• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 36
  • 17
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 214
  • 29
  • 29
  • 19
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

An Impossible Profession: How To Plan the Unplanned? / Det Omöjliga Yrket: Hur Det Oplanerade Kan Planeras

Bleeker, Jate January 2016 (has links)
A short film about how to design informality in the city. By comparing the chaotic Lagos with the orderly Stockholm the film rethinks the role of the designer and shows that planning as a sphere of building consistently destroys lived space. It illuminates the tension between the orderly and the chaotic, the ideal and reality.
192

Romanticism’s Children: Nostalgia and Fantasy in Music from Schumann to The Legend of Zelda

Shahmehri, Demetrius January 2024 (has links)
This dissertation comparatively examines musical nostalgia, particularly nostalgia for childhood, in video games and post-Romantic classical music. An introductory chapter lays out several key concepts drawn from video games—loops, gameworlds, and role-play—and suggests the correspondences these have in Romantic music and thought. The central chapters offer case studies of pieces by Robert Schumann, Brahms, Debussy, and Ravel, each along with a corresponding concept drawn from video games. Each chapter articulates ways that works by these composers provide analogies for practices in contemporary role-playing and adventure video games and, conversely, suggests that features drawn from those games might illuminate how these pieces create musical meaning out of dwelling on the past or imagining distant places. The central chapters draw video games and classical music more closely together over their course. In an analysis of Schumann’s Kinderszenen, I suggest that Schumann’s music could be conceived as offering the player a form of role-play, allowing its players and listeners to play as an imagined child and gain access to otherwise inaccessible space. Brahms’s works often dwell in the past (and are often analyzed as such), especially when that past is metaphorically conceived as childhood or the classical tradition. I suggest that we might hear Brahms’s music as preoccupied with the “unrevisitable location,” a feature of video games in which certain spaces are visitable only a fixed number of times and therefore charged with melancholy and loss. Debussy’s Children’s Corner extends role-play to an extreme degree, while at the same time suggesting distant, unreachable vistas. In particular, I borrow Jay David Bolter and Richard Grusin’s ideas on mediation and Christopher Goetz’s notion of “nostalgic travel” to suggest ways that Debussy’s music incorporates impossible distance into its sound and structure. Video games and classical music converge as much as possible in an analysis of Ravel’s Ma mère l’Oye, which I read alongside Nintendo’s open-world game The Legend of Zelda: Breath of the Wild. I suggest that Ravel’s music offers space for its players to explore similar to this video game. In particular, we might hear the music as allowing linear narrative to give way to a freer, open-ended exploration, suggesting the opening of a world. Finally, a concluding chapter examines nostalgia in video games themselves, specifically Undertale, Final Fantasy VII, and Final Fantasy VII Remake, while revisiting elements of the Romantic musical past as they have accrued in the dissertation so far. The argument in this final chapter is that of the dissertation as a whole: that the same desires for fantasy and adventure animate both traditions, and that the two provide meaningful contexts for each other, in ways that studies of the two have until now overlooked.
193

Aero-thermal performance of transonic high-pressure turbine blade tips

O'Dowd, Devin Owen January 2010 (has links)
No description available.
194

Analyse de la modélisation turbulente en écoulements tourbillonnaires / Turbulent modelling analysis on rotating flows

