Spelling suggestions: "subject:"continuum damage mechanics."" "subject:"kontinuum damage mechanics.""
81 |
Anisotropie induite par l'endommagement ductile : mécanismes physiques, modélisation et simulation numérique / Ductile damage induced anisotropy : physical mechanisms, modeling and numerial simulationRajhi, Wajdi 19 September 2014 (has links)
L’objectif de ce travail est de développer une modélisation prédictive du comportement et de la rupture ductile des matériaux métalliques à anisotropies initiales et induites par l’endommagement. La thermodynamique des processus irréversibles est utilisée comme cadre pour la formulation proposée. Le modèle de comportement est élastoplastique anisotrope avec écrouissage non linéaire isotrope et cinématique en grandes déformations plastiques, avec une théorie non associée à normalité associée, basée sur des normes de contraintes quadratiques. L’endommagement ductile anisotrope est décrit par un tenseur du second ordre symétrique dont l’évolution est décrites par des relations de type Lemaitre-Desmorat. Le couplage fort comportement-endommagement est réalisé dans le cadre de l’hypothèse de l’équivalence en énergie totale où l’effet de l’endommagement sur le comportement est introduit par un tenseur « effet d’endommagement » d’ordre quatre symétrique de type Murakami. Après une caractérisation expérimentale des mécanismes physiques de l’endommagement dans l’acier AISI 316L, le modèle de comportement avec endommagement a été identifié. Une fois discrétisé et implémenté dans le code de calcul de structures ABAQUS/Explicit®, une étude paramétrique et de nombreuses simulations numériques de l’endommagement anisotrope en mise en forme de quelques structures ont été réalisées et discutées en détail / The objective of this work is to develop a predictive modeling of behavior and ductile fracture of metallic materials with initial anisotropy and induced by the ductile anisotropic damage. Thermodynamics of irreversible processes is used as a framework for the proposed formulation. The model is anisotropic elastoplastic with non-linear isotropic and kinematic hardening under large plastic strains. It is formulated in the framework of the non-associative plasticity theory with associative normality rule and based on quadratic equivalent stress. The anisotropic ductile damage is described by a symmetric second-rank tensor whose evolution is described by Lemaitre /Desmorat type relationships. The strong damage-behavior coupling is done under the assumption of total energy equivalence where the effect of the anisotropic damage is introduced by a fourth-rank symmetric damage-effect tensor of Murakami kind.After an experimental characterization of the main physical mechanisms of anisotropic damage in stainless steel AISI 316L, the behavior model with damage has been identified. Once discretized and implemented in the computer code ABAQUS / Explicit ®, a parametric study and many numerical simulations of anisotropic damage in some metal forming processes have been carried out and discussed in detail
|
82 |
UNIFIED SECONDARY AND TERTIARY CREEP MODELING OF ADDITIVELY MANUFACTURED NICKEL-BASED SUPERALLOYSHarshal Ghanshy Dhamade (11002041) 05 August 2021 (has links)
<div>Additively manufactured (AM) metals have been increasingly fabricated for structural applications. However, a major hurdle preventing their extensive application is lack of understanding of their mechanical properties. To address this issue, the objective of this research is to develop a computational model to simulate the creep behavior of nickel alloy 718 manufactured using the laser powder bed fusion (L-PBF) additive manufacturing process. A finite element (FE) model with a subroutine is created for simulating the creep mechanism for 3D printed nickel alloy 718 components.</div><div><br></div><div>A continuum damage mechanics (CDM) approach is employed by implementing a user defined subroutine formulated to accurately capture the creep mechanisms. Using a calibration code, the material constants are determined. The secondary creep and damage constants are derived using the parameter fitting on the experimental data found in literature. The developed FE model is capable to predict the creep deformation, damage evolution, and creep-rupture life. Creep damage and rupture is simulated as defined by the CDM theory.</div><div>The predicted results from the CDM model compare well with experimental data, which are collected from literature for L-PBF manufactured nickel alloy 718 of creep deformation and creep rupture, at different levels of temperature and stress. </div><div><br></div><div>Using the multi-regime Liu-Murakami (L-M) and Kachanov-Rabotnov (K-R) isotropic creep damage formulation, creep deformation and rupture tests of both the secondary and tertiary creep behaviors are modeled.