• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 11
  • 3
  • Tagged with
  • 52
  • 52
  • 40
  • 35
  • 16
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

La kinase Aurora A comme nouvelle cible des agents chimiothérapeutiques Application aux traitements des cancers colorectaux

Cherier, Julia 25 April 2008 (has links) (PDF)
L'entrée des cellules en mitose se caractérise par l'augmentation d'expression de la kinase Aurora A. Nous avons caractérisé l'effet du sn38, métabolite actif de l'irinotecan utilisé dans le traitement du cancer colorectal sur l'expression de cette kinase. En absence de traitement, le facteur de transcription c-myc se lie au promoteur d'Aurora A et l'active. Cependant, le traitement des cellules avec du sn38 induit l'inhibition de c-myc et son absence du promoteur d'Aurora A s'accompagnant de l'induction du processus de sénescence. Nous avons également étudié l'effet de l'oncogène Ras sur la kinase Aurora A. Cet oncogène induit une diminution d'expression d'Aurora A par une modulation de l'activité des cofacteurs transcriptionnels de c-myc. En résumé, nos résultats indiquent qu' Aurora A est une cible des traitements de chimiothérapie et des mécanismes de contrôles oncogéniques. Le blocage de son expression constitue certainement une protection contre le développement tumoral.
32

Rôle de la déubiquitinase BAP1 dans la réponse cellulaire aux dommages à l'ADN

Ghram, Mehdi 12 1900 (has links)
L'ubiquitination est une modification post-traductionnelle qui joue un rôle central dans divers processus biologiques. Elle peut être contrecarrée par les déubiquitinases (DUBs). "BRCA1-Associated Protein 1" (BAP1) est une déubiquitinase, qui fait partie de complexes multiprotéiques, possèdant une fonction de suppression tumorale ainsi qu'un potentiel anti-métastatique. De plus, BAP1 est phosphorylée suite aux dommages à l’ADN par les kinases ATM/ATR. En nous basant sur ces données, nous avons purifié les protéines associées à BAP1 dans des conditions de stress génotoxique. Bien que la composition du complexe et l’activité DUB semblent inchangées, nous avons pu identifier des changements critiques dans les niveaux et les sites de phosphorylation, confirmant la régulation de BAP1 suite aux dommages à l’ADN. En déplétant BAP1 par ARNi et en utilisant des mutants dominants négatifs, nous avons obtenu des résultats suggèrant que suite au stress génotoxique, cette DUB est requise pour prolonger le point de contrôle en G2/M et ce, en retardant la reprise du cycle cellulaire. D'un autre côté, l'expression de BAP1 dans des cellules cancéreuses qui en sont déficientes restore une ploïdie normale et diminue la fréquence d'aberrations nucléaires, suggérant que cette protéine joue un rôle dans la stabilité génomique. Nos résultats suggèrent fortement que BAP1 joue un rôle dans la réponse des cellules au stress génotoxique et la stabilité génomique. Nos travaux permettront ainsi d’identifier et de caractériser les voies de signalisation cellulaire régulant l’activité et la fonction de BAP1 durant les périodes d’exposition à des agents qui endommagent l’ADN. Les connaissances acquises seront donc d’une valeur tangible pour nôtre compréhension de la mutagenèse induite par des agents carcinogènes, un déterminant clé de la formation des tumeurs. / Ubiquitination is a reversible, covalent post-translational modification that regulates protein function and as such plays crucial roles in a wide range of physiological processes. Importantly, gain- or loss-of-function mutations in components of the ubiquitin system have been causally linked to tumorigenesis. The reverse reaction of ubiquitination is catalyzed by deubiquitinases (DUBs), a family of enzymes that removes ubiquitin from proteins. BRCA1-Associated Protein 1 (BAP1) is a deubiquitinase known to be a tumor suppressor and anti-metastatic protein since deletions and rearrangements are observed in a wide range of tumors. However, little is known about how BAP1 works into the cells. Here, we show that BAP1 is hyperphosphorylated after DNA damage by gamma radiations and ultraviolet light, probably by ATM and/or ATR. Moreover, we found that BAP1 depletion cause a defect in the maintenance of the G2/M checkpoint after gamma radiation, suggesting that BAP1 is required to maintain the arrest after DNA damage. This delay is important to allow DNA repair and to prevent genomic instability. Consistently, we found that BAP1 expression in BAP1 deficient cells restore normal diploidy and prevent nuclear aberrations, suggesting that BAP1 links DNA damage induced checkpoint regulation to genomic stability: two important processes for carcinogenesis. These findings provide new insights into the role of deubiquitination in cell signaling and neoplastic transformation.
33

