Spelling suggestions: "subject:"computationalstatistics"" "subject:"computationalmechanics""
591 |
Linking Systems Models of Pharmacology with Behavioural Models of Adherence : A Feasibility Study / Länkande av farmakologiska modeller med beteendemodeller för medicinsk åtlydnad : En undersökning av genomförbarhetJenner, Simon, Amphan, Dennis January 2020 (has links)
Pharmacokinetic (PK)- and pharmacodynamic (PD) modeling are useful tools whenassessing treatment effect. A patient’s adherence can potentially be rate-limiting, since it isthe first process in a chain of processes that determines treatment effect. Therefore agreater system taking into consideration PKPD as well as adherence models couldpotentially unlock a greater system understanding. This study focuses on investigating thefeasibility of combining models concerning adherence, PK and PD. An extensive mapping of previously made work on the topics of PKPD model developmentand adherence models concerning type 2 diabetes was conducted. Results concluded thatthere are gaps in research regarding adequate adherence-scoring methods that easily can belinked to dosing regimens. Furthermore, there is lacking research regarding feedback fromexposure-response to adherence. A simple model was implemented to provide a proposedlinkage inhowthe connection could be made between adherence and a PKPD-model.Sensitivity analysis showed that the adherence scoring used (Summary of DiabetesSelf-Care Activities measure, SDSCA) had a moderate correlation to the final response onfasting plasma glucose (Spearman ρ=−0.478∗∗∗). This result suggests that adherenceshould be considered as a relatively important factor to weave in to systems models ofpharmacology and future research should be made on further developing modelsimplementing both social factors, such as adherence, as well as pharmacologic response. Apossible way could be linking dose regimen to adherence scoring. / Farmakokinetiska (PK)- och farmakodynamiska (PD) modeller är användbara verktyg vid utvärdering av effekten av en behandlingsplan. Patientens åtlydnad tilll läkemedelsordinationen kan potentiellt vara en begränsande faktor för behandlingsprocessen. Att utveckla större system som täcker farmakologiska- samt åtlydnadsmodeller skulle potentiellt kunna vara en väg till en förhöjd förståelse angående farmakologiska system. Denna studie fokuserar på att undersöka genomförbarheten av att koppla samman modeller angående farmakokinetik, farmakodynamik samt åtlydnadsmodeller. En omfattande kartläggning av tidigare utfört arbete angående utvecklingen av PKPD-modeller och åtlydnadsmodeller som utgick fr ̊an typ 2 diabetes utfördes. Resultatet av studien visade en avsaknad av forskning gällande definieringen och kvantifieringen avhur man mäter åtlydnad för simuleringssyften. Ytterligare saknades det forskning rörande system med återkoppling från farmakologiska segment av ett system tillbaka till åtlydnadsdelarna. En enkel modell implementerades som ett förslag till hur en potentiell sammankoppling skulle kunna utföras. En känslighetsanalys utfördes och visade att poängskattningen för åtlydnad, SDSCA (Summary of Diabetes Self-Care Activities), hade en måttlig korrelation (Spearman ρ=−0.478∗∗∗) till den slutgiltiga koncentrationen av glukos i plasma. Detta resultat innebär att åtlydnad har en koppling till förbättrandet av hyperglykemi och bör därför inte exkluderas vid framtida utveckling av modeller för farmakologi. En länk skulle kunna vara kopplingen mellan ”åtlydnads-poäng” och doseringsregim.
