• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 24
  • 18
  • 15
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Student Performance in Higher Education: Ability, Class Attendance, Mobility and the Bologna Process

Lerche, Katharina 02 November 2016 (has links)
No description available.
52

Bandes de confiance par vraisemblance empirique : δ-méthode fonctionnelle et applications aux processus des événements récurrents / Building confidence bands using empirical likelihood methods : functional delta-method and recurrent event processes

Flesch, Alexis 12 July 2012 (has links)
Disposant d’un jeu de données sur des infections nosocomiales, nous utilisons des techniques de vraisemblance empirique pour construire des bandes de confiance pour certaines quantité d’intérêt. Cette étude nous amène à renforcer les outils déjà existants afin qu’ils s’adaptent à notre cadre. Nous présentons dans une première partie les outils mathématiques issus de la littérature que nous utilisons dans ce travail de thèse. Nous les appliquons ensuite à diverses situations et donnons de nouvelles démonstrations lorsque cela est nécessaire. Nous conduisons aussi des simulations et obtenons des résultats concrets concernant notre jeu de données. Enfin, nous détaillons les algorithmes utilisés. / The starting point of this thesis is a data set of nosocomial infectionsin an intensive care unit of a French hostipal. We focused our attention onbuilding confidence bands for some parameters of interest using empiricallikelihood techniques. In order to do so, we had to adapt and develop somealready existing methods so that they fit our setup.We begin by giving a state of the art of the different theories we use.We then apply them to different setups and demonstrate new results whenneeded. Finally, we conduct simulations and describe our algorithms.
53

相依競爭風險邊際分配估計之探討

張簡嘉詠 Unknown Date (has links)
競爭風險之下對邊際分配的估計,是許多領域中常遇到的問題。由於主要事件及次要事件互相競爭,只要一種事件先發生即終止對另一事件的觀察,在兩事件同時發生的機率為0之下,連一筆完整的資料我們都無法蒐集到。除非兩事件互為獨立或加上其它條件,否則會有邊際分配無法識別的問題。但是獨立的條件在有些情況下並不合理,為解決相依競爭風險之邊際分配無法識別的問題,可先假定兩事件發生時間之間的關係。 由於關聯結構定義出兩變數間的結合關係,我們可利用關聯結構解釋兩事件發生時間之間的關係。假定兩變數之相關性參數為已知,且採用機率積分轉換的觀念,本論文討論了Zheng 與 Klein提出的關聯結構-圖形估計量,是否會依設限程度、相關性強度和關聯結構形式的不同,以致估計能力有別。 / The problem of estimating marginal distributions in a competing risks study is often met in scientific fields. Because main event and secondary event compete with each other, and a first occurring event prevents us from observing another event promptly, the intact lifetimes or survival times are unable to be collected in the circumstances that the probability of both lifetimes coinciding is 0. Unless lifetimes being independent or adding other conditions, there is a problem that the marginal distributions are non-identifiable. But the condition of independence is not always reasonable, we may assume the relation between lifetimes has some special form Because the copula defines the association between two variables, it can be employed to explain relation between lifetimes. Assuming that the dependence parameter in the copula framework is known, and adopting the concept of the probability integral transformations, this thesis has demonstrated whether the estimating abilities of the copula-graphic estimator, that Zheng and Klein put forward, are different in rates of censoring, intensities of dependence, and forms of the copula.
54

Prédiction du risque de DMLA : identification de nouveaux biomarqueurs et modélisation du risque / AMD risk prediction : identification of new biomarkers and risk modeling

