, Roberta Muriel 05 November 2019 (has links)
Background: Overweight and obesity are significant public health concerns that are prevalent in younger age cohorts. Preventive or therapeutic interventions are difficult to implement and maintain over time. On the other hand, the majority of adolescents in the United States have a smartphone, representing a huge potential for innovative digitized interventions, such as weight loss programs delivered via smartphone applications. Although the number of available smartphone applications is increasing, evidence for their effectiveness in weight loss is insufficient. Therefore, the proposed study aims to assess the efficacy of a gamification-based smartphone application for weight loss in overweight and obese adolescents. The trial is designed to be a phase II, single-centre, two-arm, triple-blinded, randomized controlled trial (RCT) with a duration of 6 months.
Method: The intervention consists of a smartphone application that provides both tracking and gamification elements, while the control arm consists of an identically designed application solely with tracking features of health information. The proposed trial will be conducted in an urban primary care clinic of an academic centre in the United States of America, with expertise in the management of overweight and obese adolescents. Eligible adolescents will be followed for 6 months. Changes in body mass index z score from baseline to 6 months will be the primary outcome. Secondary objectives will explore the effects of the gamification-based application on adherence, as well as anthropometric, metabolic and behavioural changes. A required sample size of 108 participants (54 participants per group) was calculated.
Discussion: The benefits of the proposed study include mid-term effects in weight reduction for overweight and obese adolescents. The current proposal will contribute to fill a gap in the literature on the mid-term effects of gamification-based interventions to control weight in adolescents. This trial is a well-designed RCT that is in line with the Consolidated Standards of Reporting Trials statement.
|
554 |
Effect of Periodontal Treatment on HbA1c among Patients with PrediabetesKocher, T., Holtfreter, B., Petersmann, A., Eickholz, P., Hoffmann, T., Kaner, D., Kim, T. S., Meyle, J., Schlagenhauf, U., Doering, S., Gravemeier, M., Prior, K., Rathmann, W., Harks, I., Ehmke, B., Koch, R. 29 October 2019 (has links)
Evidence is limited regarding whether periodontal treatment improves hemoglobin A1c (HbA1c) among people with prediabetes and periodontal disease, and it is unknown whether improvement of metabolic status persists >3 mo. In an exploratory post hoc analysis of the multicenter randomized controlled trial “Antibiotika und Parodontitis” (Antibiotics and Periodontitis)—a prospective, stratified, double-blind study—we assessed whether nonsurgical periodontal treatment with or without an adjunctive systemic antibiotic treatment affects HbA1c and high-sensitivity C-reactive protein (hsCRP) levels among periodontitis patients with normal HbA1c (≤5.7%, n = 218), prediabetes (5.7% < HbA1c < 6.5%, n = 101), or unknown diabetes (HbA1c ≥ 6.5%, n = 8) over a period of 27.5 mo. Nonsurgical periodontal treatment reduced mean pocket probing depth by >1 mm in both groups. In the normal HbA1c group, HbA1c values remained unchanged at 5.0% (95% CI, 4.9% to 6.1%) during the observation period. Among periodontitis patients with prediabetes, HbA1c decreased from 5.9% (95% CI, 5.9% to 6.0%) to 5.4% (95% CI, 5.3% to 5.5%) at 15.5 mo and increased to 5.6% (95% CI, 5.4% to 5.7%) after 27.5 mo. At 27.5 mo, 46% of periodontitis patients with prediabetes had normal HbA1c levels, whereas 47.9% remained unchanged and 6.3% progressed to diabetes. Median hsCRP values were reduced in the normal HbA1c and prediabetes groups from 1.2 and 1.4 mg/L to 0.7 and 0.7 mg/L, respectively. Nonsurgical periodontal treatment may improve blood glucose values among periodontitis patients with prediabetes (ClinicalTrials.gov NCT00707369).
|
555 |
Statistical practice in preclinical neurosciences: Implications for successful translation of research evidence from humans to animalsHogue, Olivia 23 May 2022 (has links)
No description available.
|
556 |
A randomized controlled trial evaluating the quality of life and the sense of coherence in seniors wearing complete conventional dentures or mandibular two-implant overdenturesJabbour, Zaher 12 1900 (has links)
No description available.
