• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 97
  • 97
  • 69
  • 36
  • 31
  • 30
  • 19
  • 18
  • 17
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Computação quântica baseada em medidas projetivas em sistemas quânticos abertos / Measurement-based quantum computation in open quantum systems

Luiz Gustavo Esmenard Arruda 20 June 2011 (has links)
Usamos um modelo exatamente solúvel para calcular a dinâmica da fidelidade de uma computação baseada em medidas projetivas cujo sistema interage com um meio ambiente comum que insere erros de fase. Mostramos que a fidelidade do estado de Cluster canônico oscila como função do tempo e, como consequência, a computação quântica baseada em medidas projetivas pode apresentar melhores resultados computacionais mesmo para um conjunto sequencial de medidas lentas. Além disso, apresentamos uma condição necessária para que a dinâmica da fidelidade de um estado quântico geral apresente um comportamento não-monotônico. / We use an exact solvable model to calculate the gate fidelity dynamics of a measurement-based quantum computation that interacts with a common dephasing environment. We show that the fidelity of the canonical cluster state oscillates as a function of time and, as a consequence, the measurement-based quantum computer can give better computational results even for a set of slow measurement sequences. Furthermore, we present a necessary condition to the fidelity dynamics of a general quantum state presents a non-monotonical shape.
62

Uma arquitetura de co-processador para simulação de algoritmos quânticos em FPGA / A Co-processor architecture for simulation of quantum algorithms on FPGA

Conceição, Calebe Micael de Oliveira January 2013 (has links)
Simuladores quânticos têm tido um importante papel no estudo e desenvolvimento da computação quântica ao longo dos anos. A simulação de algoritmos quânticos em computadores clássicos é computacionalmente difícil, principalmente devido à natureza paralela dos sistemas quânticos. Para acelerar essas simulações, alguns trabalhos propõem usar hardware paralelo programável como FPGAs, o que diminui consideravelmente o tempo de execução. Contudo, essa abordagem tem três problemas principais: pouca escalabilidade, já que apenas transfere a complexidade do domínio do tempo para o domínio do espaço; a necessidade de re-síntese a cada mudança no algoritmo; e o esforço extra ao projetar o código RTL para simulação. Para lidar com esses problemas, uma arquitetura de um co-processador SIMD é proposta, cujas operações das portas quânticas está baseada no modelo Network of Butterflies. Com isso, eliminamos a necessidade de re-síntese com mudanças pequenas no algoritmo quântico simulado, e eliminamos a influência de um dos fatores que levam ao crescimento exponencial do uso de recursos da FPGA. Adicionamente, desenvolvemos uma ferramenta para geração automática do código RTL sintetizável do co-processador, reduzindo assim o esforço extra de projeto. / Quantum simulators have had a important role on the studying and development of quantum computing throughout the years. The simulation of quantum algorithms on classical computers is computationally hard, mainly due to the parallel nature of quantum systems. To speed up these simulations, some works have proposed to use programmable parallel hardware such as FPGAs, which considerably shorten the execution time. However this approach has three main problems: low scalability, since it only transfers the complexity from time domain to space domain; the need of re-synthesis on every change on the algorithm; and the extra effort on designing the RTL code for simulation. To handle these problems, an architecture of a SIMD co-processor is proposed, whose operations of quantum gates are based on Network of Butterflies model. Thus, we eliminate the need of re-synthesis on small changes on the simulated quantum algorithm, and we eliminated the influence of one of the factors that lead to the exponential growth on the consumption of FPGA resources. Aditionally, we developed a tool to automatically generate the synthesizable RTL code of the co-processor, thus reducing the extra design effort.
63

Uma arquitetura de co-processador para simulação de algoritmos quânticos em FPGA / A Co-processor architecture for simulation of quantum algorithms on FPGA