|
592 |
Modelling of Private Infrastructure Debt in a Risk Factor Model / Modellering av Privat Infrastrukturskuld i enRiskfaktormodellBartold, Martina January 2017 (has links)
Allocation to private infrastructure debt investments has increased in the recent years [15]. For managers of multi-asset portfolios, it is important to be able to assess the risk of the total portfolio and the contribution to risk of the various holdings in the portfolio. This includes being able to explain the risk of having private infrastructure debt investments in the portfolio. The modelling of private infrastructure debt face many challenges, such as the lack of private data and public indices for private infrastructure debt. In this thesis, two approaches for modelling private infrastructure debt in a parametric risk factor model are proposed. Both approaches aim to incorporate revenue risk, which is the risk occurring from the type of revenue model in the infrastructure project or company. Revenue risk is categorised into three revenue models; merchant, contracted and regulated, as spread level differences can be distinguished for private infrastructure debt investments using this categorisation. The difference in spread levels between the categories are used to estimate β coefficients for the two modelling approaches. The spread levels are obtained from a data set and from a previous study. In the first modelling approach, the systematic risk factor approach, three systematic risk factors are introduced where each factor represent infrastructure debt investments with a certain revenue model. The risk or the volatility for each of these factors is the volatility of a general infrastructure debt index adjusted with one of the β coefficients. In the second modelling approach, the idiosyncratic risk term approach, three constant risk terms for the revenue models are added in order to capture the revenue risk for private infrastructure debt investments. These constant risk terms are estimated with the β coefficients and the historical volatility of a infrastructure debt index. For each modelling approach, the commonly used risk measures standalone risk and risk contribution are presented for the entire block of the infrastructure debt specific factors and for each of the individual factors within this block. Both modelling approaches should enable for better explanation of risk in private infrastructure debt investments by introducing revenue risk. However, the modelling approaches have not been backtested and therefore no conclusion can be made in regards to whether one of the proposed modelling approaches actually is better than current modelling approaches for private infrastructure debt. / Investeringar i privat infrastrukturskuld har ökat de senaste åren [15]. För βägare av portföljer med investeringar i samtliga tillgångsslag är det viktigt att kunna urskilja risken från de olika innehaven i portföljen. Det finns många utmaningar vad gäller modellering av privat infrastrukturskuld, så som den begränsade mängden privat data och publika index för privat infrastrukturskuld. I denna uppsats föreslås två tillvägagångssätt för att modellera privat infrastrukturskuld i en parametrisk riskfaktormodell. Båda tillvägagångssätten eftersträvar att inkorporera intäktsrisk, vilket är risken som beror på den underliggande intäktsmodellen i ett infrastrukturprojekt eller företag. Intäksrisk delas in i intäksmodellerna "merchant", "contracted" och "regulated", då en skillnad i spreadnivå mellan privata infrastrukturskuldinvesteringar kan urskiljas med denna kategorisering. Skillnaden i spreadnivå mellan de olika kategorierna används för att estimera β -koefficienter som används i båda tillvägagångssätten. Spreadnivåerna erhålls från ett dataset och från en tidigare studie. I det första tillvägagångssättet, den systematiska riskfaktor-ansatsen, introduceras tre systematiska riskfaktorer som representerar infrastrukturskuldinvesteringar med en viss intäktsmodell. Risken eller volatiliten för dessa faktorer är densamma som volatiliteten för ett index för infrastrukturskuld justerat med en av β -koefficienterna. I det andra tillvägagångssättet, den idriosynktratiska riskterm-ansatsen, adderas tre konstanta risktermer för intäktsmodellerna för att fånga upp intäktsrisken i de privata infrastrukturinvesteringarna. De konstanta risktermerna är estimerade med β -koefficienterna och en historisk volatilitet för ett index för infrastrukturskuld. För båda tillvägagångssätten presenteras riskmåtten stand-alone risk1 och risk contribution2. Riskmåtten ges för ett block av samtliga faktorer för infrastrukturskuld och för varje enskild faktor inom detta block. Båda tillvägagångssätten borde möjliggöra bättre förklaring av risken för privata infrastrukturskuldinvesteringar i en större portfölj genom att ta hänsyn till intäktsrisken. De två tillvägagångssätten för modelleringen har dock ej testats. Därför kan ingen slutsats dras med hänsyn till huruvida ett av tillvägagångssätten är bättre än de som används för närvärande för modellering av privat infrastrukturskuld.
|
593 |
Simulations of a self-stabilizing fully submerged hydrofoil / Simulering av ett självstabiliserande helt nedsänkt bärplanssystemJacobson, Henry January 2023 (has links)
Two models of a self-stabilizing hydrofoil system is developed where the effects from the struts and hydrofoil give torques for angular rotations. Lifting line theory for the hydrofoil which can twist is used. Nonlinear versions of the models are also developed and compared to find that the linear models use valid approximations. Backward Differentiation Formula is used to get numerical solutions, and eigenvalues of linear system matrices are used to get stability regions. The models did not accurately capture what has been seen in testing. / Två modeller för ett självstabiliserande bärplanssystem utvecklas där effekter från stöttor och bärplan ger vridmoment för vinkelrotationer. Lyftande linjeteori för det skevande bärplanet används. Icke-linjära versioner av modellerna tas också fram och jämförs för att finna att de linjära modellerna använder giltiga approximationer. Backward Differentiation Formula används för att fram numeriska lösningar, och egenvärden i det linjära systemetsmatriser används för att hitta stabilitetsregioner. Modellerna fångade inte korrekt vad som har setts i testning.