Monier, Jean-François 02 July 2018 (has links)
L'objectif de la présente étude est d'analyser la modélisation de la turbulence de simulations en moyenne de Reynolds (RANS) dans le cadre d'écoulements de type turbomachines, en utilisant des simulations aux grandes échelles (SGE) comme référence. L'étude porte sur deux cas test: un décollement de coin dans une grille d'aubes rectiligne, et un écoulement de jeu pour un aubage isolé dans un jet. Deux lois de comportement, la loi de comportement de Boussinesq et la loi de comportement quadratique (quadratic constitutive relation ou QCR), sont analysées, avec deux versions du modèle de turbulence k-omega de Wilcox. Les lois de comportement étudiées reposent sur deux hypothèses: une hypothèse d'alignement entre le tenseur de Reynolds et un tenseur construit à partir de l'écoulement moyen, et une hypothèse sur la viscosité turbulente. L'hypothèse d'alignement est étudiée à partir de la SGE, pour laquelle les deux tenseurs sont indépendamment connus, en utilisant un indicateur construit sur le produit scalaire des tenseurs. Les résultats sont présentés sous forme d'une fonction de répartition de la valeur de l'indicateur pour le domaine complet, puis pour trois sous-domaines d'intérêt: l'entrée, une région où l'écoulement interagit fortement avec les parois, et une région où l'écoulement est fortement tourbillonnaire. L'hypothèse d'alignement n'est que rarement valide pour la loi de comportement de Boussinesq. Pour la QCR, les résultats sont meilleurs en entrée, comparé à la loi de Boussinesq. Il ne sont cependant pas meilleurs pour les régions où l'écoulement est plus tourbillonnaire. Une amélioration de la loi de comportement est nécessaire pour pouvoir faire progresser la modélisation turbulente en RANS. En revanche, l'utilisation de l'énergie cinétique turbulente et du taux de dissipation spécifique semble correcte pour estimer la valeur de la viscosité turbulente. L'analyse de la modélisation de l'équation d'énergie cinétique turbulente (ECT) est réalisée au travers d'une comparaison terme à terme avec l'équation d'ECT résolue par la SGE. Les résultats SGE présentent une turbulence qui n'est pas à l'équilibre : la production et la dissipation ne sont pas superposées, et le terme de transport est important. Pour le RANS, la turbulence est à l'équilibre : la production et la dissipation sont superposées, et le terme de transport est de faible intensité. Un modèle de turbulence qui prend en compte le déséquilibre est nécessaire pour améliorer ce point. En dernier lieu, une nouvelle formulation hybride RANS/SGE est proposée, fondée sur la distance à la paroi en unités de paroi. La formulation est validée dans un canal bi-périodique et un premier essai est réalisé sur le cas de décollement de coin, mais d'autres analyses sont nécessaires avant que cette formulation ne soit fonctionnelle. / The present study aims at analysing turbulence modelling in Reynolds-averaged Navier-Stokes (RANS) simulations, in the context of turbomachinery flows, using large-eddy simulations (LES) as references. Two test cases are considered: a corner separation (CS) flow in a linear compressor cascade, and a tip-leakage (TL) flow of a single blade in a jet. Two constitutive relations, the Boussinesq constitutive relation and the quadratic constitutive relation (QCR), are investigated, with two versions of Wilcox's $k-\omega$ turbulence model. The studied constitutive relations rely on two hypotheses: an alignment hypothesis between the Reynolds stress tensor and a mean flow tensor, and an hypothesis on the turbulent viscosity. The alignment hypothesis is investigated using LES, where both the tensors are known independently, with an indicator built on the inner product of the tensors. The results are presented as probability density functions of the indicator value for the entire domain first, and then for three specific areas of interest: the inlet area, similar to a boundary-layer flow, an area of strong interaction between the flow and the walls (CS: passage area, TL: tip clearance) and an area of highly vortical flow (CS: separation wake, TL: tip-leakage vortex). The alignment hypothesis is rarely verified in any area for the Boussinesq constitutive relation. For the QCR, the results are improved for the inlet areas compared to the Boussinesq constitutive relation, but no significant improvement is found in the highly vortical regions. An improvement of the constitutive relation is needed in order to improve the RANS turbulence modelling. In contrast, the use of the turbulent kinetic energy and the specific dissipation rate appears quite correct to estimate the turbulent viscosity. The modelling of the RANS turbulent kinetic energy (TKE) budget equation is investigated through a term to term comparison with the resolved LES TKE budget equation. The LES presents a turbulence that is not at equilibrium, with the production and the dissipation not superimposed, and an important amount of transport. This differs from the RANS models, at equilibrium: the production and the dissipation are superimposed, with a small amount of transport. The development of a non-equilibrium turbulence model for RANS simulations could improve this aspect of turbulence modelling. Finally, a new hybrid RANS-LES formulation, based on the wall distance in wall units, is also proposed. It is validated on a bi-periodical channel flow, and a first attempt is made on the corner separation case, but further investigations are still needed for the model to be fully operational.
195