Conceição, Calebe Micael de Oliveira January 2013 (has links)
Simuladores quânticos têm tido um importante papel no estudo e desenvolvimento da computação quântica ao longo dos anos. A simulação de algoritmos quânticos em computadores clássicos é computacionalmente difícil, principalmente devido à natureza paralela dos sistemas quânticos. Para acelerar essas simulações, alguns trabalhos propõem usar hardware paralelo programável como FPGAs, o que diminui consideravelmente o tempo de execução. Contudo, essa abordagem tem três problemas principais: pouca escalabilidade, já que apenas transfere a complexidade do domínio do tempo para o domínio do espaço; a necessidade de re-síntese a cada mudança no algoritmo; e o esforço extra ao projetar o código RTL para simulação. Para lidar com esses problemas, uma arquitetura de um co-processador SIMD é proposta, cujas operações das portas quânticas está baseada no modelo Network of Butterflies. Com isso, eliminamos a necessidade de re-síntese com mudanças pequenas no algoritmo quântico simulado, e eliminamos a influência de um dos fatores que levam ao crescimento exponencial do uso de recursos da FPGA. Adicionamente, desenvolvemos uma ferramenta para geração automática do código RTL sintetizável do co-processador, reduzindo assim o esforço extra de projeto. / Quantum simulators have had a important role on the studying and development of quantum computing throughout the years. The simulation of quantum algorithms on classical computers is computationally hard, mainly due to the parallel nature of quantum systems. To speed up these simulations, some works have proposed to use programmable parallel hardware such as FPGAs, which considerably shorten the execution time. However this approach has three main problems: low scalability, since it only transfers the complexity from time domain to space domain; the need of re-synthesis on every change on the algorithm; and the extra effort on designing the RTL code for simulation. To handle these problems, an architecture of a SIMD co-processor is proposed, whose operations of quantum gates are based on Network of Butterflies model. Thus, we eliminate the need of re-synthesis on small changes on the simulated quantum algorithm, and we eliminated the influence of one of the factors that lead to the exponential growth on the consumption of FPGA resources. Aditionally, we developed a tool to automatically generate the synthesizable RTL code of the co-processor, thus reducing the extra design effort.
64

Análise,Simulações e Aplicações Algorítmicas de Caminhadas Quânticas / Analysis,Simulations and Algorithmic Applications of Quantum Walks

Franklin de Lima Marquezino 26 February 2010 (has links)
A computação quântica é um modelo computacional baseado nas leis da mecânica quântica, que pode ser utilizado para desenvolver algoritmos mais eficientes que seus correspondentes clássicos. O desenvolvimento de algoritmos quânticos eficientes, no entanto, é uma tarefa altamente desafiadora. Uma abordagem recente que vem se mostrando bem-sucedida é a utilização de caminhadas quânticas. Neste trabalho, estudamos a caminhada quântica no hipercubo, calculando analiticamente sua distribuição estacionária e analisando propriedades de seu mixing time, tanto na situação ideal como na situação com descoerência gerada por ligações interrompidas. Também estudamos a caminhada na malha bidimensional, calculando sua distribuição estacionária analiticamente e explorando a relação entre o mixing time e a complexidade do algoritmo de busca nesse grafo. Desenvolvemos uma ferramenta computacional para simulação numérica de caminhadas quânticas em malhas uni- e bidimensionais com diversas condições de contorno. Finalmente, estudamos alguns algoritmos de busca em grafos e analisamos numericamente o impacto que a descoerência exerce sobre seus desempenhos. / Quantum computing is a model of computation based on the laws of quantum mechanics, which can be used to develop faster algorithms. The development of efficient quantum algorithms, however, is a highly challenging task. A recent successful approach is the use of quantum walks. In this work, we have studied the quantum walk on the hypercube, obtaining the exact stationary distribution and analyzing properties of its mixing time both in the ideal and in the noisy set-ups, with noise generated by broken links. We have also studied the walk in a two-dimensional grid, where we have obtained its stationary distribution analytically and have explored the relation between mixing time and the complexity of the search algorithm for this graph. We have developed a computational tool for numerical simulation of quantum walks in one- and two-dimensional grids with several boundary conditions. Finally, we have studied some algorithms for search on graphs and have numerically analyzed the impact of decoherence over their performances.
65

Sintonizador termoelétrico assistido por férmions de Majorana / Majorana fermion-assisted thermoelectric tuner