</div><div>A single element FE model is used to validate the model constants. The model shows good agreement with the traditionally wrought manufactured 316 stainless steel and nickel alloy 718 experimental data collected from the literature. Moreover, a full-scale axisymmetric FE model is used to simulate the creep test and the capacity of the model to predict necking, creep damage, and creep-rupture life for L-PBF manufactured nickel alloy 718. The model predictions are then compared to the experimental creep data, with satisfactory agreement.</div><div><br></div><div>In summary, the model developed in this work can reliably predict the creep behavior for 3D printed metals under uniaxial tensile and high temperature conditions.</div>
|
83 |
Advanced modelling for sheet metal forming under high temperature / Modélisation avancée pour la mise en forme des tôles à haute températureLiu, Weijie 14 September 2017 (has links)
L’objectif de cette thèse est de proposer deux approches complémentaires de modélisation et de simulation numériques des procédés de mise en forme de structures minces. La première est une approche inverse multi-pas, délibérément simplifiée, pour simuler et "optimiser" rapidement et à moindre coût des procédés d’emboutissage de tôles minces, tout en maintenant une bonne précision dans le calcul des contraintes. Un solveur statique implicite est développé en introduisant plusieurs configurations intermédiaires construites efficacement en utilisant une technique de programmation quadratique avec projection. La deuxième approche, de nature incrémentale, repose sur (i) une formulation d’équations de bilan et d’équations de comportement multi-physiques fortement couplés formulées dans le cadre des milieux micromorphes ; (ii) une discrétisation spatiale par EF et temporelle par DF avec un solveur global dynamique explicite et une intégration locale itérative implicite. Une attention particulière est accordée aux aspects thermiques avec l’introduction d’une microtempérature et ses premiers gradients conduisant à l’obtention de deux équations thermiques fortement couplées généralisant de nombreux modèles non locaux proposés dans la littérature. L'approche inverse multi-pas a été implémentée dans le code maison KMAS et l’approche incrémentale non locale a été implémentée dans ABAQUS/Explicit. Des études paramétriques sont menées et des validations sur des exemples simples et sur des procédés d’emboutissage sont réalisées / The aim of this thesis is to propose two complementary approaches for modeling and numerical simulations of thin sheet metal forming processes. The first one is a deliberately simplified multi-step inverse approach to simulate and "optimize" rapidly and inexpensively thin-sheet stamping processes while maintaining good accuracy in the stress calculation. An implicit static solver is developed by introducing several efficiently constructed intermediate configurations using a quadratic programming technique with projection. The second approach, which is of an incremental nature, is based on (i) a formulation of equilibrium equations and strongly coupled multiphysical behavior equations formulated in the context of micromorphic continua; (ii) spatial discretization by FEM and time discretization by FD with an explicit dynamic global solver and implicit iterative local integration scheme. Particular attention is paid to the nonlocal thermal aspects with the introduction of a micro-temperature and its first gradients leading to two strongly coupled thermal equations generalizing several thermal nonlocal models proposed in the literature. The multi-step inverse approach was implemented in the KMAS in house code while the nonlocal incremental approach was implemented in ABAQUS/Explicit. Parametric studies are performed and validations are carried out on simple examples and on deep drawing processes
|
84 |
Modellierung des Ermüdungsverhaltens textilverstärkter KunststoffeKoch, Ilja 21 December 2010 (has links)
Textile Verstärkungsstrukturen werden aufgrund der hohen Variabilität der Fadenablage, dem erreichbaren hohen Automatisierungsgrad und der guten mechanischen Kennwerte in hochbeanspruchten Faser-Kunststoff-Verbundstrukturen eingesetzt. Eine besondere Rolle spielen hier 3D-Textilverstärkungen mit gestreckter Fadenanordnung etwa in Form von 3D-Geweben, Mehrlagengestricken und -gewirken. Sie bieten neben hervorragenden Steifigkeiten und Festigkeiten durch den in Dickenrichtung angeordneten und den Fadenverbund sichernden Maschenfaden einen hohen Widerstand gegen Delaminationen sowie eine gute Drapierbarkeit.