Ajana, Soufiane 04 November 2019 (has links)
La dégénérescence maculaire liée à l’âge (DMLA) est la première cause de cécité dans les pays industrialisés. C’est une maladie complexe et multifactorielle ayant des conséquences majeures sur la qualité de vie des personnes atteintes. De nombreux facteurs de risque, génétiques et non génétiques, jouent un rôle important dans la pathogénèse des stades avancés de la DMLA. Les modèles de prédiction développés à ce jour reposent sur un nombre limité de ces facteurs, et sont encore peu utilisés dans la pratique clinique.Ce travail de thèse avait pour premier objectif d’identifier de nouveaux biomarqueurs circulants du risque de DMLA. Ainsi, à partir d’une étude post-mortem basée sur une approche de lipidomique, nous avons identifié les composés lipidiques sanguins les plus prédictifs des concentrations rétiniennes en acides gras polyinsaturés omégas 3 (AGPI w-3). Nous avons développé un modèle de prédiction basé sur 7 espèces de lipides des esters de cholestérol. Ce modèle, obtenu en combinant pénalisation et réduction de la dimension, a ensuite été validé dans des études cas-témoins de DMLA et dans un essai clinique randomisé de supplémentation en AGPI w-3. Ces biomarqueurs pourraient être utiles pour l’identification des personnes à haut risque de DMLA, qui pourraient ainsi bénéficier d’une supplémentation en AGPI w-3.Le deuxième objectif de cette thèse était de développer un modèle de prédiction du risque de progression vers une DMLA avancée à partir de facteurs de risque génétiques, phénotypiques et environnementaux. Une originalité de notre travail a été d’utiliser une méthode de régression pénalisée – un algorithme d’apprentissage automatique – dans un cadre de survie afin de tenir compte de la multicollinéarité entre les facteurs de risque. Nous avons également pris en compte la censure par intervalle et le risque compétitif du décès via un modèle à 3 états sain-malade-mort. Nous avons ensuite validé ce modèle sur une étude indépendante en population générale.Il serait intéressant de valider ce modèle de prédiction dans d’autres études indépendantes en y incluant les biomarqueurs circulants identifiés à partir de l’étude de lipidomique effectuée dans le cadre de cette thèse. Le but final serait d’intégrer cet outil prédictif dans la pratique clinique afin de rendre la médecine de précision une réalité pour les patients atteints de DMLA dans le futur proche. / Age-related macular degeneration (AMD) is the leading cause of blindness in industrialized countries. AMD is a complex and multifactorial disease with major consequences on the quality of life. Numerous genetic and non-genetic risk factors play an important role in the pathogenesis of the advanced stages of AMD. Existing prediction models rely on a restricted set of risk factors and are still not widely used in the clinical routine.The first objective of this work was to identify new circulating biomarkers of AMD’s risk using a lipidomics approach. Based on a post-mortem study, we identified the most predictive circulating lipids of retinal content in omega-3 polyunsaturated fatty acids (w-3 PUFAs). We combined penalization and dimension reduction to establish a prediction model based on plasma concentration of 7 cholesteryl ester species. We further validated this model on case-control and interventional studies. These biomarkers could help identify individuals at high risk of AMD who could be supplemented with w-3 PUFAs.The second objective of this thesis was to develop a prediction model for advanced AMD. This model incorporated a wide set of phenotypic, genotypic and lifestyle risk factors. An originality of our work was to use a penalized regression method – a machine learning algorithm – in a survival framework to handle multicollinearities among the risk factors. We also accounted for interval censoring and the competing risk of death by using an illness-death model. Our model was then validated on an independent population-based cohort.It would be interesting to integrate the circulating biomarkers identified in the lipidomics study to our prediction model and to further validate it on other external cohorts. This prediction model can be used for patient selection in clinical trials to increase their efficiency and paves the way towards making precision medicine for AMD patients a reality in the near future.
55

