541 |
A comparison of SPS and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applicationsUllbrand, Jennifer January 2009 (has links)
The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.
|
542 |
Cadmium Free Buffer Layers and the Influence of their Material Properties on the Performance of Cu(In,Ga)Se2 Solar CellsHultqvist, Adam January 2010 (has links)
CdS is conventionally used as a buffer layer in Cu(In,Ga)Se2, CIGS, solar cells. The aim of this thesis is to substitute CdS with cadmium-free, more transparent and environmentally benign alternative buffer layers and to analyze how the material properties of alternative layers affect the solar cell performance. The alternative buffer layers have been deposited using Atomic Layer Deposition, ALD. A theoretical explanation for the success of CdS is that its conduction band, Ec, forms a small positive offset with that of CIGS. In one of the studies in this thesis the theory is tested experimentally by changing both the Ec position of the CIGS and of Zn(O,S) buffer layers through changing their gallium and sulfur contents respectively. Surprisingly, the top performing solar cells for all gallium contents have Zn(O,S) buffer layers with the same sulfur content and properties in spite of predicted unfavorable Ec offsets. An explanation is proposed based on observed non-homogenous composition in the buffer layer. This thesis also shows that the solar cell performance is strongly related to the resistivity of alternative buffer layers made of (Zn,Mg)O. A tentative explanation is that a high resistivity reduces the influence of shunt paths at the buffer layer/absorber interface. For devices in operation however, it seems beneficial to induce persistent photoconductivity, by light soaking, which can reduce the effective Ec barrier at the interface and thereby improve the fill factor of the solar cells. Zn-Sn-O is introduced as a new buffer layer in this thesis. The initial studies show that solar cells with Zn-Sn-O buffer layers have comparable performance to the CdS reference devices. While an intrinsic ZnO layer is required for a high reproducibility and performance of solar cells with CdS buffer layers it is shown in this thesis that it can be thinned if Zn(O,S) or omitted if (Zn,Mg)O buffer layers are used instead. As a result, a top conversion efficiency of 18.1 % was achieved with an (Zn,Mg)O buffer layer, a record for a cadmium and sulfur free CIGS solar cell. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 717
|
543 |
By Means of Beams : Laser Patterning and Stability in CIGS Thin Film PhotovoltaicsWestin, Per-Oskar January 2011 (has links)
Solar irradiation is a vast and plentiful source of energy. The use of photovoltaic (PV) devices to convert solar energy directly to electrical energy is an elegant way of sustainable power generation which can be distributed or in large PV plants based on the need. Solar cells are the small building blocks of photovoltaics and when connected together they form PV modules. Thin film solar cells require significantly less energy and raw materials to be produced, as compared to the dominant Si wafer technologies. CIGS thin film solar cells are considered to be the most promising thin film alternative due to its proven high efficiency. Most thin film PV modules utilise monolithic integration, whereby thin film patterning steps are included between film deposition steps, to create interconnection of individual cells within the layered structure. The state of the art is that CIGS thin film modules are made using one laser patterning step (P1) and two mechanical patterning steps (P2 and P3). Here we present work which successfully demonstrates the replacement of mechanical patterning by laser patterning methods. The use of laser ablation promises such advantages as increased active cell area and reduced maintenance and downtime required for regular replacement of mechanical tools. The laser tool can also be used to transform CIGS into a conducting compound along a patterned line. We have shown that this process can be performed after all semiconductor layers are deposited using a technique we call laser micro-welding. By performing patterning at the end of the process flow P2 and P3 patterning could be performed simultaneously. Such solutions will further reduce manufacturing times and may offer increased control of semiconductor interfaces. While showing promising performance on par with reference processes there are still open questions of importance for these novel techniques, particularly that of long term stability. Thin film modules are inherently sensitive to moisture and require reliable encapsulation. Before the techniques introduced here can be seen industrially they must have achieved proven stability. In this work we present a proof of existence of stable micro-welded interconnections. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 731
