• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 47
  • 28
  • 18
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 290
  • 290
  • 229
  • 63
  • 59
  • 57
  • 55
  • 54
  • 53
  • 48
  • 38
  • 38
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Beitrag zur numerischen Untersuchung der Bewegungs- und Beanspruchungsprofilen in einer Kugelmühle unter Verwendung von physikalisch begründeten Stoßparametern

Tichý, Richard 05 November 2010 (has links)
Die am häufigsten für die Zerkleinerung des Zementklinkers eingesetzte Kugelmühle stellt eine relativ einfache Maschine dar, in der sehr komplizierte dynamische Wechselwirkungen herrschen. Die direkte Messung der Beanspruchungsintensitäten ist heutzutage immer noch eine schwierige Aufgabe. In der vorliegenden Arbeit sind die Spektren der Beanspruchungsgrößen sowie einige spezifische integrale Größen mit der Methode der diskreten Elemente (DEM) untersucht worden. Eine besondere Aufgabe bestand in der Ermittlung der Parameter des viskoelastischen Kontaktmodells und der den Zementklinker charakterisierenden mechanischen Größen. Die reale Abbildung der Stoßvorgänge wurde anhand vereinfachter Modelle der Messprüfstände validiert. Mit den ermittelten Parametern sind numerische Untersuchungen durchgeführt worden, mit denen ihre Auswirkung auf die Zielgrößen bestimmt wurde. In Hinsicht auf eine mögliche konstruktive Weiterentwicklung sind Simulationen mit festgelegten betrieblichen und zu variierenden konstruktiven Parametern durchgeführt worden.
272

Discrete Element based numerical simulation of crack formation in brittle material by swelling cement

Fan, Li 17 June 2019 (has links)
The presented work documents the influence of Voronoi block size and shape as well as internal mesh size on the calibrated fracture toughness KIC. It is documented that Voronoi based procedures have an inevitable error of up to ± 30%. On the other hand, this approach is able to reproduce complex fracture pattern in a realistic manner with reasonable computational power. The work propose a KIC calibration procedure and documents based on the comparison with lab tests, that crack propagation, fracture pattern as well as stress-strain behavior of brittle solids can be duplicated by calibrated Voronoi based DEM simulations. The thesis also documents a swelling law for the DEM code UDEC including parameter determination and validation on lab tests with swelling cement. Finally, calibrated concrete models with one or two holes under different boundary conditions are used to predict swelling induced cracking. Numerical predictions were compared with corresponding lab tests and showed satisfying results.
273

Numerical simulation of selected geologic processes based on Discrete Element Method

Liu, Yuan 14 January 2019 (has links)
This study presents numerical modeling of geologic processes based on Discrete Element Method (DEM), including modeling of pull-apart basin development based on Particle Flow Code (PFC) and simulation of deformation and earthquake potential of Ordos Block (China) under present tectonic stress regime based on Universal Distinct Element Code (UDEC). A scale-independent modeling approach based on PFC2D has been established to simulate the development of pull-apart basins. The micro-scale PFC models are used to investigate crack propagation and basin development in releasing sidestep systems with pure strike-slip, transtensional, and transpressional master faults, respectively. In each system, three typical models including 30° underlapping, 90° non-overlapping, and 150° overlapping releasing sidesteps are chosen. The modeling results are compared with pull-apart basins in nature. The geometric differences of pull-apart basins result from both the initial strike-slip fault geometries and its various evolution stages. Rhomboidal basins which have larger basin length than the amount of motion form in overlapping systems and do not progress through the spindle-shaped and lazy-Z-shaped stages such as the Dead Sea basin. Rhomboidal basins with cross-basin faults tend to form in underlapping systems. Finally, the origin of rhomboidal pull-apart basins, depocenters of pull-apart basins, cross-basin faults and their significances, models for pull-apart basin development, and minimum displacements and ages to form pull-apart basins are discussed. A two-dimensional UDEC model involving Ordos Block and adjacent areas is set up. Boundary conditions based on present tectonic regime are assumed. Block rotations, shear stress and displacement on faults, ratio of shear to normal force are simulated. Slip tendency which represents the assessment of the potential for causing slip on individual faults and earthquake-prone of the faults is predicted. Modeling results are compared with geologic evidences.
274