Some Contributions to Inferential Issues of Censored Exponential Failure Data

Han, Donghoon 06 1900 (has links)
In this thesis, we investigate several inferential issues regarding the lifetime data from exponential distribution under different censoring schemes. For reasons of time constraint and cost reduction, censored sampling is commonly employed in practice, especially in reliability engineering. Among various censoring schemes, progressive Type-I censoring provides not only the practical advantage of known termination time but also greater flexibility to the experimenter in the design stage by allowing for the removal of test units at non-terminal time points. Hence, we first consider the inference for a progressively Type-I censored life-testing experiment with k uniformly spaced intervals. For small to moderate sample sizes, a practical modification is proposed to the censoring scheme in order to guarantee a feasible life-test under progressive Type-I censoring. Under this setup, we obtain the maximum likelihood estimator (MLE) of the unknown mean parameter and derive the exact sampling distribution of the MLE through the use of conditional moment generating function under the condition that the existence of the MLE is ensured. Using the exact distribution of the MLE as well as its asymptotic distribution and the parametric bootstrap method, we discuss the construction of confidence intervals for the mean parameter and their performance is then assessed through Monte Carlo simulations. Next, we consider a special class of accelerated life tests, known as step-stress tests in reliability testing. In a step-stress test, the stress levels increase discretely at pre-fixed time points and this allows the experimenter to obtain information on the parameters of the lifetime distributions more quickly than under normal operating conditions. Here, we consider a k-step-stress accelerated life testing experiment with an equal step duration τ. In particular, the case of progressively Type-I censored data with a single stress variable is investigated. For small to moderate sample sizes, we introduce another practical modification to the model for a feasible k-step-stress test under progressive censoring, and the optimal τ is searched using the modified model. Next, we seek the optimal τ under the condition that the step-stress test proceeds to the k-th stress level, and the efficiency of this conditional inference is compared to the preceding models. In all cases, censoring is allowed at each change stress point iτ, i = 1, 2, ... , k, and the problem of selecting the optimal Tis discussed using C-optimality, D-optimality, and A-optimality criteria. Moreover, when a test unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. Thus, we also consider the simple stepstress models under Type-I and Type-II censoring situations when the lifetime distributions corresponding to the different risk factors are independently exponentially distributed. Under this setup, we derive the MLEs of the unknown mean parameters of the different causes under the assumption of a cumulative exposure model. The exact distributions of the MLEs of the parameters are then derived through the use of conditional moment generating functions. Using these exact distributions as well as the asymptotic distributions and the parametric bootstrap method, we discuss the construction of confidence intervals for the parameters and then assess their performance through Monte Carlo simulations. / Thesis / Doctor of Philosophy (PhD)
56

Regression modeling with missing outcomes : competing risks and longitudinal data / Contributions aux modèles de régression avec réponses manquantes : risques concurrents et données longitudinales