Eletrodinâmica variacional e o problema eletromagnético de dois corpos / Variational Electrodynamics and the Electromagnetic Two-Body Problem

Souza, Daniel Câmara de 18 December 2014 (has links)
Estudamos a Eletrodinâmica de Wheeler-Feynman usando um princípio variacional para um funcional de ação finito acoplado a um problema de valor na fronteira. Para trajetórias C2 por trechos, a condição de ponto crítico desse funcional fornece as equações de movimento de Wheeler-Feynman mais uma condição de continuidade dos momentos parciais e energias parciais, conhecida como condição de quina de Weierstrass-Erdmann. Estudamos em detalhe um sub-caso mais simples, onde os dados de fronteira têm um comprimento mínimo. Nesse caso, mostramos que a condição de extremo se reduz a um problema de valor na chegada para uma equação diferencial com retardo misto dependente do estado e do tipo neutro. Resolvemos numericamente esse problema usando um método de shooting e um método de Runge-Kutta de quarta ordem. Para os casos em que as fronteiras mínimas têm velocidades descontínuas, elaboramos uma técnica para resolver as condições de quina de Weierstrass-Erdmann junto com o problema de valor na chegada. As trajetórias com velocidades descontínuas previstas pelo método variacional foram verificadas por experimentos numéricos. Em um segundo desenvolvimento, para o caso mais difícil de fronteiras de comprimento arbitrário, implementamos um método de minimização com gradiente fraco para o princípio variacional e problema de fronteira acima citado. Elaboramos dois métodos numéricos, ambos implementados em MATLAB, para encontrar soluções do problema eletromagnético de dois corpos. O primeiro combina o método de elementos finitos com o método de Newton para encontrar as soluções que anulam o gradiente fraco do funcional para fronteiras genéricas. O segundo usa o método do declive máximo para encontrar as soluções que minimizam a ação. Nesses dois métodos as trajetórias são aproximadas dentro de um espaço de dimensão finita gerado por uma Galerkiana que suporta velocidades descontínuas. Foram realizados diversos testes e experimentos numéricos para verificar a convergência das trajetórias calculada numericamente; também comparamos os valores do funcional calculados numericamente com alguns resultados analíticos sobre órbitas circulares. / We study the Wheeler-Feynman electrodynamics using a variational principle for an action functional coupled to a finite boundary value problem. For piecewise C2 trajectories, the critical point condition for this functional gives the Wheeler-Feynman equations of motion in addition to a continuity condition of partial moments and partial energies, known as the Weierstrass-Erdmann corner conditions. In the simplest case, for the boundary value problem of shortest length, we show that the critical point condition reduces to a two-point boundary value problem for a state-dependent mixed-type neutral differential-delay equation. We solve this special problem numerically using a shooting method and a fourth order Runge-Kutta. For the cases where the boundary segment has discontinuous velocities we developed a technique to solve the Weierstrass-Erdmann corner conditions and the two-point boundary value problem together. The trajectories with discontinuous velocities presupposed by the variational method were verified by numerical experiments. In a second development, for the harder case with boundaries of arbitrary length, we implemented a method of minimization with weak gradient for the variational principle quoted above. Two numerical methods were implemented in MATLAB to find solutions of the two-body electromagnetic problem. The first combines the finite element method with Newtons method to find the solutions that vanish the weak gradient. The second uses the method of steepest descent to find the solutions that minimize the action. In both methods the trajectories are approximated within a finite-dimensional space generated by a Galerkian that supports discontinuous velocities. Many tests and numerical experiments were performed to verify the convergence of the numerically calculated trajectories; also were compared the values of the functional computed numerically with some known analytical results on circular orbits.
196

Mechanical properties, residual stresses and structural behavior of thin-walled stainless steel profiles