Santos, André Ramalho dos 30 November 2017 (has links)
Submitted by ANDRE RAMALHO DOS SANTOS null (ramalho_inf@yahoo.com.br) on 2018-02-14T03:20:16Z No. of bitstreams: 1 Dissertação André Ramalho.final.pdf: 2789018 bytes, checksum: d4170ea3aaec8f302b447a0aac5e5986 (MD5) / Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-02-14T16:54:15Z (GMT) No. of bitstreams: 1 santos_ar_me_rcla.pdf: 2620534 bytes, checksum: cb88b11f48c3fc7b2fef3c938febb8e0 (MD5) / Made available in DSpace on 2018-02-14T16:54:15Z (GMT). No. of bitstreams: 1 santos_ar_me_rcla.pdf: 2620534 bytes, checksum: cb88b11f48c3fc7b2fef3c938febb8e0 (MD5) Previous issue date: 2017-11-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nós estudamos teoricamente como o calor e a eletricidade são afetados pela sobreposição de dois férmions de Majorana (MFs, de Majorana fermions em Inglês), os quais estão isolados nas bordas de um fio topológico de Kitaev, em particular, na forma de “ferradura”. É considerado que esse fio está assimetricamente acoplado a um único ponto quântico (QD, de Quantum dot em Inglês) hibridizado com contatos metálicos. Em baixas temperaturas e dependente do nível de energia desse QD, nós mostramos que ao ajustar a assimetria acima, as respostas ressonantes das condutâncias termoelétricas mudam inesperadamente de forma drástica. Assim, propomos como aplicação, um sintonizador termoelétrico em nanoescala assistido por MFs. / We study theoretically in a topological U-shaped Kitaev wire, with Majorana fermions (MFs) on the edges, how heat and electricity are affected by them when found overlapped. The asymmetric regime of their couplings with a single quantum dot (QD) hybridized with metallic leads is considered. At low temperatures and dependent upon the QD energy level, we show that by tuning this asymmetry, the resonance positions of the thermoelectrical conductances change drastically. Thereby, the tuner of heat and electricity here proposed is constituted.
66

Uma arquitetura de co-processador para simulação de algoritmos quânticos em FPGA / A Co-processor architecture for simulation of quantum algorithms on FPGA

Conceição, Calebe Micael de Oliveira January 2013 (has links)
Simuladores quânticos têm tido um importante papel no estudo e desenvolvimento da computação quântica ao longo dos anos. A simulação de algoritmos quânticos em computadores clássicos é computacionalmente difícil, principalmente devido à natureza paralela dos sistemas quânticos. Para acelerar essas simulações, alguns trabalhos propõem usar hardware paralelo programável como FPGAs, o que diminui consideravelmente o tempo de execução. Contudo, essa abordagem tem três problemas principais: pouca escalabilidade, já que apenas transfere a complexidade do domínio do tempo para o domínio do espaço; a necessidade de re-síntese a cada mudança no algoritmo; e o esforço extra ao projetar o código RTL para simulação. Para lidar com esses problemas, uma arquitetura de um co-processador SIMD é proposta, cujas operações das portas quânticas está baseada no modelo Network of Butterflies. Com isso, eliminamos a necessidade de re-síntese com mudanças pequenas no algoritmo quântico simulado, e eliminamos a influência de um dos fatores que levam ao crescimento exponencial do uso de recursos da FPGA. Adicionamente, desenvolvemos uma ferramenta para geração automática do código RTL sintetizável do co-processador, reduzindo assim o esforço extra de projeto. / Quantum simulators have had a important role on the studying and development of quantum computing throughout the years. The simulation of quantum algorithms on classical computers is computationally hard, mainly due to the parallel nature of quantum systems. To speed up these simulations, some works have proposed to use programmable parallel hardware such as FPGAs, which considerably shorten the execution time. However this approach has three main problems: low scalability, since it only transfers the complexity from time domain to space domain; the need of re-synthesis on every change on the algorithm; and the extra effort on designing the RTL code for simulation. To handle these problems, an architecture of a SIMD co-processor is proposed, whose operations of quantum gates are based on Network of Butterflies model. Thus, we eliminate the need of re-synthesis on small changes on the simulated quantum algorithm, and we eliminated the influence of one of the factors that lead to the exponential growth on the consumption of FPGA resources. Aditionally, we developed a tool to automatically generate the synthesizable RTL code of the co-processor, thus reducing the extra design effort.
67