|
544 |
Estudi de l'acoblament magnètic en complexos heterometàl·lics amb lligands pont oxamido, oxamato, tiooxalato i anàlegsQueralt Rosinach, Núria 19 May 2010 (has links)
Aquest treball teòric estudia l'acoblament magnètic en complexos bi- i trinuclears heterometàl·lics amb lligands pont oxamido, oxamato, ditiooxalato i anàlegs. Per calcular la seva estructura electrònica s'han usat mètodes multireferencials, en particular diferents variants del mètode DDCI, desenvolupat en el grup, i el mètode CASPT2. Per diferents sistemes binuclears coneguts de Cu(II) i Mn(II), l'acoblament magnètic i els mapes de densitat de spin calculats reprodueixen acuradament les dades experimentals. L'acoblament antiferromagnètic en aquests depèn de la transferència de càrrega del lligand al metall, lligada a l'electronegativitat dels àtoms coordinats. En els sistemes hipotètics de tipus Cu(II)-M(II)-Cu(II), on M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu i Zn, la magnitud de l'acoblament estimada depèn de l'electronegativitat del metall central, anant de feblement ferromagnètic pel Sc a moderadament antiferromagnètic pel Cu. Aquest treball aporta la interpretació microscòpica de l'acoblament en aquests sistemes, així com la validació i/o les limitacions dels mètodes de càlcul emprats. / This theoretical work examines the magnetic coupling in bi- and trinuclear heterometallic transition metal complexes with bridging ligands such as oxamido, oxamato, ditiooxalato and analogues. To calculate their electronic structure multireference methods have been used, including different variants of DDCI method, developed in our group, and CASPT2 method. For different Cu(II)-Mn(II) binuclear known systems, the magnetic couplings and spin density maps calculated accurately reproduce the experimental data. The antiferromagnetic coupling in these compounds depends on the charge transfer from ligand to metal, linked to the electronegativity of coordinated atoms. In the hypothetical systems of type Cu(II)-M(II)-Cu(II), where M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, the magnitude of the estimated coupling depends on the electronegativity of the metal core, going from the weakly ferromagnetic for Sc to moderately antiferromagnetic for Cu. This work provides the microscopic interpretation of the coupling in these systems, as well as the validation and/or limitations of the computational methods used.
|
545 |
Caractérisation Physico-chimique et adhérence de couches d'oxydes thermiques sur des aciers recyclés.Nilsonthi, Thanasak 18 September 2013 (has links) (PDF)
.L'objectif de cette étude était, en premier lieu, de mettre en place en Thaïlande un testd'adhésion par traction-écaillage sur une machine de traction classique (test" macroscopique "), de le comparer au test " microscopique " Grenoblois fonctionnant dansla chambre du MEB et de l'utiliser pour évaluer l'adhérence des calamines de process sur desaciers industriels. Deux paramètres ont été étudiés, la vitesse de déformation et la teneur desaciers en silicium. Il apparaît que l'écaillage des calamines au cours du test augmente quandaugmente la vitesse de déformation. Une vitesse de déformation élevée entraîne unedéformation au premier écaillage plus faible, donc une adhérence mesurée plus faible. Ceteffet est lié aux phénomènes de relaxation. On a pu alors montrer que la présence d'oxyde(s)contenant Si, situé(s) à l'interface avec le métal, augmentait l'adhérence. Les étudesd'oxydation dans la vapeur d'eau qui ont aussi été réalisées ont révélé que la présence desilicium réduisait la vitesse d'oxydation. En augmentant la teneur en Si, les couches defayalite et de wüstite s'épaississent ; par contre, les couches externes s'amincissent. Pour lesaciers contenant du cuivre, la vitesse d'oxydation est réduite quand la teneur en Cu estaugmentée. De la même façon, les couches internes sont plus épaisses et on observe uneaugmentation du nombre de précipités de Cu quand la teneur en cet élément augmente.