Rossi, Barbara 09 March 2009 (has links)
Although it offers a wide variety of interesting properties such as fire resistance or durability, stainless steel has been used in limited amount in structures. It is a known fact that the design rules don't properly account for the additional benefits of stainless steel properties and are largely based on the specifications for carbon steel. Indeed, a number of similarities exist between stainless steel and ordinary carbon steel but there is sufficient differences to afford a specific treatment in design standards. And since stainless steel is an expensive material, it is important to accurately predict the resistance of structural members. The present research work is dedicated to the study of cold-formed stainless steel profiles. It actually follows the life of a stainless steel construction element and falls on three fundamental topics: the material behavior, the through-thickness residual stress distribution and mechanical enhancement due to the cold-forming process and, last, the strength of concentrically compressed thin-walled columns. Firstly, several constitutive models are characterized such as Teodosiu-Hu's micro-structural based hardening model, capable of predicting the behavior of the studied stainless steel grade submitted to biaxial loading causing plastic strain. This model accounts for the nonlinear hardening behavior, the anisotropy, the Bauschinger effect and more complex behavior such as the observed work-hardening stagnation under reversed deformation at large strains. For this purpose, a collection of tests is carried out including multiaxial tests such as tensile-shear tests and successive simple shear tests and plane-strain tests. Secondly, the effects of the forming process on the mechanical properties are studied. To begin with, on the basis of the constitutive models developed previously, an analytical method that calculates the biaxial residual stress distribution in the walls and in the corners of cold-formed profiles is established. Based on the conclusions drawn from this theoretical analysis, a new formula for the evaluation of the actual mechanical properties is established. This formula is not restricted to a single alloy or type of cross-section. Current design standards are then used to calculate the strength of lipped-channel section columns failing by combined distortional and overall flexural-torsional buckling and the results are compared to tests. Indeed, full-scale tests on cold-formed stainless steel lipped channel section columns were achieved in the Structures Laboratory of the University of Liège. And, once verified against the test results, finite element models were used to generate additional results when necessary. The author then presents a new Direct Strength Method taking into account this phenomenon. Finally, a wide amount of reference results are gathered from the literature, without limiting oneself to any kind of cross-section or stainless steel grade. This database is used to propose an improved formulation for the design of stainless steel thin-walled section columns failing by distortion, local or combination of local and overall buckling in the low slenderness range.
197

Modeling and Analysis of Large-Scale On-Chip Interconnects

Feng, Zhuo 2009 December 1900 (has links)
As IC technologies scale to the nanometer regime, efficient and accurate modeling and analysis of VLSI systems with billions of transistors and interconnects becomes increasingly critical and difficult. VLSI systems impacted by the increasingly high dimensional process-voltage-temperature (PVT) variations demand much more modeling and analysis efforts than ever before, while the analysis of large scale on-chip interconnects that requires solving tens of millions of unknowns imposes great challenges in computer aided design areas. This dissertation presents new methodologies for addressing the above two important challenging issues for large scale on-chip interconnect modeling and analysis: In the past, the standard statistical circuit modeling techniques usually employ principal component analysis (PCA) and its variants to reduce the parameter dimensionality. Although widely adopted, these techniques can be very limited since parameter dimension reduction is achieved by merely considering the statistical distributions of the controlling parameters but neglecting the important correspondence between these parameters and the circuit performances (responses) under modeling. This dissertation presents a variety of performance-oriented parameter dimension reduction methods that can lead to more than one order of magnitude parameter reduction for a variety of VLSI circuit modeling and analysis problems. The sheer size of present day power/ground distribution networks makes their analysis and verification tasks extremely runtime and memory inefficient, and at the same time, limits the extent to which these networks can be optimized. Given today?s commodity graphics processing units (GPUs) that can deliver more than 500 GFlops (Flops: floating point operations per second). computing power and 100GB/s memory bandwidth, which are more than 10X greater than offered by modern day general-purpose quad-core microprocessors, it is very desirable to convert the impressive GPU computing power to usable design automation tools for VLSI verification. In this dissertation, for the first time, we show how to exploit recent massively parallel single-instruction multiple-thread (SIMT) based graphics processing unit (GPU) platforms to tackle power grid analysis with very promising performance. Our GPU based network analyzer is capable of solving tens of millions of power grid nodes in just a few seconds. Additionally, with the above GPU based simulation framework, more challenging three-dimensional full-chip thermal analysis can be solved in a much more efficient way than ever before.
198