|
557 |
OPTICAL COHERENCE TOMOGRAPHY TO MEASURE EFFECTS OF AUTOLOGOUS MESENCHYMAL STEM CELL TRANSPLANT IN MULTIPLE SCLEROSIS PATIENTSRossman, Ian 05 June 2017 (has links)
No description available.
|
558 |
EFFECT OF DEPRESSION TREATMENT ON HEALTH BEHAVIORS AND CARDIOVASCULAR RISK FACTORS AMONG PRIMARY CARE PATIENTS WITH DEPRESSION: DATA FROM THE EIMPACT TRIALMatthew Schuiling (17199187) 03 January 2024 (has links)
<p dir="ltr">Background. Although depression is a risk factor for cardiovascular disease (CVD), few clinical trials in people without CVD have examined the effect of depression treatment on CVD-related outcomes. It’s unknown if successful depression treatment improves indicators of CVD risk, such as CVD-relevant health behaviors, traditional CVD risk factors, and CVD events. </p><p dir="ltr">Methods. We examined data from eIMPACT trial, a phase II randomized controlled trial conducted from 2015-2020. Depressive symptoms, CVD-relevant health behaviors (self-reported CVD prevention medication adherence, sedentary behavior, and sleep quality) and traditional CVD risk factors (blood pressure and lipid fractions) were assessed. Incident CVD events over four years were identified using a statewide health information exchange. </p><p dir="ltr">Results. The intervention group exhibited greater improvement in depressive symptoms (p < 0.01) and sleep quality (p < 0.01) than the usual care group, but there was no intervention effect on systolic blood pressure (p = 0.36), low-density lipoprotein cholesterol (p = 0.38), high-density lipoprotein cholesterol (p = 0.79), triglycerides (p = 0.76), CVD prevention medication adherence (p = 0.64), or sedentary behavior (p = 0.57). There was an intervention effect on diastolic blood pressure that favored the usual care group (p = 0.02). CVD-relevant health behaviors did not mediate any intervention effects on traditional CVD risk factors. Twenty-two participants (10%) experienced an incident CVD event. The likelihood of an CVD event did not differ between the intervention group (12.1%) and the usual care group (8.3%; HR = 1.45, 95% CI: 0.62-3.40, p = 0.39). </p><p dir="ltr">Conclusions. Successful depression treatment alone improves self-reported sleep quality but is not sufficient to lower CVD risk of people with depression. Alternative approaches may be needed reduce CVD risk in depression. </p><p dir="ltr">Trial Registration: ClinicalTrials.gov Identifier: NCT02458690 </p><p dir="ltr">Keywords: depression, cardiovascular disease, blood pressure, lipids, medication adherence, sedentary behavior, sleep quality, collaborative care, internet interventions, clinical trial</p>
|
559 |
3D bioprinting in plastic and reconstructive surgeryAlawi, Seyed Arash, Matschke, Jan, Muallah, David, Gelinsky, Michael, Dragu, Adrian 14 August 2024 (has links)
Background: Bioprinting is one of the most rapidly developing fields in medicine. Plastic and reconstructive surgery will be affected enormously by bioprinting, due to its original purpose of restoring injured or lost tissue. This article in particular has the purpose to analyze the current state of bioprinted tissues as well as research engagement for its application in plastic and reconstructive surgery.
Material and methods: A systematic search for the time span between 2000 and 2022 was performed on EMBASE, Pub-Med, Scopus, and Web of Science databases according to the PRISMA Guidelines. Criteria for the selection of publications were in vitro, animal in vivo, and human in vivo studies where three-dimensional bioprinting of tissue was performed. We extracted data such as (a) author’s country of origin, (b) in vitro study, (c) animal in vivo study, and (d) human in vivo study and categorized the publications by topics such as (1) neural tissue, (2) vascularization, (3) skin, (4) cartilage, (5) bone, and (6) muscle. Additionally, recent discoveries of in vivo animal trials were summarized. -
Results: Out of a pool of 1.629 articles, only 29 publications met our criteria. Of these publications, 97% were published by university institutions. Publications from China (28%, n=8), the USA (28%, n=8), and Germany (10%, n=3) led the publication list on 3D bioprinting. Concerning the publications, 45% (n=13) were in vitro studies, 52% (n=15) in vivo studies on animal models, and 3% (n=1) pilot clinical studies on humans as reported by Zhou et al. (EBioMedicine 28: 287–302, 2018). Regarding the classification of topics, our study revealed that publications were mainly in the field of 3D printing of cartilage (n=13, 39%), skin (n=7, 21%), bone (n=6, 18%), and vascularization (n=5, 15%). -
Conclusions: To this date, it has not been yet possible to bioprint whole tissue systems. However, the progress in threedimensional bioprinting is rapid. There are still some challenges, which need to be overcome regarding cell survival before and during the printing process, continuation of architecture of bioprinted multilinear cells, and long-term stabilization and survival of complex tissues. Level of evidence: Not ratable.