|
546 |
Cu-basierte Metallisierungen für leistungsbeständige SAW-Filter im GHz-BereichSpindler, Mario 03 January 2013 (has links) (PDF)
Die vorliegende Dissertation beschäftigt sich mit der Verbesserung der Leistungsbeständigkeit von Interdigitalwandlern für zukünftige SAW-Bauelemente durch die Verwendung von kupferbasierten Fingerelektroden. In Bezug auf die Akustomigration, d.h. der Elektrodenschädigung infolge hochzyklischer SAW-Belastung, besitzt Kupfer im Vergleich zu standardmäßig eingesetztem polykristallinem Aluminium eine erhöhte Beständigkeit. Diese lässt sich weiter verbessern, indem die Grenzflächen der Fingerelektroden gegen die durch SAW-Belastung auftretende Loch- und Hügelbildung stabilisiert werden. Das Ziel bestand deshalb darin, die Aktivierungsenergie für den Materialtransport an den Elektrodengrenzflächen zu erhöhen. Zu diesem Zweck wurden in dieser Arbeit Metallisierungen in Form von Kupfer Aluminium-Schichtstapeln und -Legierungen mit jeweils geringem Aluminiumanteil hergestellt.
Es konnte gezeigt werden, dass Fingerelektroden aus wärmebehandelten Kupfer-Aluminium-Schichtstapeln eine signifikant erhöhte Leistungsbeständigkeit aufweisen, wobei der elektrische Widerstand im Vergleich zu vollständig legierten Kupfer-Aluminium-Metallisierungen deutlich reduziert ist. Insbesondere kann dieses Schichtsystem durch Elektronenstrahlverdampfung und Lift-Off-Technologie auch kostengünstig hergestellt werden.
Der Einfluss von thermischer- und SAW-Belastung auf den mechanischen Spannungszustand in einer Fingerelektrode wurde mittels einer Finiten-Elemente-Simulation untersucht. Darüber hinaus wird der Schädigungsmechanismus für die Akustomigration anhand eines erweiterten Eyringmodells diskutiert. / The aim of this dissertation is the improvement of the power durability of interdigital transducers for future SAW devices using copper based finger electrode materials. Compared to polycrystalline aluminum, which is typically used as electrode material, copper shows a higher durability with respect to acoustomigration, which can be further increased by a stabilization of the electrode interfaces against material transport. For that purpose, copper based metallizations with a small aluminum content were developed as layer stacks or alloys.
It could be shown that heat-treated copper-alumininum layer stacks have a significantly higher power durability while the electrical resistivity is reduced in comparison to completely alloyed copper-aluminium metallizations. Additionally, the thin film layer system can be produced by using economical techniques such as electron beam evapouration and lift-off-technology.
The influence of thermal and mechanical load on the stress distribution in the finger electrodes was investigated by a finite elements method. The damage mechanism of acoustomigration will be discussed based on an extended Eyring model.
|
547 |
Synthesis And Characterization Of Nickel Based Bulk Amorphous AlloysArslan, Hulya 01 June 2004 (has links) (PDF)
The aim of this study is to synthesize and characterize new bulk amorphous alloys in the Ni- based systems. Theoretical studies on the basis of semi-empirical rules and the electronic theory of alloys in pseudopotential approximation has been provided in order to predict the impurity elements that will lead to an increase in the glass forming ability of Ni-based alloy systems. Glass forming ability of ten different compositions of alloys of Ni-Nb, Ni-Fe, Ni-B, Ni-Hf and Ni-Cr was simulated by using FORTRAN programs based on pseudopotential theory. In addition to the binary alloys, ternary alloys, which were formed by addition of 1 at% of third element to these systems, were also simulated. Since ordering energy is an indicator of glass forming ability, theoretical studies allowed to predict the effect of various third elements on the formation of amorphous phase. Furthermore, ordering energies were also used to calculate other parameters important for glass forming ability. In the second part of the study, on the basis of theoretical results, a series of casting experiments were done. Different compositions of Ni-Nb, Ni-Nb-Sn and Ni-Nb-Al alloys were cast in the centrifugal casting machine. Alloys were melted in alumina crucibles and cast into the copper moulds. Characterizations of cast alloys were done by the use of Metallography, SEM, XRD and DSC. Fully amorphous Ni52Nb41Al7 alloy was synthesized in bulk form with 0.8 mm thickness.