Uma álgebra de Clifford de assinatura (n,3n) e os operadores densidade da teoria da informação quântica / A Clifford algebra of signature (n,3n) and the density operators of quantum information theory

Melo, Nolmar 17 August 2018 (has links)
Orientador: Carlile Campos Lavor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T14:47:27Z (GMT). No. of bitstreams: 1 Melo_Nolmar_D.pdf: 2834013 bytes, checksum: 5639deabb953aa019e4e1c9c905e856d (MD5) Previous issue date: 2011 / Resumo: Este trabalho apresenta uma linguagem algébrica para dois elementos básicos da teoria da informação quântica (os bits quânticos e os operadores densidade), baseada nas propriedades de uma álgebra de Clifford de assinatura (n,3n). Demonstramos que a nova descrição desses elementos preserva as mesmas propriedades matemáticas obtidas com a descrição clássica. Com isso, estendemos alguns resultados apresentados na literatura que relaciona Álgebra de Clifford e Informação Quântica. / Abstract: This work presents an algebraic language for two basic elements of quantum information theory (the quantum bits and density operators), based in the properties of a Clifford algebra of signature (n,3n). We prove that the new description of these elements preserves the same mathematical properties obtained with the classical description. We also extend some results presented in the literature that relate Clifford algebra and quantum information. / Doutorado / Matematica Aplicada / Doutor em Matemática
68