Investigation of asphalt compaction in vision of improving asphalt pavements

Ghafoori Roozbahany, Ehsan January 2015 (has links)
Asphalt joints are potentially weakest parts of every pavement. Despite of their importance, reliable tools for measuring their mechanical properties for design and performance assessments are still scarce. This is particularly true for cold joints when attaching a new hot pavement to a cold existing one as in case of large patches for pavement repair. In this study, three static fracture testing methods, i.e. indirect tensile test (IDT), direct tension test (DTT) and 4 point bending (4PB), were adapted and used for evaluating different laboratory made joints. The results suggested that joints with inclined interfaces and also the ones with combined interface treatments (preheated and sealed) seemed to show more promising behaviors than the vertical and untreated joints. It was also confirmed that compacting from the hot side towards the joint improved the joint properties due to imposing a different flow pattern as compared to the frequent compaction methods. The latter finding highlighted the importance of asphalt particle rearrangements and flow during the compaction phase as a very little known subject in asphalt industry. Studies on compaction are of special practical importance since they may also contribute to reducing the possibility of over-compaction and aggregate crushing. Therefore, in this study, a new test method, i.e. Flow Test (FT), was developed to simulate the material flow during compaction. Initially, asphalt materials were substituted by geometrically simple model materials to lower the level of complexity for checking the feasibility of the test method as well as modeling purposes. X-ray radiography images were also used for capturing the flow patterns during the test. Results of the FT on model materials showed the capability of the test method to clearly distinguish between specimens with different characteristics. In addition, a simple discrete element model was applied for a better understanding of the test results as a basis for further improvements when studying real mixtures. Then, real mixtures were prepared and tested under the same FT configuration and the results were found to support the findings from the feasibility tests. The test method also showed its potential for capturing flow pattern differences among different mixtures even without using the X-ray. Therefore, the FT was improved as an attempt towards developing a systematic workability test method focusing on the flow of particles at early stages of compaction and was called the Compaction Flow Test (CFT). The CFT was used for testing mixtures with different characteristics to identify the parameters with highest impact on the asphalt particle movements under compaction forces. X-ray investigations during the CFT underlined the reliability of the CFT results. In addition, simple discrete element models were successfully generated to justify some of the CFT results. / <p>QC 20151104</p>
275

Investigation of Jamming Phenomenon in a DRI Furnace Pellet Feed System using the Discrete Element Method and Computational Fluid Dynamics

John Gregory Rosser (15448535) 11 May 2023 (has links)
<p>  </p> <p>Direct reduction ironmaking has gained popularity as a low carbon alternative to the typical blast furnace ironmaking route. A popular method of producing direct reduced iron is through the reduction of iron ore pellets in a reduction shaft furnace. Critical to this process is the use of a reliable continuous pellet feed system to provide a steady flow of pellets to the furnace. Therefore, any disruption in pellet flow can have a significant negative impact on the production rate of iron. </p> <p><br></p> <p>An iron ore pellet feed system for a direct reduction ironmaking furnace is jamming during winter operation. The pellets are jamming in a hopper at the top of the feed system above the furnace, and a hot gas, that seals off the furnace flue gas, flows counter to the pellets. A computational model of the feed system is built utilizing the discrete element method and computational fluid dynamics, using Siemen’s commercial multiphysics software Star-CCM+, to study the conditions that cause the jam to occur. The study is divided into six parts: pellet bulk flow calibration, computational cost reduction, modeling of the baseline operation, modeling the effect of moisture, development of a thermal model, and investigation of the minimal amount of icy and wet material to jam the system. The findings show that the location of jamming during operation matches the area in the simulation where it is most likely to occur, and that moisture alone is unlikely to result in jamming. Results indicate that the system will jam when charged with a minimum of 15% icy pellets, and when charged with 10% icy together with 5% wet pellets. Experimental work is recommended to validate the findings and to calibrate the simulations accordingly.</p>
276