Moreno Betancur, Margarita 05 December 2013 (has links)
Les données manquantes sont fréquentes dans les études médicales. Dans les modèles de régression, les réponses manquantes limitent notre capacité à faire des inférences sur les effets des covariables décrivant la distribution de la totalité des réponses prévues sur laquelle porte l'intérêt médical. Outre la perte de précision, toute inférence statistique requière qu'une hypothèse sur le mécanisme de manquement soit vérifiée. Rubin (1976, Biometrika, 63:581-592) a appelé le mécanisme de manquement MAR (pour les sigles en anglais de « manquant au hasard ») si la probabilité qu'une réponse soit manquante ne dépend pas des réponses manquantes conditionnellement aux données observées, et MNAR (pour les sigles en anglais de « manquant non au hasard ») autrement. Cette distinction a des implications importantes pour la modélisation, mais en général il n'est pas possible de déterminer si le mécanisme de manquement est MAR ou MNAR à partir des données disponibles. Par conséquent, il est indispensable d'effectuer des analyses de sensibilité pour évaluer la robustesse des inférences aux hypothèses de manquement.Pour les données multivariées incomplètes, c'est-à-dire, lorsque l'intérêt porte sur un vecteur de réponses dont certaines composantes peuvent être manquantes, plusieurs méthodes de modélisation sous l'hypothèse MAR et, dans une moindre mesure, sous l'hypothèse MNAR ont été proposées. En revanche, le développement de méthodes pour effectuer des analyses de sensibilité est un domaine actif de recherche. Le premier objectif de cette thèse était de développer une méthode d'analyse de sensibilité pour les données longitudinales continues avec des sorties d'étude, c'est-à-dire, pour les réponses continues, ordonnées dans le temps, qui sont complètement observées pour chaque individu jusqu'à la fin de l'étude ou jusqu'à ce qu'il sorte définitivement de l'étude. Dans l'approche proposée, on évalue les inférences obtenues à partir d'une famille de modèles MNAR dits « de mélange de profils », indexés par un paramètre qui quantifie le départ par rapport à l'hypothèse MAR. La méthode a été motivée par un essai clinique étudiant un traitement pour le trouble du maintien du sommeil, durant lequel 22% des individus sont sortis de l'étude avant la fin.Le second objectif était de développer des méthodes pour la modélisation de risques concurrents avec des causes d'évènement manquantes en s'appuyant sur la théorie existante pour les données multivariées incomplètes. Les risques concurrents apparaissent comme une extension du modèle standard de l'analyse de survie où l'on distingue le type d'évènement ou la cause l'ayant entrainé. Les méthodes pour modéliser le risque cause-spécifique et la fonction d'incidence cumulée supposent en général que la cause d'évènement est connue pour tous les individus, ce qui n'est pas toujours le cas. Certains auteurs ont proposé des méthodes de régression gérant les causes manquantes sous l'hypothèse MAR, notamment pour la modélisation semi-paramétrique du risque. Mais d'autres modèles n'ont pas été considérés, de même que la modélisation sous MNAR et les analyses de sensibilité. Nous proposons des estimateurs pondérés et une approche par imputation multiple pour la modélisation semi-paramétrique de l'incidence cumulée sous l'hypothèse MAR. En outre, nous étudions une approche par maximum de vraisemblance pour la modélisation paramétrique du risque et de l'incidence sous MAR. Enfin, nous considérons des modèles de mélange de profils dans le contexte des analyses de sensibilité. Un essai clinique étudiant un traitement pour le cancer du sein de stade II avec 23% des causes de décès manquantes sert à illustrer les méthodes proposées. / Missing data are a common occurrence in medical studies. In regression modeling, missing outcomes limit our capability to draw inferences about the covariate effects of medical interest, which are those describing the distribution of the entire set of planned outcomes. In addition to losing precision, the validity of any method used to draw inferences from the observed data will require that some assumption about the mechanism leading to missing outcomes holds. Rubin (1976, Biometrika, 63:581-592) called the missingness mechanism MAR (for “missing at random”) if the probability of an outcome being missing does not depend on missing outcomes when conditioning on the observed data, and MNAR (for “missing not at random”) otherwise. This distinction has important implications regarding the modeling requirements to draw valid inferences from the available data, but generally it is not possible to assess from these data whether the missingness mechanism is MAR or MNAR. Hence, sensitivity analyses should be routinely performed to assess the robustness of inferences to assumptions about the missingness mechanism. In the field of incomplete multivariate data, in which the outcomes are gathered in a vector for which some components may be missing, MAR methods are widely available and increasingly used, and several MNAR modeling strategies have also been proposed. On the other hand, although some sensitivity analysis methodology has been developed, this is still an active area of research. The first aim of this dissertation was to develop a sensitivity analysis approach for continuous longitudinal data with drop-outs, that is, continuous outcomes that are ordered in time and completely observed for each individual up to a certain time-point, at which the individual drops-out so that all the subsequent outcomes are missing. The proposed approach consists in assessing the inferences obtained across a family of MNAR pattern-mixture models indexed by a so-called sensitivity parameter that quantifies the departure from MAR. The approach was prompted by a randomized clinical trial investigating the benefits of a treatment for sleep-maintenance insomnia, from which 22% of the individuals had dropped-out before the study end. The second aim was to build on the existing theory for incomplete multivariate data to develop methods for competing risks data with missing causes of failure. The competing risks model is an extension of the standard survival analysis model in which failures from different causes are distinguished. Strategies for modeling competing risks functionals, such as the cause-specific hazards (CSH) and the cumulative incidence function (CIF), generally assume that the cause of failure is known for all patients, but this is not always the case. Some methods for regression with missing causes under the MAR assumption have already been proposed, especially for semi-parametric modeling of the CSH. But other useful models have received little attention, and MNAR modeling and sensitivity analysis approaches have never been considered in this setting. We propose a general framework for semi-parametric regression modeling of the CIF under MAR using inverse probability weighting and multiple imputation ideas. Also under MAR, we propose a direct likelihood approach for parametric regression modeling of the CSH and the CIF. Furthermore, we consider MNAR pattern-mixture models in the context of sensitivity analyses. In the competing risks literature, a starting point for methodological developments for handling missing causes was a stage II breast cancer randomized clinical trial in which 23% of the deceased women had missing cause of death. We use these data to illustrate the practical value of the proposed approaches.
57