|
548 |
ALD Buffer Layer Growth and Interface Formation on Cu(In,Ga)Se2 Solar Cell AbsorbersSterner, Jan January 2004 (has links)
Cu(In,Ga)Se2 (CIGS) thin film solar cells contain a thin layer of CdS. To avoid toxic heavy-metal-containing waste in the module production the development of a cadmium-free buffer layer is desirable. This thesis considers alternative Cd-free buffer materials deposited by Atomic Layer Deposition (ALD). Conditions of the CIGS surface necessary for ALD growth are investigated and the heterojunction interface is characterized by band alignment studies of ZnO/CIGS and In2S3/CIGS interfaces. The thesis also includes investigations on the surface modification of the CIGS absorber by sulfurization. According to ALD theory the growth process is limited by surface saturated reactions. The ALD growth on CIGS substrates shows nucleation failure and generally suffers from surface contaminations of the CIGS layer. The grade of growth disturbance varies for different ALD precursors. The presence of surface contaminants is related to the substrate age and sodium content. Improved growth behavior is demonstrated by different pretreatment procedures. The alignment of the energy bands in the buffer/absorber interface is an important parameter for minimization of the losses in a solar cell. The valence band and conduction band offsets was determined by in situ X-ray and UV photoelectron spectroscopy during layer by layer formation of buffer material. The conduction band offset (ΔEc) should be small but positive for optimal solar cell electrical performance according to theory. The conduction band offset was determined for the ALD ZnO/CIGS interface (ΔEc = -0.2 eV) and the ALD In2S3/CIGS interface (ΔEc = -0.25 eV). A high temperature process for bandgap grading and a low temperature process for surface passivation by post deposition sulfurization in H2S were investigated. It is concluded that the high temperature sulfurization of CuIn(1-x)GaxSe2 leads to phase separation when x>0. The low temperature process did not result in enhanced device performance.
|
549 |
Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar CellsPlatzer-Björkman, Charlotte January 2006 (has links)
Thin-film solar cells based on Cu(In,Ga)Se2 contain a thin buffer layer of CdS in their standard configuration. In order to avoid cadmium in the device for environmental reasons, Cd-free alternatives are investigated. In this thesis, ZnO-based films, containing Mg or S, grown by atomic layer deposition (ALD), are shown to be viable alternatives to CdS. The CdS is an n-type semiconductor, which together with the n-type ZnO top-contact layers form the pn-junction with the p-type Cu(In,Ga)Se2. From device modeling it is known that a buffer layer conduction band (CB) position of 0-0.4 eV above that of the Cu(In,Ga)Se2 layer is consistent with high photovoltaic performance. For the Cu(In,Ga)Se2/ZnO interface this position is measured by photoelectron spectroscopy and optical methods to –0.2 eV, resulting in increased interface recombination. By including sulfur into ZnO, a favorable CB position to Cu(In,Ga)Se2 can be obtained for appropriate sulfur contents, and device efficiencies of up to 16.4% are demonstrated in this work. From theoretical calculations and photoelectron spectroscopy measurements, the shift in the valence and conduction bands of Zn(O,S) are shown to be non-linear with respect to the sulfur content, resulting in a large band gap bowing. ALD is a suitable technique for buffer layer deposition since conformal coverage can be obtained even for very thin films and at low deposition temperatures. However, deposition of Zn(O,S) is shown to deviate from an ideal ALD process with much larger sulfur content in the films than expected from the precursor pulsing ratios and with a clear increase of sulfur towards the Cu(In,Ga)Se2 layer. For (Zn,Mg)O, single-phase ZnO-type films are obtained for Mg/(Zn+Mg) < 0.2. In this region, the band gap increases almost linearly with the Mg content resulting in an improved CB alignment at the heterojunction interface with Cu(In,Ga)Se2 and high device efficiencies of up to 14.1%.
|
550 |
Characterisation of soluble components and PAH in PM10 atmospheric particulate matter in BrisbaneKumar, Annakkarage January 2008 (has links)
Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.
|
Page generated in 0.0355 seconds