Cross-talk between cell-cycle control and the environment / Interconnections entre le cycle cellulaire et l'environnement

Babar, Sandly 04 September 2013 (has links)
Bien que la compréhension des régulateurs du cycle cellulaire s'est considérablement améliorée ces dernières années, la régulation du cycle cellulaire en réponse à des signaux environnementaux tels que les reste peu connue. Un stress au niveau de l'ADN est un stress ubiquitaire pour tous les organismes. Celui-ci peut-être causé soit par une source exogène soit par une source interne comme lors de la séparation des chromatides ou bien celle des brins d'ADN pendant la réplication. La régulation post-traductionnelle des kinases de type cdk1 au travers de la phosphorylation inhibitrice des kinases de type Wee1 sur le résidu Tyr15, ou à des positions analogues, de la boucle appelée P-loop a été dommages à l'ADN décrite comme étant le mécanisme pivot conduisant à l'arrêt du cycle cellulaire après un dommage à l'ADN chez la levure et les animaux. Cependant, il semblerait que ce mécanisme ne soit pas conservé chez les plantes comme le suggère l'hypersensibilité des dephospho-mutants de CDKA;1. La première partie de cette étude se concentre sur la possible régulation de CDKA;1 au travers de la phosphorylation de la T-loop en réponse à un stress lié à la réplication chez Arabidopsis. La phosphorylation du résidu T161 et de ses analogues agit positivement sur la boucle appelée T-loop de la kinase, ce qui est nécessaire pour avoir une activité CDK complète, et sert dans la reconnaissance du substrat. De manière remarquable, un mutant qui imite la phosphorylation de la T-loop est quasiment résistant à 100% à l'hydroxyurée (HU) et peut partiellement compenser l'hypersensibilité des mutants wee1 à l'HU. La phosphorylation de la T-loop est catalysée par les kinases activatrices des CDK (CAKs) qui sont elles-mêmes des CDKs comportant des régions P- et T-loop particulières. La preuve a été obtenue que WEE1 inhibe les Cyclin Dependent Kinases de type D ce qui va résulter en une activité réduite de CDKA;1 et ainsi déclencher l'arrêt du cycle cellulaire après un dommage causé à l'ADN. Il a été démontré que les mutants qui imitent la déphosphorylation de CDKD2 et 3, ne pouvant pas être inhibés par WEE1 montrent une hypersensibilité à l'HU mais pas à la bléomycine. Cela suggère donc de leur implication dans l'arrêt du cycle cellulaire spécifiquement après un stress de réplication. L'hypersensibilité du double mutant cdk2cdk3 aux stress de réplication permet de penser qu'une activation de CDKA;1 par l'intermédiaire de CDKD;1 et de manière indépendante de WEE1 est possible. L'hypothèse d'un rôle essentiel desCDKDs dans la stabilisation de l'activité kinase de CDKA;1 pendant le développement des gamètes a été émise. En effet, des défauts, observés chez les mutants cdka;1VFcdkd pendant la méiose mais pas chez les mutants cdka;1VF souligne l'importance de la phosphorylation de la T-loop de CDKA;1 dans le bon déroulement de la division méiotique. Dans la seconde partie de cette étude, l'interaction entre le cycle cellulaire et le cercle circadien a été étudiée. Il a été suggéré qu'une boucle rétroactive existait, et dans laquelle le cycle cellulaire pouvait réguler le cercle circadien. En effet, on a montré grâce à une expérience de microarray réalisée sur des mutants holomorphiques CDKA;1, que de nombreux gènes circadiens sont dérégulés. Ainsi, dans le cadre de l'étude du cercle circadien, la division cellulaire de mutants cdka;1 ainsi que de plantes sauvages a été étudiée en conditions de croissance diurnes. Le