|
594 |
Randomized heuristic scheduling of electrical distribution network maintenance in spatially clustered balanced zones / Randomiserad heurisik schemaläggning för underhåll av eldistributionsnätverk i spatiala klustrade balancerade områdenOffenbacher, Carolina, Thornström, Ellen January 2022 (has links)
Reliable electricity distribution systems are crucial; hence, the maintenance of such systems is highly important, and in Sweden strictly regulated. Poorly planned maintenance scheduling leads unnecessary driving which contributes to increased emissions and costs. Maintenance planning is similar to the capacitated vehicle routing problem, CVRP, a combinatorial optimization problem. Each route has an origin location, in this case is the office of the maintenance worker. The origin is the starting and ending point of each route. In addition, conditions such as due date for inspection has an impact on how components in the network are prioritized. The maintenance planning problem is likely NP-hard. Given the above, the aim for this study is to develop a heuristic algorithm that efficiently generates daily inspection schedules on a yearly basis. There are multiple tools and algorithms already developed to solve these kinds of problems, for example the Google’s OR-Tools library, which provide optimal or near optimal solutions to VRP problems. The time complexity of those tools makes them impractical to use when planning maintenance of electrical networks since they can contain many thousands of components i.e., nodes. The main aim of this study is to develop an algorithm that provides a solution good enough compared to the solutions computed by the tools mentioned above but with a lower time complexity. In order to develop and test the algorithm an electrical distribution network data is required. Due to the sensitive nature of this data, a simulated network is generated in place of using real data. The simulated network is based on land use data from the city of Uppsala, Sweden, and is based on the spatial distribution of an existing electrical distribution network in Örebro, Sweden. The scheduling and routing algorithm developed works by dividing candidate nodes into subsets. The division is done by using Density-based spatial clustering of applications with noise (DBSCAN). The clustering is made by querying all objects that requires an inspection to be performed that year. As a post-processing step all noise points are appended to the closest neighboring cluster. Then a distance map is computed for the objects within each cluster. An inspection day route is computed by applying a greedy forward selection in each cluster, always selecting a random unvisited starting node until all nodes within the cluster has been visited. This is then repeated 100 times for each cluster, finally keeping the best iteration. The number of iterations is based on evaluating the gain per additional iteration which appear to be logarithmic. The greedy forward selection means that the algorithm has a linear time complexity after the clustering and distance map computation is done. The algorithm is evaluated by comparing the total driving time for the computed route to the output routes of a modified Concorde TSP solution and the solution of Google’s VRP solver. The results show that the algorithm performs better in areas with shorter average neighborhood distance and driving time of the output route decrease with higher number of iterations. Although the VRP based baselines methods return solutions with inspection routes that are roughly 25% shorter than the proposed method, for realistic problem sizes the proposed method uses less compute resources i.e., time and memory. Furthermore, while the proposed method has a linear time and space complexity whereas the baselines have exponential time complexity. Finally, the VRP based back-optimization solutions are not practical in real settings when inspection tasks are added / changed daily due to service tasks and unfinished routes or when the number of nodes is substantially larger than the roughly 1 000 nodes used in the