Granular Materials for Transport Infrastructures : Mechanical performance of coarse–fine mixtures for unbound layers through DEM analysis

de Frias Lopez, Ricardo January 2016 (has links)
Granular materials are widely used as unbound layers within the infrastructure system playing a significant role on performance and maintenance. However, fields like pavement and railway engineering still heavily rely on empirically-based models owing to the complex behaviour of these materials, which partly stems from their discrete nature. In this sense, the discrete element method (DEM) presents a numerical alternative to study the behaviour of discrete systems with explicit consideration of the processes at particulate level governing the macroscopic response.  This thesis aims at providing micromechanical insight into the effect of different particle sizes on the load-bearing structure of granular materials and its influence on the resilient modulus and permanent deformation response, both of which are greatly influenced by the stress level. In order to accomplish this, binary mixtures of elastic spheres under axisymmetric stress are studied using DEM as the simplest expression for gap-graded materials, which in turn also can be seen as a simplification of more complex mixtures. First, the effect of the fines content on the force transmission at contact level was studied. Results were used to define a soil fabric classification system where the roles of the coarse and fine fractions were defined and quantified in terms of force transmission. A behavioural correspondence between numerical mixtures and granular materials was established, where the mixtures were able to reproduce some of the most significant features regarding the resilient modulus and permanent strain dependency on stress level for granular materials. A good correlation between soil fabric and performance was also found. Generally, higher resilient modulus and lower deformation values were observed for interactive fabrics, whereas the opposite held for instable fabrics. Mixtures of elastic spheres are far from granular materials, where numerous additional factors should be considered. Nevertheless, it is the author’s belief that this work provides insight into the soil fabric structure and its effect on the macroscopic response of granular materials. / Grus i form av krossat bergmaterial används i stor utsträckning som obundna bär- och förstärkningslager inom tranportinfrastrukturen och spelar där en viktig roll för verkningsätt, drift och underhåll. Det finns emellertid begränsad kunskap om de fundamentala mekanismerna på partikelnivå (d.v.s. enskilda gruskorn), mekanismer som styr det makromekaniska verkningssättet. Områden såsom väg- och järnvägsbyggnad bygger fortfarande väsentligen på empiriskta baserade modeller p.g.a. dessa materials komplexa uppträdande under belastning. Denna komplexitet beror delvis på den diskreta naturen hos problemet vilket innebär att traditionell matematisk modellering som vore materialen homogena och kontinuerliga, blir inadekvat. Mot denna bakgrund utgör den s.k. diskreta elementmetoden (DEM) ett numeriskt alternativ för att studera verkningssätt hos diskreta system där man explicit beaktar mekanismerna på partikelnivå. Denna avhandling, som baseras på tre vetenskapliga bidrag, syftar till att ge mikromekaniska insikter vad gäller effekten av olika partikelstorlekar på bärförmågan hos grusmateral och dess inverkan på styvhet och motstånd mot permanenta deformationer. Båda dessa parametrar påverkas kraftigt av spänningsnivån och kan studeras genom triaxialförsök. För att undersöka detta studerades med hjälp av DEM binära blandningar av elastiska kulor – den enklaste modellen av grusmaterial med språng i fördelningskurvan – som utsattes för axialsymmetrisk belastning. Denna modell kan i sin tur ses som en förenkling av mer komplexa blandningar. Inledningsvis studerades effekten av finpartikelinnehållet på partikelkontakternas kraftöverföring. Resultaten användes för att klassificera olika typer av skelettstrukturer i grusmaterialet där den finare och den grövre fraktionens roller kvantifierades med utgångspunkt från kraftöverföringen i stället för från det makromekaniska verkningssättet. Resultaten visade en korrelation vad gäller verkningssättet mellan numeriska blandningar och grusmaterial, där de numeriska blandningarna kunde reproducera några av grusmaterials viktigaste kännetecken vad gäller spänningsberoendet för styvheten vid avlastning och motståndet mot permanent deformation. Vidare visades att styvheten kunde bestämmas ur första belastningscykeln vilket underlättar att övervinna de begränsningar avseende beräkningstid som annars förknippas med DEM. God överensstämmelse mellan grusmaterialets skelettstruktur och verkningssätt kunde också observeras. Generellt observerades högre styvhet och mindre permanenta deformationer för interaktiva skelettstrukturer medan det motsatta gällde för instabila strukturer. Numeriska blandningar av elastiska kulor är långt från verkliga grusmaterial, för vilka ett stort antal ytterligare faktorer måste beaktas. Icke desto mindre är det författarens övertygelse att detta arbete ger insikter i grusmaterialets skelettstruktur och dess effekter på det makromekaniska verkningssättet hos grusmaterial. / <p>QC 20161116</p>
277