Da computação paraconsistente a computação quantica

Agudelo, Juan Carlos Agudelo 05 August 2006 (has links)
Orientador: Walter Alexandre Carnielli / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas / Made available in DSpace on 2018-08-06T09:39:40Z (GMT). No. of bitstreams: 1 Agudelo_JuanCarlosAgudelo_M.pdf: 2515941 bytes, checksum: 58c117425f8731bb67cf3fc0e1181ad4 (MD5) Previous issue date: 2006 / Resumo: As diferentes interpretações da mecânica quântica levanta sérios problemas filosóficos a respeito da natureza do mundo físico e do estatuto das teorias físicas. Tais interpretações desempenham um papel importante na compreensão dos modelos de computação quântica, e por sua vez os modelos de computação quântica abrem a possibilidade de se confrontar as teses filosóficas que se atrevem a responder a tais problemas. Apesar das relevantes e surpreendentes promessas de uso pragmático e tecnológico da computação quântica, não é por essa vereda que caminha este trabalho: o que aqui se oferece é um novo paradigma de computação (um modelo de computação baseado no paradigma paraconsistente), e se propõe uma nova interpretação da computação quântica através desse novo paradigma, dessa forma colaborando simultaneamente na discussão filosófica a respeito da noção de computabilidade e da mecânica quântica. O presente trabalho introduz a definição do que será chamado de modelo de máquinas de Turing paraconsistentes (MTPs). Tal modelo de computação é uma generalização do modelo clássico de máquinas de Turing. No modelo de máquinas de Turing paraconsistentes, diferentemente do modelo clássico, permite-se a execução de múltiplas instruções de mancha simultânea, dando lugar a multiplicidade de símbolos em diferentes casas da fita, multiplicidade de estados e multiplicidade dc posições da máquina. Considerando que tal multiplicidade de configurações, embora essencial nas MTPs pode ser interpretado como incoerências com respeito às máquinas de Turing clássicas, permite-se acrescentar condições de consistência e inconsistência na execução das instruções nas MTPs. o que servirá então para controlar o estado dc incoerência do sistema. Depois de apresentar o modelo de MTPs, são descritos os modelo de máquinas de Turing quânticas (MTQs) e o modelo dc circuitos quânticos (CQs), ambos introduzidos inicialmente por David Dcutsch. os quais são, respectivamente, generalizações do modelo de máquinas dc Turing clássicas e de circuitos boolcanos clássicos usando as leis da mecânica quântica. Finalmente, estabelecem-se relações entre o modelo de MTPs e os modelos de computação quântica, simulando algoritmos quânticos simples (um CQ que soluciona o chamado problema de Dcutsch e um CQ que soluciona o chamado problema de Deutsch-Josza) e mostrando que o paralelismo quântico, uma característica essencial da computação quântica., pode em alguns casos ser simulado por meio de MTPs. Dessa forma, apesar de o particular modelo de MTPs aqui apresentado ter algumas restrições na simulação de certas características da computação quântica, abre-se a possibilidade de se definir outros modelos de MTPs de maneira a simular tais características. Em resumo, o presente trabalho, na medida cm que oferece um novo paradigma de computação (a saber, a computação paraconsistente) e uma nova interpretação dos modelos de computação quântica (a saber, a interpretação da computação quântica através da computação paraconsistente) contribui para a discussão filosófica a respeito da interpretação dos modelos de computação quântica, e possivelmente da interpretação da própria mecânica quântica. Contudo, não menos importante é o fato de que, apesar de o presente trabalho não pretender se dedicar a questões puramente técnicas da computabilidade, ele de fato abre um imenso campo de investigação a respeito da computação relativizada à lógica e suas implicações - no caso presente, relativizada à lógica paraconsistente / Abstract: The interpretations of quantum mechanics open serious philosophical questions about the nature of the physical world and about the status of physical theories. Such interpretations play an important role in the understanding of models of quantum computing, and models of quantum computing, by their turn, open possibilities to confront and test philosophical theses that dare to address such problems. Although the promising pragmatic and technological applications of quantum computing, this work goes in another way: what is here offered is a new paradigm of computation based upon the pa-raconsistency paradigm, and a new interpretation of quantum computing through this model, in this way simultaneously collaborating in the philosophical discussion about the concepts of computability and of quantum mechanics. This work introduces the definition of what will be called the model of paraconsistent Turing machines (PTMs). Such computational model is a generalization of the classical model of Turing machines. In the PTMs model, differently from the classical Turing machines model, simultaneous execution of multiple instructions is allowed, giving rise to a multiplicity of symbols on different cells of the tape, multiplicity of machine states and multiplicity of machine positions. Such multiplicity of configurations, though essential in the PTMs. can be seen as incoherencies with respect to classical Turing machines: to compensate this, the PTMs permit to operate with consistency and inconsistency conditions to control the global state of incoherence of the system. After introducing the PTMs, the model of quantum Turing machines (QTMs) and the model of quantum circuits (QCs) arc presented. This models arc due to David Dcutsch and arc. respectively, generalizations of the model of classical Turing machines and the model of classical boolean circuits, using the laws of quantum mechanics. Finally, relations between the model of PTMs and models of quantum computing arc established, which permits to simulate simple quantum algorithms (a QC to solve the so called Dcutsch problem and a QC to solve the so called Dcutsch-Jozsa. problem) by PTMs. It is also shown that quantum parallelism, an essential characteristic of quantum computation, may be simulated in some cases by PTMs. Although the particular model of PTMs here presented has some restrictions in the capacity to simulate certain quantum computing characteristics, our work opens the possibility to define other PTM models which could simulate such characteristics. To sum up, the present work, while offering a new paradigm of computation (namely, parconsistent computation) and a new interpretation of quantum computing (namely, interpretation of quantum computation by means of paraconsistent computation) contributes to the philosophical discussion about the interpretation of quantum computation and of the quantum mechanics itself. However, not less important is the fact that, besides its lack of explicit intention towards tccnical questions of computability theory, opens a new line of research about the possibilities of logic-relativized computation and its implications- in the present case, relativized to paraconsistent logics / Mestrado / Logica / Mestre em Filosofia
69

Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.