evaluation.Due to the sensitive nature of electrical distribution data the performance of the algorithm could not be compared to actual maintenance schedules. But with all likelihood the computed schedules should be significantly more efficient than manually planned schedules. / Att ha pålitliga elnät är essentiellt för ett välfungerande samhälle därav är underhållet av sådana system av stor vikt och i Sverige strikt reglerat. Dåligt planerade besiktningar leder till onödig körning inom nätet vilket bidrar till ökade utsläpp och kostnader. Underhållsplanering liknar problemet, CVRP, ett kombinatoriskt optimeringsproblem. Varje rutt har en ursprungsplats, i detta fall är besiktningsmannens kontor. Kontoret är start- och slutpunkten för varje rutt. Dessutom har villkor som sista besiktningsdatum en inverkan på hur komponenter i nätet prioriteras. Underhållsplaneringsproblemet är sannolikt NP-svårt. Mot bakgrund av ovanstående är syftet med denna studie att utveckla en algoritm som effektivt genererar dagliga besiktningsscheman på årsbasis. Det finns redan flera verktyg och algoritmer som har utvecklats för att lösa den här typen av problem, till exempel Googles OR-Tools, som beräknar optimala eller nästan optimala lösningar på VRP-problem. Tidskomplexiteten hos dessa verktyg gör dem opraktiska att använda vid planering av underhåll av elnät eftersom dessa kan innehålla många tusen komponenter, dvs noder. Huvudsyftet med denna studie är att utveckla en algoritm som ger en lösning som är tillräckligt bra jämfört med de lösningar som beräknas av de verktyg som finns idag men med en lägre tidskomplexitet.För att utveckla och testa algoritmen krävs elnätsdata. På grund av denna datas känsliga natur genereras ett simulerat nätverk istället för att använda riktiga data. Det simulerade nätet är baserat på markanvändningsdata från Uppsala, Sverige, och på den rumsliga distributionen av ett befintligt eldistributionsnät i Örebro, Sverige. Schemaläggnings- och ruttalgoritmen som utvecklats fungerar genom att dela upp kandidatnoder i delmängder. Uppdelningen görs genom att använda densitetsbaserad spatial klustring (DBSCAN). Klustringen görs genom att välja ut alla objekt som behöver besiktigas det året. Som ett efterbehandlingssteg läggs alla bruspunkter till det närmaste intilliggande klustret. Sedan beräknas en distansmatris för objekten inom varje kluster. En besiktningsrutt beräknas genom att inom varje kluster alltid starta på en slumpmässig vald ej besökt startnod. Därefter väljs den närmsta nod tills alla noder inom klustret har besökts. Detta upprepas sedan 100 gånger för varje kluster, och slutligen behålls den bästa iterationen. Antalet iterationer baseras på att utvärdera förbättringen per ytterligare iteration - som verkar vara logaritmisk. Det här innebär att algoritmen har en linjär tidskomplexitet efter att klustringen och beräkningen av distansmatrisen har genomförts. Algoritmen utvärderas genom att jämföra den totala körtiden för den beräknade rutten med rutterna för en modifierad Concorde TSP-lösning och lösningen från Googles VRP-solver. Resultaten visar att algoritmen presterar bättre i områden med kortare genomsnittligt avstånd mellan noderna och körtiden för besiktningsrutterna minskar med ett högre antal iterationer. Även om de existerande VRP-algoritmerna returnerar lösningar med besiktningsrutter som är cirka 25 % kortare än den föreslagna metoden, så är dessa inte realistiska att använda när antalet noder närmar sig de av ett riktigt elnät.Dessutom, medan den föreslagna metoden har en linjär tids-och rymdkomplexitet medan de existerande VRP-algoritmerna har en exponentiell tidskomplexitet. Slutligen är de VRP-baserade algoritmerna inte praktiska i verkligheten när besiktningar läggs till eller ändras eller när antalet noder är avsevärt större än de cirka 1 000 noder som används i utvärderingen. På grund av den känsliga karaktären hos elnätsdata kunde algoritmens prestanda inte jämföras med faktiska besiktningsscheman. Men med all sannolikhet borde de beräknade besiktningsschemana vara betydligt effektivare än manuellt planerade scheman.