In der Arbeit wird ein neuartiges Degradationsmodell für textilverstärkte Kunststoffe bei zyklischer Belastung auf Basis kontinuums-schädigungsmechanischer Ansätze entwickelt. Dazu wird zunächst die Schädigungsphänomenologie exemplarisch für Glasfaser-Mehrlagengestrickverstärktes Epoxidharz sowohl bei einachsiger als auch erstmals bei frequenz- und phasengleicher mehrachsiger zyklischer Belastung untersucht und klassifiziert. In umfangreichen Versuchsreihen sind belastungsspezifische Schäden - in den bereits für quasistatische Beanspruchung identifizierten Bruchmoden - zu beobachten, die sich in charakteristischer Weise über den Verlauf der zyklischen Belastung aufsummieren und eine deutliche Abhängigkeit von der Belastungsart und -richtung aufweisen. In den mehrachsigen Belastungsversuchen konnte die bislang unbekannte unterschiedliche Kopplung der Zug- und Schubsteifigkeitsverläufe bzw. Druck- und Schubsteifigkeitsverläufe quantifiziert und mit den auftretenden Schädigungsphänomenen korreliert werden. Die zur Kalibrierung des Materialmodells notwendigen Kennwerte und Modellparameter werden anhand von ein- und mehrachsigen Einstufenversuchen durch Auswertung der Spannungs-Dehnungs-Hysterese sowie der Schwingfestigkeitsschaubilder ermittelt.
Das Potential der hier vorgenommenen schichtweisen Lebensdauermodellierung unter Berücksichtigung von Schädigungsinitiierung und Schädigungsevolution wird in ausgewählten Validierungsversuchen demonstriert. Neben der realistischen Abbildung des Degradationsverhaltens ist eine sehr gute Vorausberechnung der richtungsabhängigen Restfestigkeit nach zyklischer Belastung möglich. Das hier entwickelte Degradationsmodell liefert damit erstmals die wesentlichen schichtbezogenen Informationen zum Werkstoffzustand während zyklischer Belastung und ist ein essentieller Grundbaustein für die umfassende Lebensdaueranalyse von textilverstärkten Strukturbauteilen. / Due to the high variability of the thread placement, the achievable high degree of automation and the good mechanical properties textile reinforcements are used in highly loaded fiber reinforced polymer structures. A specific role is played here by 3D textile reinforcements with stretched thread arrangements, for example in the form of 3D fabrics and multi-layered weft knits. In addition to excellent stiffness and strength, they provide a high resistance to delamination as well as good drapability due to the mesh thread arranged in the thickness direction securing the thread system.
In this work a novel degradation model for cyclically loaded textile-reinforced polymers on the basis of continuum damage mechanics approaches is developed. For this purpose, the damage phenomenology is investigated and classified for glass fiber multi-layer weft knit reinforced epoxy resin in uniaxial as well as in-phase multiaxial cyclic loading. In extensive tests load-specific damage can be observed - in the fracture modes already identified for quasistatic stress - which characteristically develop over the course of the cyclic load and show a clear dependence on the type and direction of loading. In the multi-axial load tests, the hitherto unknown coupling of the tensile and shear stiffness or compression and shear stiffness could be quantified and correlated with the occurring damage phenomena. The characteristic values and model parameters necessary for calibrating the material model are determined by means of single- and multi-axial constant amplitude tests by evaluating the stress-strain hysteresis and the S-N curves.
The potential of the presented layer-wise fatigue damage model is demonstrated in selected validation experiments. In addition to the realistic modelling of the degradation behaviour, a very good prediction of the direction-dependent residual strength after cyclic loading is achieved. For the first time, the degradation model developed here provides the essential layer-related information on the state of the material during cyclic loading and is an essential building block for the comprehensive lifetime analysis of textile-reinforced composite structures.
|
85 |
A Hybrid Constitutive Model For Creep, Fatigue, And Creep-fatigue DamageStewart, Calvin 01 January 2013 (has links)
In the combustion zone of industrial- and aero- gas turbines, thermomechanical fatigue (TMF) is the dominant damage mechanism. Thermomechanical fatigue is a coupling of independent creep, fatigue, and oxidation damage mechanisms that interact and accelerate microstructural degradation. A mixture of intergranular cracking due to creep, transgranular cracking due to fatigue, and surface embrittlement due to oxidation is often observed in gas turbine components removed from service. The current maintenance scheme for gas turbines is to remove components from service when any criteria (elongation, stress-rupture, crack length, etc.) exceed the designed maximum allowable. Experimental, theoretical, and numerical analyses are performed to determine the state of the component as it relates to each criterion (a time consuming process). While calculating these metrics individually has been successful in the past, a better approach would be to develop a unified mechanical modeling that incorporates the constitutive response, microstructural degradation, and rupture of the subject material via a damage variable used to predict the cumulative “damage state” within a component. This would allow for a priori predictions of microstructural degradation, crack propagation/arrest, and component-level lifing. In this study, a unified mechanical model for creep-fatigue (deformation, cracking, and rupture) is proposed. It is hypothesized that damage quantification techniques can be used to develop accurate creep, fatigue, and plastic/ductile cumulative- nonlinear- damage laws within the continuum damage mechanics principle. These damage laws when coupled with appropriate constitutive equations and a degrading stiffness tensor can be used to predict the mechanical state of a component. A series of monotonic, creep, fatigue, and tensile-hold creepfatigue tests are obtained from literature for 304 stainless steel at 600°C (1112°F) in an air. iv Cumulative- nonlinear- creep, fatigue, and a coupled creep-fatigue damage laws are developed. The individual damage variables are incorporated as an internal state variable within a novel unified viscoplasticity constitutive model (zero yield surface) and degrading stiffness tensor. These equations are implemented as a custom material model within a custom FORTRAN onedimensional finite element code. The radial return mapping technique is used with the updated stress vector solved by Newton-Raphson iteration. A consistent tangent stiffness matrix is derived based on the inelastic strain increment. All available experimental data is compared to finite element results to determine the ability of the unified mechanical model to predict deformation, damage evolution, crack growth, and rupture under a creep-fatigue environment.