Vision-based navigation and mapping for flight in GPS-denied environments

Wu, Allen David 15 November 2010 (has links)
Traditionally, the task of determining aircraft position and attitude for automatic control has been handled by the combination of an inertial measurement unit (IMU) with a Global Positioning System (GPS) receiver. In this configuration, accelerations and angular rates from the IMU can be integrated forward in time, and position updates from the GPS can be used to bound the errors that result from this integration. However, reliance on the reception of GPS signals places artificial constraints on aircraft such as small unmanned aerial vehicles (UAVs) that are otherwise physically capable of operation in indoor, cluttered, or adversarial environments. Therefore, this work investigates methods for incorporating a monocular vision sensor into a standard avionics suite. Vision sensors possess the potential to extract information about the surrounding environment and determine the locations of features or points of interest. Having mapped out landmarks in an unknown environment, subsequent observations by the vision sensor can in turn be used to resolve aircraft position and orientation while continuing to map out new features. An extended Kalman filter framework for performing the tasks of vision-based mapping and navigation is presented. Feature points are detected in each image using a Harris corner detector, and these feature measurements are corresponded from frame to frame using a statistical Z-test. When GPS is available, sequential observations of a single landmark point allow the point's location in inertial space to be estimated. When GPS is not available, landmarks that have been sufficiently triangulated can be used for estimating vehicle position and attitude. Simulation and real-time flight test results for vision-based mapping and navigation are presented to demonstrate feasibility in real-time applications. These methods are then integrated into a practical framework for flight in GPS-denied environments and verified through the autonomous flight of a UAV during a loss-of-GPS scenario. The methodology is also extended to the application of vehicles equipped with stereo vision systems. This framework enables aircraft capable of hovering in place to maintain a bounded pose estimate indefinitely without drift during a GPS outage.
199

Integrated realizations of reconfigurable low pass and band pass filters for wide band multi-mode receivers