|
595 |
The Performance of Market Risk Models for Value at Risk and Expected Shortfall Backtesting : In the Light of the Fundamental Review of the Trading Book / Bakåttest av VaR och ES i marknadsriskmodellerDalne, Katja January 2017 (has links)
The global financial crisis that took off in 2007 gave rise to several adjustments of the risk regulation for banks. An extensive adjustment, that is to be implemented in 2019, is the Fundamental Review of the Trading Book (FRTB). It proposes to use Expected Shortfall (ES) as risk measure instead of the currently used Value at Risk (VaR), as well as applying varying liquidity horizons based on the various risk levels of the assets involved. A major difficulty of implementing the FRTB lies within the backtesting of ES. Righi and Ceretta proposes a robust ES backtest based on Monte Carlo simulation. It is flexible since it does not assume any probability distribution and can be performed without waiting for an entire backtesting period. Implementing some commonly used VaR backtests as well as the ES backtest by Righi and Ceretta, yield a perception of which risk models that are the most accurate from both a VaR and an ES backtesting perspective. It can be concluded that a model that is satisfactory from a VaR backtesting perspective does not necessarily remain so from an ES backtesting perspective and vice versa. Overall, the models that are satisfactory from a VaR backtesting perspective turn out to be probably too conservative from an ES backtesting perspective. Considering the confidence levels proposed by the FRTB, from a VaR backtesting perspective, a risk measure model with a normal copula and a hybrid distribution with the generalized Pareto distribution in the tails and the empirical distribution in the center along with GARCH filtration is the most accurate one, as from an ES backtesting perspective a risk measure model with univariate Student’s t distribution with ⱱ ≈ 7 together with GARCH filtration is the most accurate one for implementation. Thus, when implementing the FRTB, the bank will need to compromise between obtaining a good VaR model, potentially resulting in conservative ES estimates, and obtaining a less satisfactory VaR model, possibly resulting in more accurate ES estimates. The thesis was performed at SAS Institute, an American IT company that develops software for risk management among others. Targeted customers are banks and other financial institutions. Investigating the FRTB acts a potential advantage for the company when approaching customers that are to implement the regulation framework in a near future. / Den globala finanskrisen som inleddes år 2007 ledde till flertalet ändringar vad gäller riskreglering för banker. En omfattande förändring som beräknas implementeras år 2019, utgörs av Fundamental Review of the Trading Book (FRTB). Denna föreslår bland annat användande av Expected Shortfall (ES) som riskmått istället för Value at Risk (VaR) som används idag, liksom tillämpandet av varierande likviditetshorisonter beroende på risknivåerna för tillgångarna i fråga. Den huvudsakliga svårigheten med att implementera FRTB ligger i backtestingen av ES. Righi och Ceretta föreslår ett robust ES backtest som baserar sig på Monte Carlo-simulering. Det är flexibelt i den mening att det inte antar någon specifik sannolikhetsfördelning samt att det går att implementera utan att man behöver vänta en hel backtestingperiod. Vid implementation av olika standardbacktest för VaR, liksom backtestet för ES av Righi och Ceretta, fås en uppfattning av vilka riskmåttsmodeller som ger de mest korrekta resultaten från både ett VaR- och ES-backtestingperspektiv. Sammanfattningsvis kan man konstatera att en modell som är acceptabel från ett VaR-backtestingperspektiv inte nödvändigtvis är det från ett ES-backtestingperspektiv och vice versa. I det hela taget har det visat sig att de modeller som är acceptabla ur ett VaR-backtestingperspektiv troligtvis är för konservativa från ett ESbacktestingperspektiv. Om man betraktar de konfidensnivåer som föreslagits i FRTB, kan man ur ett VaR-backtestingperspektiv konstatera att en riskmåttsmodell med normal-copula och en hybridfördelning med generaliserad Pareto-fördelning i svansarna och empirisk fördelning i centrum tillsammans med GARCH-filtrering är den bäst lämpade, medan det från ett ES-backtestingperspektiv är att föredra en riskmåttsmodell med univariat Student t-fördelning med ⱱ ≈ 7 tillsammans med GARCH-filtrering. Detta innebär att när banker ska implementera FRTB kommer de behöva kompromissa mellan att uppnå en bra VaR-modell som potentiellt resulterar i för konservativa ES-estimat och en modell som är mindre bra ur ett VaRperspektiv men som resulterar i rimligare ES-estimat. Examensarbetet genomfördes vid SAS Institute, ett amerikanskt IT-företag som bland annat utvecklar mjukvara för riskhantering. Tänkbara kunder är banker och andra finansinstitut. Denna studie av FRTB innebär en potentiell fördel för företaget vid kontakt med kunder som planerar implementera regelverket inom en snar framtid. / Riskhantering, finansiella tidsserier, Value at Risk, Expected Shortfall, Monte Carlo-simulering, GARCH-modellering, Copulas, hybrida distributioner, generaliserad Pareto-fördelning, extremvärdesteori, Backtesting, likviditetshorisonter, Basels regelverk
|
596 |
Numeriska fouriertransformen och dess användning : En introduktion / Numerical fourier transform and its usage : An introductionTondel, Kristoffer January 2022 (has links)