Numerical and Experimental Investigation of Heat Transfer to Flowing Particles for Energy Storage

Jason T Schirck (14228144) 07 December 2022 (has links)
<p>The use of renewable energy systems is ever-growing in today's electricity grid to reduce the carbon footprint on the environment. However, a problem with wind and solar renewable energy systems is availability. Wind and solar energy production are entirely dependent on the weather, whereas global electricity demands have no such limitation. A cost-effective solution to the energy availability problem is to incorporate energy storage systems. The Economic Long-Duration Electricity Storage by Using Low-Cost Thermal Energy Storage and High-Efficiency Power Cycle (ENDURING) system developed at the National Renewable Energy Laboratory (NREL) is a potential  energy storage system. In the ENDURING system, particles are heated via renewable energy or off-peak grid electricity and stored in large silos. When the electricity needs to be regenerated, the hot particles are passed to a Pressurized Fluidized Bed Heat Exchanger (PFB-HX), which heats air, and the hot pressurized air flows to a turbine and generator to produce electricity. The focus of this dissertation is on two components within the ENDURING system: the particle heater and the PFB-HX.</p> <p>First, the heat transfer within the particle heater is investigated numerically via Computational Fluid Dynamics (CFD) coupled with Discrete Element Modeling (DEM). Although heat transfer to traditional molecular fluids such as liquids and gases are well characterized, the heat transfer to flowing particles is less understood. The heater surface angle, particle-particle and particle-wall friction coefficients, and contact resistance are parametrically varied to discover their individual effects on the heat transfer process. A separate set of simulations is conducted to compare against an experimental particle heater built at NREL. In addition to elucidating the heat transfer performance, the simulations also reveal oscillatory flow patterns. It is discovered that such turbulent behavior is related to the geometry of the heater elements.<br> </p> <p>Second, a laboratory-scale experimental setup of the PFB-HX is built. The temperature, pressure drop, and minimum fluidization velocity are used to characterize the heat transfer and assess the capabilities of the PFB-HX. High-temperature fluidized bed experiments with an initial temperature gradient are performed. The bed becomes fluidized, but temperature gradients remain, and the bed is not fully mixed. At sufficient superficial velocity, the bed temperature becomes uniform. CFD-DEM coupled simulations are performed to investigate the temperature distributions more precisely. Initial bed temperature differences of 100, 300, and 500K are simulated with varying superficial velocities to create a regime map. The purpose of the regime map is to determine when the fluidized bed temperature becomes fully mixed for different initial conditions and gas velocities. The overall goal of this work is to understand the heat transfer processes of the flowing particles in both the particle heater and the PFB-HX to aid in the design of the ENDURING system.</p>
278