Cunha, Leandro Dias 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
70

Estudo de portas lógicas quânticas de dois qubits definidas em um subespaço livre de decoerência para um sistema de quatro qubits acoplado ao resto do universo por um agente degenerado / A study of two-qubit quantum logic gates defined in a decoherence free subspaces for a four-qubit system coupled to the rest of the universe via a degenerate agent

Mendonça, Paulo Eduardo Marques Furtado de 23 March 2004 (has links)
Nesta dissertação estudamos, no âmbito teórico, algumas propostas recentes de processamento de informação quântica passiva, isto é, descartando protocolos de correção de erros. Recorrendo à criação de subespaços livres de decoerência através de um sistema físico de quatro spins acoplados ao resto do universo por um agente degenerado, mostramos ser possível construir um conjunto universal de portas lógicas (C-NOT, T e Hadamard) neste mesmo subespaço, alcançando, por conseguinte, a realização de qualquer operação computacional, insensivelmente ao resto do universo. Partimos de um hamiltoniano geral com interações individuais de cada spin com campos externos, além de acoplamentos controlados entre pares de spins. Experimentalmente, hamiltonianos deste tipo são comuns no contexto de junções Josephson, motivo pelo qual tratamos esta implementação em um capítulo especial. Introduzindo perturbativamente ao hamiltoniano operadores espúrios ao subespaço livre de decoerência, incluímos sensibilidade do sistema frente ao ambiente, criando a possibilidade da incursão de erros através de mecanismos de dissipação. Tais mecanismos foram investigados em termos da intensidade do parâmetro de acoplamento entre o sistema e o ambiente, revelando uma clara evidência teórica do Efeito Zenão Quântico, através da excelente concordância entre resultados de operações realizadas em subespaços livres de decoerência e operações realizadas em sistemas fortemente acoplados ao resto do universo. Neste sentido, selecionamos a fidelidade como medida de distância entre um estado em evolução a partir de um certo estado inicial do subespaço livre de decoerência (e submetido a dissipação), e um estado em evolução regida pela mesma operação quântica e a partir das mesmas condições iniciais no caso ideal, livre de decoerência. Essa abordagem explícita permitiu-nos obter a razão necessária entre os parâmetros associados a perturbação (que remove o estado do subespaço original) e acoplamento (entendido como a freqüência entre as medidas promovidas pelo resto do universo), para alcançar a eficiência desejada na realização de uma certa porta lógica. Tecnicamente, o trabalho envolveu vários resultados matemáticos novos e operacionalmente úteis, levando a simplificações importantes durante os cálculos envolvidos. / In this dissertation we studied theoretical aspects of some recent proposals of passive quantum information processing, that is, discarding error correction protocols. Falling back upon the creation of decoherence-free subspaces through a physical system of four spins coupled to the rest of the universe by a degenerate agent, we showed to be possible to build a universal set of logical quantum gates (C-NOT, T and Hadamard) in this same subspace, reaching, consequently, the accomplishment of any computational operation, callously to the rest of the universe. We started from a general Hamiltonian with individual interactions of each spin with external fields, besides controlled couplings between spin pairs. Experimentally, Hamiltonians like this are common in the context of Josephson junctions and, therefore, we treated this implementation in a special chapter. Perturbatively introducing spurious operators to the hamiltonian in the decoherence-free subspace, we included sensibility of the system to the environment, creating the possibility of the incursion of errors through dissipation mechanisms. Such mechanisms were investigated in terms of the intensity of the coupling parameter between the system and the environment, revealing an obvious theoretical evidence of the Quantum Zeno Effect, through the excellent agreement between the results of operations accomplished in decoherence-free subspace and operations accomplished in systems strongly coupled to the rest of the universe. In this sense, we selected the fidelity as the distance measure between a state in evolution starting from a certain initial state of the decoherence-free subspace (and submitted to the dissipation), and a state in evolution governed by the same quantum operation and starting from the same initial conditions in the ideal decoherence-free case. This explicit approach allowed us to obtain the necessary quotient between the associated disturbance parameter (that removes the state from the original subspace) and coupling parameter (understood as the frequency between the measurements promoted by the rest of the universe), to reach the efficiency desired in the accomplishment of a logic gate. Technically, the work involved several new operationally useful mathematical results, leading to important simplifications during the involved calculations.

Page generated in 0.4642 seconds