The aim of this bachelor's thesis is to use three variants of the discrete Fourier transform (DFT) and compare their computational cost. The transformation will be used to numerically solve partial differential equations (PDE). In its simplest form, the DFT can be regarded as a matrix multiplication. It turns out that this matrix has some nice properties that we can exploit. Namely that it is well-conditioned and the inverse of the matrix elements is similar to the original matrix element, which will simplifies the implementation. Also, the matrix can be rewritten using different properties of complex numbers to reduce computational cost. It turns out that each transformation method has its own benefits and drawbacks. One of the methods makes the cost lower but can only use data of a fixed size. Another method needs a specific library to work but is way faster than the other two methods. The type of PDE that will be solved in this thesis are advection and diffusion, which aided by the Fourier transform, can be rewritten as a set of ordinary differential equations (ODE). These ODEs can then be integrated in time with a Runge-Kutta method. / Detta kandidatarbete går ut på att betrakta tre olika diskreta fouriertransformer och jämföra deras beräkningstid. Fouriertransformen används sedan också för att lösa partiella differentialekvationer (PDE). Fouriertransformerna som betraktas kan ses som en matrismultiplikation. Denna matrismultiplikation visar sig har trevliga egenskaper. Nämligen att matrisen är välkonditionerad och att matrisinversen element liknar ursprungsmatrisens element, vilket kommer underlätta implementationen. Matrisen kan dessutom skrivas om genom diverse samband hos komplexa tal för att få snabbare beräkningstid. PDE:na som betraktas i detta kandiatarbete är advektions och diffusions, vilket med speciella antaganden kan skrivas om till en ordinär differentialekvation som löses med en Runge-Kutta metod. Fouriertransformen används för att derivera, då det motsvarar en multiplikation. Det visar sig att alla metoder har fördelar och nackdelar. Ena metoden gör beräkningen snabbare men kan endast använda sig av datamängder av viss storlek. Andra metoden kräver ett specifikt bibliotek för att fungera men är mycket snabbare än de andra två.
|
597 |
Exogenous Fault Detection in Aerial Swarms of UAVs / Exogen Feldetektering i Svärmar med UAV:erWestberg, Maja January 2023 (has links)
In this thesis, the main focus is to formulate and test a suitable model forexogenous fault detection in swarms containing unmanned aerial vehicles(UAVs), which are aerial autonomous systems. FOI Swedish DefenseResearch Agency provided the thesis project and research question. Inspiredby previous work, the implementation use behavioral feature vectors (BFVs)to simulate the movements of the UAVs and to identify anomalies in theirbehaviors. The chosen algorithm for fault detection is the density-based cluster analysismethod known as the Local Outlier Factor (LOF). This method is built on thek-Nearest Neighbor(kNN) algorithm and employs densities to detect outliers.In this thesis, it is implemented to detect faulty agents within the swarm basedon their behavior. A confusion matrix and some associated equations are usedto evaluate the accuracy of the method. Six features are selected for examination in the LOF algorithm. The firsttwo features assess the number of neighbors in a circle around the agent,while the others consider traversed distance, height, velocity, and rotation.Three different fault types are implemented and induced in one of the agentswithin the swarm. The first two faults are motor failures, and the last oneis a sensor failure. The algorithm is successfully implemented, and theevaluation of the faults is conducted using three different metrics. Several setsof experiments are performed to assess the optimal value for the LOF thresholdand to understand the model’s performance. The thesis work results in a strongLOF value which yields an acceptable F1 score, signifying the accuracy of theimplementation is at a satisfactory level. / I denna uppsats är huvudfokuset att formulera och testa en lämplig modellför detektion av exogena fel i svärmar som innehåller obemannade flygfordon(UAV:er), vilka utgör autonoma luftburna system. Examensarbetet ochforskningsfrågan tillhandahölls av FOI, Totalförsvarets forskningsinstitut.Inspirerad av tidigare arbete används beteendemässiga egenskapsvektorer(BFV:er) för att simulera rörelserna hos UAV:erna och för att identifieraavvikelser i deras beteenden. Den valda algoritmen för felavkänning är en densitetsbaserad klusterana-lysmetod som kallas Local Outlier Factor (LOF). Denna metod byggerpå k-Nearest Neighbor-algoritmen och använder densiteter för att upptäckaavvikande datapunkter. I denna uppsats implementeras den för att detekterafelaktiga agenter inom svärmen baserat på deras beteende. En förväxlings-matris(Confusion Matrix) och dess tillhörande ekvationer används för attutvärdera metodens noggrannhet. Sex egenskaper valdes för undersökning i LOF-algoritmen. De första tvåegenskaperna bedömer antalet grannar i en cirkel runt agenter, medande andra beaktar avstånd, höjd, hastighet och rotation. Tre olika feltyperimplementeras och framkallas hos en av agenterna inom svärmen. De förstatvå felen är motorfel, och det sista är ett sensorfel. Algoritmen implementerasframgångsrikt och utvärderingen av felen genomförs med hjälp av treolika mått. Ett antal uppsättningar av experiment utförs för att hitta detoptimala värdet för LOF-gränsen och för att förstå modellens prestanda.Examensarbetet resultat är ett optimalt LOF-värde som genererar ettacceptabelt F1-score, vilket innebär att noggrannheten för implementationennår en tillfredsställande nivå.
