Spelling suggestions: "subject:"data preprocessing"" "subject:"data reprocessing""
31 |
Fighting Unstructured Data with Formatting Methods : Navigating Crisis Communication: The Role of CAP in Effective Information Dissemination / Bekämpar ostrukturerad data med formateringsmetoder : Att navigera i kriskommunikation: CAP:s roll i effektiv informationsspridningSpridzans, Alfreds January 2024 (has links)
This study investigates the format of crisis communication by analysing a news archive dataset from Krisinformation.se, a Swedish website dedicated to sharing information about crises. The primary goal is to assess the dataset's structure and efficacy in meeting the Common Alerting Protocol (CAP) criteria, an internationally recognised format for emergency alerts. The study uses quantitative text analysis and data preprocessing tools like Python and Power Query to identify inconsistencies in the present dataset format. These anomalies limit the dataset's usefulness for extensive research and effective crisis communication. To address these issues, the study constructs two new datasets with enhanced column structures that rectify the identified problems. These refined datasets aim to improve the clarity and accessibility of information regarding crisis events, providing valuable insights into the nature and frequency of these incidents. Additionally, the research offers practical recommendations for optimising the dataset format to better align with CAP standards, enhancing the overall effectiveness of crisis communication on the platform. The findings highlight the critical role of structured and standardised data formats in crisis communication, particularly in the context of increasing climate-related hazards and other emergencies. By improving the dataset format, the study contributes to more efficient data analysis and better preparedness for future crises. The insights gained from this research are intended to assist other analysts and researchers in conducting more robust studies, ultimately aiding in developing more resilient and responsive crisis communication strategies. / Denna studie undersöker formatet för kriskommunikation genom att analysera ett nyhetsarkiv från Krisinformation.se, en svensk hemsida som är avsedd att dela information om kriser. Det primära målet är att bedöma datasetets struktur och effektivitet när det gäller att uppfylla kriterierna för Common Alerting Protocol (CAP), ett internationellt erkänt format för nödmeddelanden. I studien används kvantitativ textanalys och dataförberedande verktyg som Python och Power Query för att identifiera inkonsekvenser i det aktuella datasetformatet. Dessa anomalier begränsar datasetets användbarhet för omfattande forskning och effektiv kriskommunikation. För att ta itu med dessa frågor konstruerar studien två nya dataset med förbättrade kolumnstrukturer som åtgärdar de identifierade problemen. Dessa förfinade dataset syftar till att förbättra tydligheten och tillgängligheten av information om krishändelser, vilket ger värdefulla insikter om dessa händelsers karaktär och frekvens. Dessutom ger forskningen praktiska rekommendationer för att optimera datasetformatet så att det bättre överensstämmer med CAP-standarderna, vilket förbättrar den övergripande effektiviteten i kriskommunikationen på plattformen. Resultaten visar att strukturerade och standardiserade dataformat spelar en avgörande roll för kriskommunikation, särskilt i samband med ökande klimatrelaterade faror och andra nödsituationer. Genom att förbättra formatet på datasetet bidrar studien till effektivare dataanalys och bättre beredskap för framtida kriser. Insikterna från denna forskning är avsedda att hjälpa andra analytiker och forskare att genomföra mer robusta studier, vilket i slutändan bidrar till att utveckla mer motståndskraftiga och lyhörda strategier för kriskommunikation.
|
32 |
Klientų duomenų valdymas bankininkystėje / Client data management in bankingŽiupsnys, Giedrius 09 July 2011 (has links)
Darbas apima banko klientų kredito istorinių duomenų dėsningumų tyrimą. Pirmiausia nagrinėjamos banko duomenų saugyklos, siekiant kuo geriau perprasti bankinius duomenis. Vėliau naudojant banko duomenų imtis, kurios apima kreditų grąžinimo istoriją, siekiama įvertinti klientų nemokumo riziką. Tai atliekama adaptuojant algoritmus bei programinę įrangą duomenų tyrimui, kuris pradedamas nuo informacijos apdorojimo ir paruošimo. Paskui pritaikant įvairius klasifikavimo algoritmus, sudarinėjami modeliai, kuriais siekiama kuo tiksliau suskirstyti turimus duomenis, nustatant nemokius klientus. Taip pat siekiant įvertinti kliento vėluojamų mokėti paskolą dienų skaičių pasitelkiami regresijos algoritmai bei sudarinėjami prognozės modeliai. Taigi darbo metu atlikus numatytus tyrimus, pateikiami duomenų vitrinų modeliai, informacijos srautų schema. Taip pat nurodomi klasifikavimo ir prognozavimo modeliai bei algoritmai, geriausiai įvertinantys duotas duomenų imtis. / This work is about analysing regularities in bank clients historical credit data. So first of all bank information repositories are analyzed to comprehend banks data. Then using data mining algorithms and software for bank data sets, which describes credit repayment history, clients insolvency risk is being tried to estimate. So first step in analyzis is information preprocessing for data mining. Later various classification algorithms is used to make models wich classify our data sets and help to identify insolvent clients as accurate as possible. Besides clasiffication, regression algorithms are analyzed and prediction models are created. These models help to estimate how long client are late to pay deposit. So when researches have been done data marts and data flow schema are presented. Also classification and regressions algorithms and models, which shows best estimation results for our data sets, are introduced.
|
33 |
Dolování dat z databází / Data MiningSlezák, Milan January 2011 (has links)
The thesis is focused on an introduction of data mining. Data mining is focused on finding of a hidden data correlation. Interest in this area is dated back to the 60th the 20th century. Data analysis was first used in marketing. However, later it expanded to more areas, and some of its options are still unused. One of methodologies is useful used for creating of this process. Methodology offers a concise guide on how you can create a data mining procedure. The data mining analysis contains a wide range of algorithms for data modification. The interest in data mining causes that number of data mining software is increasing. This thesis contains overviews some of this programs, some examples and assessment.
|
34 |
Analýza dat síťové komunikace mobilních zařízení / Analysis of Mobile Devices Network Communication DataAbraham, Lukáš January 2020 (has links)
At the beginning, the work describes DNS and SSL/TLS protocols, it mainly deals with communication between devices using these protocols. Then we'll talk about data preprocessing and data cleaning. Furthermore, the thesis deals with basic data mining techniques such as data classification, association rules, information retrieval, regression analysis and cluster analysis. The next chapter we can read something about how to identify mobile devices on the network. We will evaluate data sets that contain collected data from communication between the above mentioned protocols, which will be used in the practical part. After that, we finally get to the design of a system for analyzing network communication data. We will describe the libraries, which we used and the entire system implementation. We will perform a large number of experiments, which we will finally evaluate.
|
35 |
Railway curve squeal: Statistical analysis of train speed impact on squeal noiseAsplund, Ruben January 2024 (has links)
No description available.
|
Page generated in 0.097 seconds