Comportement des géosynthétiques en ancrage : Modélisation physique et numérique / Behaviour of geosynthetics in anchorage : Physical and numerical models

Lajevardi, Seyed Hamid 19 June 2013 (has links)
Le renforcement des sols par géosynthétique est appliqué dans de nombreux types d’ouvrage : remblais sur sol compressible, talus sur fondations stables, remblais sur des cavités et ouvrages de soutènement. La stabilité de ces ouvrages dépend entre autres de l’efficacité des ancrages des nappes géosynthétiques. Les ancrages droit et avec retour sont les plus couramment utilisés. Afin d'améliorer les connaissances actuelles sur le comportement des systèmes d'ancrage, des études expérimentales et numériques ont été développées conjointement. Ce travail de thèse concerne dans une première partie, la modélisation physique tridimensionnelle du comportement des géosynthétiques pour deux types ancrages (ancrage droit et ancrage avec retour). Ces essais ont été réalisés dans une chambre d’étalonnage en conditions contrôlées et instrumentées en laboratoire. Dans une deuxième partie de cette thèse, les paramètres d’interaction sol/géosynthétique déduits à partir de l’étude expérimentale ont été implémentés dans le code de calcul numérique bidimensionnel en milieu continu FLAC2D pour une meilleure compréhension du comportement des géosynthétique en ancrage. L’influence de plusieurs paramètres sur le comportement du géosynthétique en ancrage avec et sans retour a été traitée dans cette étude numérique. Parallèlement à cette modélisation, une autre modélisation numérique (discontinue) par la méthode des éléments discrets (PFC2D) a été réalisée. Ces modélisations ont donné des résultats proches de ceux obtenus expérimentalement et confirme l'analyse faite au sujet des mécanismes d'ancrage. / The soil reinforcement by geosynthetic is used in many types of structures: embankments on compressible soil, slope on a stable foundation, embankments on cavities and retaining structures. The stability of these structures specially depends on the efficiency of the anchors holding the geosynthetic sheets. The simple run-out and anchorage with wrap around are most commonly used. In order to improve the available knowledge of the anchorage systems behaviour, experimental and numerical studies were developed jointly. This thesis work concerns in the first part a three-dimensional physical modelling of the behaviour of geosynthetics in two anchors (simple run-out and anchorge with wrap around). The pull-out tests were performed in a test tank under controlled conditions in the laboratory. In the second part, the parameters of the interaction soil/geosynthetic found from the experimental study were used into the numerical code “FLAC2D” (continuous) for a better understanding of the behaviour of geosynthetics in anchorage. The influence of several parameters on the behaviour of geosynthetic was treated in this numerical study. In parallel with this model, another numerical modelling (discontinuous) by the discrete element method (PFC2D) was carried out. The results of these models are closely to experimental results which confirm the analysis about the anchoring mechanisms.
279

Monofilament entangled materials : relationship between microstructural properties and macroscopic behaviour / Matériaux monofilamentaires enchevêtrés : étude des relations microstructure-propriétés mécaniques