Csipkes, Gabor-Laszlo 16 February 2006 (has links) (PDF)
With the explosive development of wireless communication systems the specifications of the supporting hardware platforms have become more and more demanding. According to the long term goals of the industry, future communications systems should integrate a wide variety of standards. This leads to the idea of software defined radio, implemented on fully reconfigurable hardware.Among other reconfigurable hardware blocks, suitable for the software radio concept, an outstanding importance belongs to the reconfigurable filters that are responsible for the selectivity of the system. The problematic of filtering is strictly connected to the architecture chosen for a multi-mode receiver realization. According to the chosen architecture, the filters can exhibit low pass or band pass frequency responses.The idea of reconfigurable frequency parameters has been introduced since the beginning of modern filtering applications due to the required precision of the frequency response. However, the reconfiguration of the parameters was usually done in a limited range around ideal values. The purpose of the presented research is to transform the classical filter structures with simple self-correction into fully reconfigurable filters over a wide range of frequencies. The ideal variation of the frequency parameters is continuous and consequently difficult to implement in real circuits. Therefore, it is usually sufficient to use a discrete programming template with reasonably small steps.There are several methods to implement variable frequency parameters. The most often used programming templates employ resistor and capacitor arrays, switched according to a given code. The low pass filter implementation proposed in this work uses a special switching template, optimized for a quasi-linear frequency variation over logarithmic axes. The template also includes the possibility to compensate errors caused by component tolerances and temperature. Another important topic concerns the implementation of programmable band pass filters, suitable for IF sampling receivers. The discussion is centered on the feasibility and the flexibility of different band pass filter architectures. Due to the high frequency requirements, the emphasis lays on filters that employ transconductance amplifiers and capacitors. / Die rasch fortschreitende Entwicklung drahtloser Kommunikationssysteme führt zu immer anspruchsvolleren Spezifikationen der diese Systeme unterstützenden Hardwareplattformen. Zukünftige Kommunikationssysteme sollen übereinstimmend mit den längerfristigen Zielen der Industrie verschiedene Standards integrieren. Dies führt zu der Idee von vollständig rekonfigurierbarer Hardware, welche mittels Software gesteuert wird.Inmitten anderer rekonfigurierbarer Hardwareblöcke, die für das Software Radio Konzept geeignet sind, besitzen die steuerbaren Filter, welche wesentlichen Einfluss auf die Selektivität des Systems haben, eine enorme Bedeutung. Die Filterproblematik ist eng mit der gewählten Architektur der standardübergreifenden Empfängerrealisierung verknüpft. Die Filter können entsprechend der ausgesuchten Architektur Tiefpass- oder Bandpasscharakter annehmen.Die Idee rekonfigurierbarer Frequenzparameter wurde bereits mit Beginn moderner Filteranwendungen auf Grund geforderter Frequenzganggenauigkeit umgesetzt. Jedoch wurde die Parameterrekonfiguration üblicherweise nur in einem begrenzten Bereich um die Idealwerte herum vorgenommen. Das Ziel der vorgestellten Forschungsarbeit ist es, diese klassischen Filterstrukturen mit einfacher Selbstkorrektur in über große Frequenzbereiche voll rekonfigurierbare Filter zu transformieren. Idealerweise werden die Frequenzparameter kontinuierlich variiert weswegen sich die Implementierung in reellen Schaltkreisen als schwierig erweist. Deshalb ist es üblicherweise ausreichend, ein diskretes Steuerschema mit kleinen Schrittweiten zu verwenden.Es gibt verschiedene Methoden, variable Frequenzparameter zu implementieren. Die meisten Schemata verwenden Widerstands- und Kondensatorfelder, die entsprechend eines Kodes geschaltet werden. Die in dieser Arbeit vorgestellte Implementierung eines Tiefpassfilters nutzt ein spezielles Umschaltschema, welches für die quasi-lineare Frequenzvariation bei Darstellung über logarithmischen Axen optimiert wurde. Es beinhaltet weiterhin die Möglichkeit, Fehler zu kompensieren, die durch Bauelementtoleranzen und Temperaturschwankungen hervorgerufen werden.Ein weiteres interessantes Thema betrifft die Implementierung steuerbarer Bandpassfilter, die für Empfänger mit Zwischenfrequenzabtastung geeignet sind. Die Betrachtung beschränkt sich hierbei auf die Durchführbarkeit und Flexibilität verschiedener Bandpassfilterarchitekturen. Auf Grund hoher Frequenzanforderungen liegt der Schwerpunkt auf Filtern, die auf Transkonduktanzverstärkern und Kondensatoren basieren.
200

Současný stav výuky pěstitelských prací na primárním stupni základních škol - monitoring reality a sondy možností / The Current State of Teaching of Cultivation Education at Primary Level of Basic Schools - Monitoring and Probe Options

RICHTEROVÁ, Markéta January 2017 (has links)
In the theoretical part, the thesis maps the occurrence of topics regarding teaching of Cultivation Education in current textbooks as well as occurrence of the same topics in textbooks before the general education program has been introduced for elementary schools. The practical part ascertains the student's knowledge level in field of Cultivation Education and checks the attitudes and opinions of teachers in the same topic. The data are gained using the questionnaire survey in three groups of respondents students of fifth grade of the elementary school, students of the Faculty of Education (future teachers) and teachers of the primary degree of the elementary school. The practical part consists of the research methodology and quantitative research results. The results show that elementary school students' level of knowledge corresponds to the general education program. By research it has also been proven, that elementary school teachers generally do not possess a very positive attitude concerning the Cultivation Education. Future teachers, on the other hand, show much more optimistic relationship to this area of education.

Page generated in 0.0281 seconds