|
598 |
Suspension System Optimization of a Tracked Vehicle : A particle swarm optimization based on multibody simulationsNilsson, Joel January 2024 (has links)
Tracked vehicles are designed to operate in various terrains, ranging from soft mud to hard tarmac. This wide range of terrains presents significant challenges for the suspension system, as its components must be suitable for all types of terrain. The selection of these components is crucial for minimizing acceleration levels within the vehicle, ensuring that personnel can comfortably endure extended durations inside. BAE Systems Hägglunds AB develops and produces an armored tracked vehicle called the CV90. Within the CV90’s suspension system, a key component known as the torsion bar, a rotational spring, plays a primary role in reducing the vehicle’s motion. The CV90 vehicle has seven wheels on each side, with each wheel having its dedicated torsion bar. To measure the whole-body vibration experienced within the vehicle, a measurement called the Vibrational Dose Value (VDV) is utilized. The main objective of this thesis is to develop a data-driven model to optimize the suspension system by identifying the combination of torsion bars that generates the smallest VDV. The data used for optimization is based on simulations of the CV90 vehicle in a virtual environment. In the simulation, the CV90 vehicle, with its full dynamics, is driven over a specific virtual road at a particular velocity. The simulation itself cannot be manipulated; only the input values can be adjusted. Thus, we consider the simulation as a black box, which led us to implement the black-box optimization algorithm known as Particle-Swarm. In this thesis, four different roads, each with velocities ranging from four to seven different levels, were provided to the optimization model. The results show that the model identifies a combination of torsion bars that generates a small VDV for all combinations of velocities and roads, with an average VDV improvement of around 20% - 60% compared to a reference case. Since this thesis serves as a proof of concept, the conclusion is that the devised method is effective and suitable for addressing the problem at hand. Nonetheless, for seamless integration of this method into the tracked vehicle development process, further research is necessary.
|
599 |
Decomposition Methods for a Makespan Arc Routing ProblemTondel, Gero Kristoffer January 2024 (has links)
This thesis explores the use of a column generation method, a subgradient method, and a logic-based Benders decomposition method on a minimized makespan K-rural postman problem. The K-rural postman problem here describes a search and rescue mission using multiple identical unmanned aerial vehicles (UAVs) to cover an area, represented as a complete graph. Each decomposition method has a separate problem for each UAV. In the subgradient and column generation case, a heuristic is used to find an improved upper bound for the makespan. This upper bound can in turn be used to decrease the feasible regions of the subproblems. Moreover, because the subproblems are slow to solve, a maximum calculation time is used, resulting in a feasible solution and a lower bound for each subproblem. These two modifications to the decomposition methods result in a non-standard behaviour. Multiple fictional problem instances of different sizes and numbers of UAVs were generated and used for evaluating the methods. A maximal time limit is used in these instances. We conclude that solving the original, non-decomposed, problem for smaller instances with a standard solver is faster and gives better results than the decomposition methods. For larger instances, solving the non-decomposed model led to memory issues on several occasions. However, the suggested subgradient and column generation methods can solve every problem. The logic-based Benders decomposition method performed best on instances with multiple UAVs, but had issues when fewer UAVs are utilized. / Den här masteruppsatsen utforskar användningen av en kolumngenereringsmetod, en subgradientmetod och en logikbaserad Benders dekompositionsmetod på en variant av lantbrevbärarproblemet. Vårat brevbärarprolem beskriver sök- och räddningsuppdrag där $K$ drönare används för att avsöka ett område med målfunktionen att minimera flygtiden för den långsammaste drönaren. Varje dekompositionsmetod använder sig av ett problem för varje drönare. I subgradient- och kolumngenereringsmetoden användes en heuristik för att hitta en bättre övre begränsning till drönarnas flygtid. Den förbättrade övre begränsningen kunde sedan användas för att minska det tillåtna området för de mindre problemen. Eftersom de mindre problem var svårlösta, användes en maximal beräkningstid vilket resulterade i att en tillåten lösning och undre gräns gavs för varje mindre problem. Dessa två modifikationer resulterade i icke typiska beteenden. Metoderna utvärderades på flera fiktiva testinstanser av olika storlekar där antalet drönare varierar. En tidsbegränsning används på varje probleminstans. Slutsatserna från uppsatsen är de original brevbärare problemet ger bäst lösning och snabbast lösningstid i de mindre instanserna. Vid lösning av större probleminstanser, gav original problemet flerfaldiga gånger minnesproblem. Subgradient- och kolumngenereringsmetoden kunde däremot lösa varje probleminstans inom tidsbegränsningen, vilket gjorde de mer pålitliga. Logikbaserade Benders dekompositionsmetoden presterade bättre i instanser med flera drönare, men stötte på problem i instanser med färre drönare.