Courtois, Loïc 13 December 2012 (has links)
Les matériaux architecturés attirent de plus en plus d’attentions de par leur capacité à combiner différentes propriétés ciblées. Dans ce contexte, les matériaux enchevêtrés, et plus particulièrement les matériaux monofilamentaires enchevêtrés, présentent des propriétés intéressantes en terme de légèreté, de ductilité, et de facteur de perte. En raison de l’architecture interne complexe de ces matériaux, leur caractérisation et la compréhension des mécanismes de déformation nécessitent une méthodologie adaptée. Dans cette étude, l’enchevêtrement est réalisé manuellement pour différents fils d’acier et soumis à une compression oedométrique. De manière à étudier le comportement sous charge de ce type de matériaux, un dispositif de compression uniaxiale guidée a été mis en place dans le tomographe. Il est ainsi possible de suivre, à l’aide de mesures quantitatives, la déformation de l’échantillon et l’évolution du nombre de contacts pour différentes fraction volumiques. L’utilisation de ces données microstructurales a permis un meilleure compréhension du comportement mécanique de tels enchevêtrements. Une rigidité pouvant varier de 20 à 200 MPa en fonction des paramètres de mise en forme (diamètre et forme du fil, fraction volumique, matériau constitutif) a été déterminé. Un matériau homogène de rigidité plus faible a pu être obtenu en pré-déformant le fil sous forme de ressort avant enchevêtrement. Le facteur de perte du matériau a ensuite été mesuré à la fois sous chargement statique et dynamique. L’analyse mécanique dynamique a mis en évidence la capacité de ce matériau à absorber de l’énergie avec une valeur de facteur de perte d’environ 0.25. Les propriétés mécaniques du matériau ont tout d’abord été modélisées analytiquement par un modèle de poutres et un bon accord avec les résultats expérimentaux a pu être obtenu en définissant un paramètre d’orientation equivalent, spécifique à la compression oedométrique de matériaux enchevêtrés. En parallèle, un modéle éléments discrets a été developé afin de simuler le comportement en compression de matériaux monofilamentaires enchevêtrés. Ce modèle s’appuie sur une discrétisation du fil en éléments sphériques, acquise à partir de données de tomographie. Bien que seul le comportement élastique du fil constitutif ait été pris en compte, une bonne adéquation entre résultats numériques et expérimentaux a été obtenu en ajustant les coefficients de frottement du modèle. / Playing with the architecture of a material is a clever way of tailoring its properties for multi-functional applications. A lot of research have been made, in the past few years, on what is now referred to as “architectured materials” (metal foams, entangled materials, steel wool, etc), mostly for their capacity to be engineered in order to present specific properties, inherent to their architecture. In this context, some studies have been carried out concerning entangled materials but only a few on monofilament entangled materials. Such a material, with no filament ends, could exhibit interesting properties for shock absorption, vibration damping and ductility. In this study, entanglements were manually produced, using different types of wire, and submitted to constrained (inside a PTFE die) in-situ compressive tests within the laboratory tomograph. This technique enabled a 3D, non destructive, microstructural characterization of the complex architecture of these materials, along with the analysis of their macroscopic mechanical properties. The stiffness of this material was found to be in a 20-200 MPa range and homogeneous samples could be obtained, while lowering their stiffness, by pre-deforming the initial wire as a spring. Damping measurements were performed using different types of entanglements (constitutive materials, volume fraction, wire diameter, wire shape) under both monotonic and dynamic loadings and directly linked to the measurements of the number of contacts. The Dynamic Mechanical Analysis underlined the great capacity of this material to absorb energy with a loss factor of about 0.25 and damping was found to decrease with the stiffness of the entanglement. The mechanical properties of this material were first modeled using an analytical “beam” model based on the experimental evolution of the mean distance between contacts and a good agreement was found with the experimental results. In parallel, a Discrete Element Method was used in order to model the compressive behaviour of Monofilament Entangled Materials. Although purely elastic properties were taken into account in the model, a very good agreement with the experimental results was obtained by adjusting the friction coefficients of the model. This tends to prove that the plasticity of these entangled materials is rather due to the structure (friction) than to the constitutive material itself.
280

Self-assembly of anisotropic particles driven by ice growth : Mechanisms, applications and bioinspiration / Auto-assemblage de particules anisotropes réalisé par croissance de cristaux de glace : Mécanismes, applications et bioinspiration