|
86 |
Homogenization Based Damage Models for Monotonic and Cyclic Loading in 3D Composite MaterialsJain, Jayesh R. 12 January 2009 (has links)
No description available.
|
87 |
Multi-Scale Physics Based Modeling of Tire Rolling Resistance Considering AgingAlkandari, Waleed M. M. A. 22 March 2022 (has links)
Every moment of every day, at least hundreds of thousands of tires roll across a surface throughout the world. Tires are indisputably important in our daily life. The tire's primary component is rubber, which consumes energy when it rotates on a substrate due to the viscoelastic material's internal friction: a phenomenon referred to as rolling resistance. The interaction between the tire and the road surface is one of the most intricate and crucial phenomena in an automobile, because it is responsible for creating forces, moments, and deformation in the tire. Additionally, the road's roughness interacts with the tire and contributes significantly to its performance.
This dissertation aims to develop a comprehensive physics-based model for predicting the rolling resistance of a viscoelastic material due to dynamic deformations caused by tire rotation using an analytical approach. The model was developed by proposing a Gaussian wave function propagating across a tire circumference's viscoelastic medium. The wave function was selected to describe the displacement field produced by tire-road interaction. Additionally, by adopting a multi-scale modeling technique, the model was upgraded to estimate rolling resistance while taking into account surface roughness at all length scales, from macroscopic to microscopic. Additionally, another mathematical model was developed using the Fourier series approach to evaluate the steady-state stress response and energy dissipation for any harmonic and non-harmonic periodic strain signals.
Additionally, the dissertation strove to build a continuum damage mathematical model using a combined testing/modeling methodology to predict the aging of Styrene-Butadiene Rubber (SBR) after continuous exposure to the atmosphere. The obtained model was developed through the implementation of optimization techniques while formulating a mathematical model, which was then combined with a physics-based model to predict rolling resistance while taking into account rubber aging.
Calibration of hyperelastic and viscoelastic material models with testing data was performed using an optimization technique that yielded sufficient results. The results of all mathematical models obtained in this dissertation are reported subsequently. The stress response of a viscoelastic material under harmonic and non-harmonic strain input yielded good agreement with the FEA model obtained using ABAQUS. The rolling resistance behavior under various operating conditions, including texture and aging effects, was reported, and the results aligned with the experimental results found in the literature. / Doctor of Philosophy / Every moment of every day, hundreds of thousands of automobile tires roll across a surface somewhere in the world. A tire is an undeniably important part of everyday life. Rubber is the tire's main component, and when it rotates on a surface, it loses energy, resulting in a force that resists motion, known as rolling resistance force. The contact between the tire and the road is one of the most complicated and important phenomena that happens in an automobile because it is responsible for the vehicle's dynamic performance in areas such as acceleration, stopping distance, and stability. Another factor that affects tire and car performance and should be taken into account is the road's roughness.