Statistical analysis of clinical trial data using Monte Carlo methods

Han, Baoguang 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In medical research, data analysis often requires complex statistical methods where no closed-form solutions are available. Under such circumstances, Monte Carlo (MC) methods have found many applications. In this dissertation, we proposed several novel statistical models where MC methods are utilized. For the first part, we focused on semicompeting risks data in which a non-terminal event was subject to dependent censoring by a terminal event. Based on an illness-death multistate survival model, we proposed flexible random effects models. Further, we extended our model to the setting of joint modeling where both semicompeting risks data and repeated marker data are simultaneously analyzed. Since the proposed methods involve high-dimensional integrations, Bayesian Monte Carlo Markov Chain (MCMC) methods were utilized for estimation. The use of Bayesian methods also facilitates the prediction of individual patient outcomes. The proposed methods were demonstrated in both simulation and case studies. For the second part, we focused on re-randomization test, which is a nonparametric method that makes inferences solely based on the randomization procedure used in clinical trials. With this type of inference, Monte Carlo method is often used for generating null distributions on the treatment difference. However, an issue was recently discovered when subjects in a clinical trial were randomized with unbalanced treatment allocation to two treatments according to the minimization algorithm, a randomization procedure frequently used in practice. The null distribution of the re-randomization test statistics was found not to be centered at zero, which comprised power of the test. In this dissertation, we investigated the property of the re-randomization test and proposed a weighted re-randomization method to overcome this issue. The proposed method was demonstrated through extensive simulation studies.
58

競爭風險下長期存活資料之貝氏分析 / Bayesian analysis for long-term survival data

蔡佳蓉 Unknown Date (has links)
當造成失敗的原因不只一種時,若各對象同一時間最多只經歷一種失敗原因,則這些失敗原因稱為競爭風險。然而,有些個體不會失敗或者經過治療之後已痊癒,我們稱這部分的群體為治癒群。本文考慮同時處理競爭風險及治癒率的混合模式,即競爭風險的治癒率模式,亦將解釋變數結合到治癒率、競爭風險的條件失敗機率,或未治癒下競爭風險的條件存活函數中,並以建立在完整資料上之擴充的概似函數為貝氏分析的架構。對於右設限對象則以插補方式決定是否會治癒或會因何種風險而失敗,並推導各參數的完全條件後驗分配及其性質。由於邊際後驗分配的數學形式無法明確呈現,再加上需對右設限者判斷其狀態,所以採用屬於馬可夫鏈蒙地卡羅法的Gibbs抽樣法及適應性拒絕抽樣法(adaptive rejection sampling) ,執行參數之模擬抽樣及設算右設限者之治癒或失敗狀態。實證部分,我們分析Klein and Moeschberger (1997)書中骨髓移植後的血癌病患的資料,並用不同模式之下的參數模擬值計算各對象之條件預測指標(CPO),換算成各模式的對數擬邊際概似函數值(LPML),比較不同模式的優劣。 / In case that there are more than one possible failure types, if each subject experiences at most one failure type at one time, then these failure types are called competing risks. Moreover, some subjects have been cured or are immune so they never fail, then they are called the cured ones. This dissertation discusses several mixture models containing competing risks and cure rate. Furthermore, covariates are associated with cure rate, conditional failure rate of each risk, or conditional survival function of each risk, and we propose the Bayesian procedure based on the augmented likelihood function of complete data. For right censored subjects, we make use of imputation to determine whether they were cured or failed by which risk and derive full conditional posterior distributions. Since all marginal posterior distributions don’t have closed forms and right censored subjects need to be identified their statuses, we take Gibbs sampling and adaptive rejection sampling of Markov chain Monte Carlo method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the bone marrow transplant data from the book written by Klein and Moeschberger (1997). To do model selection, we compute the conditional predictive ordinate(CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudo marginal likelihood (LMPL) of each model.

Page generated in 0.0747 seconds