Bouville, Florian 11 December 2013 (has links)
Les phénomènes d'auto-assemblage sont au premier plan de la recherche en sciences des matériaux car ils comblent le vide laissé entre les procédés d'assemblage à l'échelle macroscopique et nanoscopique. L'auto-assemblage est basé sur l'organisation spontanée de composants individuels en motifs et structures. Contrôler l’agencement de la matière peut accroître les propriétés de matériaux en introduisant une certaine anisotropie. Cet agencement, comme de nombreux matériaux naturels le prouvent, peut même sous certaines conditions faire émerger de nouvelles caractéristiques. Au cours de ces trois années, nous avons utilisé l’ « ice templating » (texturation à la glace) pour déclencher l’alignement de plaquettes de dimensions microniques, le but final étant de répliquer la microstructure de la nacre. Cette technique induit la ségrégation des constituants d’une suspension à l’échelle du micron tout en obtenant des échantillons de quelques centimètres cubes. Ce procédé a permis la création de matériaux inorganique avec une microstructure semblable à la nacre, en additionnant trois niveaux de contrôles successifs : l’alignement local des plaquettes, l’alignement à longue distance des cristaux de glaces et enfin le contrôle de l’interface entre ces-mêmes plaquettes. L’utilisation d’une modélisation par éléments discrets nous a permis d’étudier la dynamique de l’auto-assemblage des particules anisotropes. Ce modèle, parce qu’il tient compte de la dynamique du procédé, nous a révélé comment l’organisation de ces particules se produit. La tomographie par rayon X a permis de visualiser les structures finales des échantillons et d’attester de la pertinence du modèle. L’alignement local des plaquettes dans les parois générées par la solidification de la glace peuvent accroître les propriétés fonctionnelles et structurales de composites. Dans ce cadres deux applications ont été étudiées : la conduction thermique dans des composites nitrure de bore hexagonal / silicone et les propriétés mécaniques d’alumine macroporeuses. Une adaptation du procédé a permis d’obtenir l’alignement à longue distance (quelques centimètres) des cristaux de glaces. Différents outils ont été développés pour caractériser la réponse fonctionnelle de ce type de composite en fonction de leurs architectures aux deux échelles considérées (celles des macropores et parois). Enfin, après la mise en place de ces deux niveaux de contrôle sur la structure, l’addition d’une phase vitreuse inorganique et de nanoparticules aux joints de grains des plaquettes a introduit, de façon similaire à la nacre, des interfaces pouvant dévier et arrêter la propagation de fissures. / Self-assembly phenomena are of prime interest in materials science, because they fill the gap between assembly of macrostructure and processing of nanomaterials. Self-assembly is based on the spontaneous organization of individual small constituents into patterns and structures. Controlling the spatial arrangement can possibly improve materials properties by maximizing its response in a given direction. Furthermore, particular types of spatial arrangement, such as found in natural structures, can even induce new properties. During the past three years, we have used ice templating process to trigger the assembly of platelet-shaped particles to replicate the hierarchical structure of nacre. Control over this technique allowed structural customization at different length-scales: local orientation of the platelets, ice crystal long range order, and the control if the interfaces between the platelets. This hierarchical process has set the ground for the creation of a new fully mineral nacre-like alumina. The local platelet self-assembly triggered by ice growth was investigated by Discrete Element Modelling which provided new insight into the dynamic phenomenon responsible for the particles alignment. Synchrotron X-ray tomography was used to validated the model results. The different architecture observed in the final samples are not the result of a percolation threshold, as one could expect, but is instead a consequence of the delicate balance between pushing and engulfment at the solidification front. The local alignment of platelets can be beneficial for the functional and structural characteristics of composites and relevant aspects for two potential applications were investigated: the thermal properties of the hexagonal boron nitride/silicon rubber composites and the mechanical properties of macroporous alumina. Further adaptation of the process allowed for long range ordering of the ice crystals (up to the centimeter scale). Different tools have also been developed in order to characterize the response of composites as a function of the architecture at the level of the macropores and particle organisation. Once those two levels of alignment were achieved, the addition of a glassy phase and nanoparticles to the grain boundaries of the platelets introduces, just like in nacre, interfaces capable of deflect and even stopping crack propagation.

Page generated in 0.0748 seconds