This dissertation used an analytical method to come up with an accurate physics-based model for predicting the rolling resistance force of a viscoelastic material caused by tire rotation. The model was developed by assuming a Gaussian wave function would move across the tire circumference. Additionally, using a multi-scale modeling technique, the model was improved so that it could calculate the value of rolling resistance force considering surface roughness in all lengths of scale. This project also developed an additional mathematical model using the Fourier series method to determine how the stress response and energy dissipation would behave for any harmonic and nonharmonic periodic strain signals. Additionally, the dissertation presents the developing of a continuum damage mathematical model that could predict the material property of styrene-butadiene rubber (SBR) after being exposed to the air for a long time (i.e., aged). The model was developed based on experimental data and optimization techniques. This model was then combined with a physics-based model to predict rolling resistance force while taking aging into account. The material models were defined using an optimization method that yielded good results. The stress response of a viscoelastic material when it was subjected to harmonic and non-harmonic strain was in good agreement with the Finite Element Analysis (FEA) model made with ABAQUS. Rolling resistance behavior was observed, and the results were consistent with those found in the literature.
|
88 |
Ductile fracture criteria in multiaxial loading – theory, experiments and application / Ductile fracture criteria in multiaxial loading – theory, experiments and applicationŠebek, František Unknown Date (has links)
Práce se zabývá tvárným lomem, který je výsledkem víceosého kvazi-statického monotónního namáhání doprovázeného rozsáhlými plastickými deformacemi, přičemž pro degradaci materiálu je uvažován lokální přístup. Ve výpočtech o rozvoji poškození rozhodují použité mezní podmínky tvárného lomu. Tyto byly teoreticky studovány v úvodu práce a po výběru vhodné mezní podmínky byl stanoven postup kalibrace. Dále byl rozpracován plán měření a realizovány zkoušky při pokojové teplotě na slitině hliníku 2024-T351, zahrnující tah, krut a tlak, pro studium rozvoje poškození a věrohodnou kalibraci vybraného fenomenologického modelu tvárného porušování, vyjádřeného pomocí lomového přetvoření a závislého na hydrostatickém tlaku a deviátoru tenzoru napětí. Mezní podmínka tvárného lomu byla posléze svázána s podmínkou plasticity. Plasticita byla pro zkoumaný materiál uvažována ve tvaru zohledňujícím i stav třetího invariantu deviátoru tenzoru napětí. Celý navržený přístup, plně aplikovatelný na víceosé úlohy, byl implementován pomocí uživatelské rutiny do komerčního programu založeného na explicitní variantě metody konečných prvků. V závěru práce je předložena aplikace navrženého přístupu k modelování tvárného porušování v podobě verifikace na vybraných zkušebních testech, z níž plynou závěry a doporučení pro další práci.
|
89 |
Fonctionnalisation de matériaux composites à renfort carbone et matrice thermoplastique par adjonction de nanocharges : élaboration et étude du comportement / Functionalization of carbon fibers reinforced thermoplastic polymer by the use of nanofillers : fabrication and behavior studyHamdi, Khalil 12 December 2017 (has links)
Pour étendre l'utilisation des composites dans des applications plus variées (applications intelligentes et multifonctionnelles), l'une des barrières est leur faible conductivité électrique et thermique. Dans le cas de composites renforcés par des fibres de carbone, la matrice organique est responsable des propriétés isolantes du composite résultant. L'une des solutions pour améliorer les conductivités des matériaux est l'utilisation des nanocharges conductrices. L'amélioration des propriétés électriques et thermiques des polymères nanochargés est une problématique récurrente dans la littérature. Cependant, étudier les propriétés des composites à fibre de carbone continue et nanochargés est moins abordée. Ce travail porte sur la fabrication et la caractérisation des composites nanochargés par du noir de carbone et des nanotubes de carbone. Tout d'abord, un intérêt particulier a été accordé à la phase délicate de la fabrication. Comme mentionné ci-dessus, la mise en œuvre des composites à renfort continu et matrice nanochargée implique des problèmes liés à l'agglomération et à la dispersion inhomogène des nanocharges dans le composite final. Pour résoudre ces problèmes, le choix de la matrice thermoplastique (Polyamide 6) était judicieux. En fait, la dispersion des nanocharges a été faite par extrusion bi-vis qui est connue comme l'une des voies les plus efficaces de séparation d'agglomérats. De plus, la méthode de fabrication à base de films de Polyamide 6, appelée film stacking, assure une partition homogène dès le début du processus. Des observations MEB ont été effectuées pour localiser les nanoparticules. Ceux-là ont montré que les particules pénétraient dans la zone des fibres. En effet, en atteignant le cœur des torons, les nano-charges ont créé un réseau de connectivité entre les fibres pour le passage de courant. Ceci explique l'amélioration constatée de la conductivité électrique des composites en présence de noir de carbone et des nanotubes de carbone. Ces essais ont été réalisés avec la méthode à 4 points. La conductivité