|
560 |
Model-Informed Medical Technology Development : A simulation study to evaluate the impact of model-based clinical study design and analysis on effect size estimates / Modellinformerad medicinteknisk utveckling : En simuleringsstudie för att utvärdera hur modellbaserad design och analys av kliniska studier påverkar uppskattningar av effektstorlekCarvalho Lima Vieira Araujo, Manuel Maria January 2024 (has links)
Randomised controlled trials (RCT) are considered the gold standard for assessing the efficacy and safety of medical interventions. However, RCTs face unique challenges when applied to medical technologies, such as issues related to timing of assessment, eligible population, acceptability, blinding, choice of comparator group, and consideration for learning curves. To address these challenges, this thesis explores the adaptation of the model-informed drug development (MIDD) approach to the field of medical technology, using a case study on transurethral microwave thermotherapy (TUMT). The research employs non-linear mixed- effects (NLME) modelling and D-optimal design to optimise study designs and improve the reliability and efficiency of clinical trials. The impact of different sampling times, sample sizes, and learning curves on effect size estimates is analysed. The results show that optimising sampling points and sizes significantly improves the precision and reliability of effect size estimates and describes how MIDD can be a useful tool for this purpose. The study also highlights the limitations of the TUMT study design, suggesting ways in which the model-based approach could offer more robust and reliable clinical evidence generation. This research highlights the potential of the MIDD approach to streamline the medical technology clinical development process, enhance the quality of evidence, and address its inherent complexities. Future work should expand on these findings by exploring more complex error models and additional study designs and its related aspects. / Randomiserade kontrollerade studier (RCT) anses vara standard för att bedöma effekt och säkerhet i kliniska interventionsstudier. RCT:er står dock inför unika utmaningar när de tillämpas på medicinteknik såsom utmaningar relaterade till tidpunkt för bedömning, rekrytering av lämpliga studiedeltagare, acceptans, blindning, val av jämförelsegrupp och hänsyn till inlärningskurvor. För att hantera dessa utmaningar undersöker denna avhandling anpassningen av modellinformerad läkemedelsutveckling (MIDD) till området medicinteknik, med hjälp av en fallstudie om transuretral mikrovågstermoterapi (TUMT). I arbetet tillämpas icke-linjär, hierarkisk (NLME) modellering och D-optimal design för att optimera studiedesigner och förbättra tillförlitligheten i kliniska prövningar. Effekten av olika observationstider, antal studiedeltagare och inlärningskurvor på estimeringen av effektstorlek analyseras. Resultaten visar att optimering av observationstidpunkter och studiestorlek avsevärt förbättrar precisionen och tillförlitligheten av den estimerade effektstorleken och visar på hur MIDD kan vara ett användbart verktyg för detta ändamål inom medicinteknisk utveckling. Studien belyser också begränsningarna i studiedesignen för fallstudien och föreslår hur en modellbaserad metod skulle kunna erbjuda mer robust och tillförlitlig generering av klinisk evidens. Denna forskning belyser potentialen hos MIDD-metoder för att effektivisera den medicintekniska kliniska utvecklingsprocessen, förbättra kvaliteten av evidens, och hantera dess inneboende komplexitet. Framtida arbete bör utvidga dessa resultat genom att utforska mer komplexa modeller, ytterligare studiedesigner, och relaterade aspekter.
|
Page generated in 0.0806 seconds