|
600 |
Model-Informed Medical Technology Development : A simulation study to evaluate the impact of model-based clinical study design and analysis on effect size estimates / Modellinformerad medicinteknisk utveckling : En simuleringsstudie för att utvärdera hur modellbaserad design och analys av kliniska studier påverkar uppskattningar av effektstorlekCarvalho Lima Vieira Araujo, Manuel Maria January 2024 (has links)
Randomised controlled trials (RCT) are considered the gold standard for assessing the efficacy and safety of medical interventions. However, RCTs face unique challenges when applied to medical technologies, such as issues related to timing of assessment, eligible population, acceptability, blinding, choice of comparator group, and consideration for learning curves. To address these challenges, this thesis explores the adaptation of the model-informed drug development (MIDD) approach to the field of medical technology, using a case study on transurethral microwave thermotherapy (TUMT). The research employs non-linear mixed- effects (NLME) modelling and D-optimal design to optimise study designs and improve the reliability and efficiency of clinical trials. The impact of different sampling times, sample sizes, and learning curves on effect size estimates is analysed. The results show that optimising sampling points and sizes significantly improves the precision and reliability of effect size estimates and describes how MIDD can be a useful tool for this purpose. The study also highlights the limitations of the TUMT study design, suggesting ways in which the model-based approach could offer more robust and reliable clinical evidence generation. This research highlights the potential of the MIDD approach to streamline the medical technology clinical development process, enhance the quality of evidence, and address its inherent complexities. Future work should expand on these findings by exploring more complex error models and additional study designs and its related aspects. / Randomiserade kontrollerade studier (RCT) anses vara standard för att bedöma effekt och säkerhet i kliniska interventionsstudier. RCT:er står dock inför unika utmaningar när de tillämpas på medicinteknik såsom utmaningar relaterade till tidpunkt för bedömning, rekrytering av lämpliga studiedeltagare, acceptans, blindning, val av jämförelsegrupp och hänsyn till inlärningskurvor. För att hantera dessa utmaningar undersöker denna avhandling anpassningen av modellinformerad läkemedelsutveckling (MIDD) till området medicinteknik, med hjälp av en fallstudie om transuretral mikrovågstermoterapi (TUMT). I arbetet tillämpas icke-linjär, hierarkisk (NLME) modellering och D-optimal design för att optimera studiedesigner och förbättra tillförlitligheten i kliniska prövningar. Effekten av olika observationstider, antal studiedeltagare och inlärningskurvor på estimeringen av effektstorlek analyseras. Resultaten visar att optimering av observationstidpunkter och studiestorlek avsevärt förbättrar precisionen och tillförlitligheten av den estimerade effektstorleken och visar på hur MIDD kan vara ett användbart verktyg för detta ändamål inom medicinteknisk utveckling. Studien belyser också begränsningarna i studiedesignen för fallstudien och föreslår hur en modellbaserad metod skulle kunna erbjuda mer robust och tillförlitlig generering av klinisk evidens. Denna forskning belyser potentialen hos MIDD-metoder för att effektivisera den medicintekniska kliniska utvecklingsprocessen, förbättra kvaliteten av evidens, och hantera dess inneboende komplexitet. Framtida arbete bör utvidga dessa resultat genom att utforska mer komplexa modeller, ytterligare studiedesigner, och relaterade aspekter.
|
Page generated in 0.0879 seconds