électrique du composite à matrice « pure » est passée de 20S / cm à 80S / cm en ajoutant 8% en poids de noir de carbone et à 15S / cm en ajoutant 18% en poids de la même charge nanométrique. Pour les nanotubes de carbone, avec 2,5% en poids, la conductivité était d'environ 150S / cm. Pour les propriétés thermiques, des tests basés sur l'effet Joule ont été réalisés. L'augmentation de la température a été enregistrée en utilisant une caméra IR. Les résultats obtenus sont en accord avec ceux de la conductivité électrique, montrant une amélioration du comportement thermique en présence de nanocharges. Grâce à ces résultats, l'utilisation de ces composites comme outil de suivi d’endommagement était possible. Par ailleurs, la méthode de variation de la résistance électrique a été effectuée. Les matériaux nanochargés ont montré une meilleure sensibilité aux endommagements. Les résultats ont été comparés aux outils classiques de suivi d’endommagement. A la fin, plusieurs applications « intelligentes » ont été testées telles que : le composite à gradients de propriétés et des matériaux nanochargés cousus. / To extend the use of composites in more varied application (smart applications, multifunctional issues), one of the actual barrier is their poor electrical and thermal conductivities. In the case of carbon fiber reinforced composites, organic matrix are in charge of the insulating properties of the resulting composite. One of the solutions to enhance conductivities of materials is the use of conductive nanofillers. Improving the electrical and thermal properties of nanofilled polymers has been investigated in several studies. However, studiing the properties of continuous carbon fiber nano-filled composites is less approached. This work tends to fabricate and characterize carbon black and carbon nanotubes nano-filled composites. First of all, special interest was given to the delicate phase of manufacturing. As mentioned before, processing continuous fiber reinforced nanofilled polymers implies issues related to nanofillers agglomeration and inhomogeneous dispersion in the final composite. To resolve these problems, the choice of the thermoplastic (Polyamide6) matrix seemed preferable. In fact, the dispersion of nanofillers was made by twin screw extrusion which is known as one of the most effective agglomeration separation ways. Adding to this, the fabrication method based on Polyamide 6 shects called film stacking, ensure a homogeneous partition at the beginning of the process. SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone. In fact, by reaching the fiber zone, the nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black and carbon nanotube. This test was performed with the 4 points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 20S/cm to 80S/cm by adding 8wt% of carbon black and to 15S/cm by adding 18wt% of the same nano-filler. For carbon nanotubes, with '2.5wt% the conductivity was around 150S/cm. For the thermal properties, tests based on Joule's effect were performed. The rise of temperature was recorded using IR camera. Results obtained are in agreement with the electrical conductivity ones, showing enhancement of the thermal behavior in presence of nanofillers. Thanks to these results, the use of these composites as a damage-monitoring tool was possible. By the way, the electrical resistance change method was performed. Nanofilled materials showed better sensitivity to damage. Results were compared with classical damage monitoring tools. At the end, several 'smart' applications were tested such as graded functionalities composite and stitched nanofilled materials.
|
90 |
Non-Linear Finite Element Analysis Using Strain-Space Plasticity Coupled With DamageDawari, Balkrishna Maruti 11 1900 (has links)
The Thesis deals with Strain-Space Plasticity and its implementation in Nonlinear Finite Element frame-work coupled with damage. Conventional Stress-Space Plasticity, though very popular amongst commercial nonlinear FEM software package, has severe limitations especially in dealing with perfect-plasticity situations and also for softening behaviour.
Strain-Space Plasticity, when fully evolved, has the potential to replace the Stress-space Plasticity. The thesis is a welcome addition in furthering the understanding of Strain-Space Plasticity and its illustration to analyze practical engineering problems.
Continuum Damage Mechanics (CDM) is an evolving area of Solid Mechanics with great potential for application in failure and integrity analyses. Research activities have been initiated by several research groups world-wide, thus demonstrating its acceptance as an area of mechanics in its own right .This thesis further demonstrates coupling of Continuum Damage Mechanics with Strain-Space Plasticity.
The thesis has been organized into 11 chapters with a good review of Plasticity (Stress-Space as well as Strain-Space), CDM, Stainless-steel Plasticity as well as Adhesive Plasticity. Main research contributions include: Formulation, FEM implementation and benchmarking of Strain Space Plasticity for Plane-Stress, Plane Strain, Axi-symmetric as well as 3-D case. Both isotropic and kinematic hardening models have been implemented. Further, these implementations have been extended by coupling with Damage. Special illustrations have been made to practical situations involving constitutive modeling of Stainless-steel and structural-adhesive.
|
Page generated in 0.0713 seconds