temps de division altéré observé chez les mutants supporte l'idée que la régulation du cycle cellulaire se fait également d'une manière dépendante du temps. Les profils d'expression de gènes du cycle circadien chez les mutants cdka;1 ont été analysés par essai luciférase. La période et l'intensité d'expression observées chez ce mutant en comparaison du sauvage étant altérée, ceci suggère que l'activité de CDKA;1 a un effet direct ou indirect sur ces gènes. / Even though the understanding of cell-cycle regulators in plants has tremendously increased over the last years, still little is known about cell-cycle regulation in response to environmental signals like DNA damage. A ubiquitous stress for any organism is DNA stress that can either be caused by exogenous sources or internal processes like chromatid separation or DNA strands separation during replication. The posttranslational regulation of Cdk1-type kinases through inhibitory phosphorylation through Wee1-type kinases in the so-called P-loop at the residue Tyr15 or the analogous positions has been found to be of pivotal importance for the arrest of the cell cycle after DNA damage in yeast and animals. But this mechanism is apparently not conserved in plants, as suggested by the hypersensitivity analysis of CDKA;1 dephospho-mutants. The first half of this study focus on possible regulation of CDKA;1 through T-loop phosphorylation upon replication stress in Arabidopsis. The positively acting phosphorylation on T161 and analogous residues in the so-called T-loop of the kinase that is required for full CDK activity and serves in substrate recognition. Remarkably, a T-loop phospho-mimicry mutant of CDKA;1, was almost 100% resistant to hydroxyurea (HU) and can partially rescue the hypersensitivity of wee1 to HU. T-loop phosphorylation is catalyzed by CDK activating kinases (CAKs) that are themselves CDKs with typical P- and T-loop regions. Evidence is obtained that WEE1 might inhibit CDKDs (Cdk-activating kinases) that would subsequently result in reduced CDKA;1 activity, and thus, cell-cycle arrest upon DNA damage. It is revealed that dephospho-mimicry mutants of CDKD;2 and 3, which can not be inhibited through WEE1 showed hypersensitivity to HU and not to bleomycin, suggesting their involvement in cell-cycle arrest specifically upon replication stress. Hypersensitivity of cdkd;2cdkd;3 to replication stress suggested possible activation of CDKA;1 through CDKD;1 independent of WEE1. An essential role of CDKDs in stabilizing CDKA;1 kinase activity during gamete development has been suggested. Defects observed in cdka;1VFcdkd mutants during meiosis but not in cdka;1VF mutants emphasize on importance of CDKA;1 T-loop phosphorylation for appropriate meiotic division.In second part of this study interaction between cell-cycle and circadian has been studied. A feedback loop in which the cell cycle could potentially regulate the circadian clock was suggested as a number of circadian genes were found to be deregulated in a microarray experiment with holomorphic CDKA;1 mutants. Thus the circadian gating of cell division of wildtype and cdka;1 mutants was studied under diurnal growth conditions. The altered time of division observed in cell-cycle mutants supported the idea of cell-cycle regulation in a time dependent manner. Expression profile of clock genes were analyzed in cdka;1 mutants through luciferase assay system. An altered period and intensity of expression observed in these mutants compared to wild type plants suggested a direct or indirect effect of CDKA;1 activity on clock gene expression.
34

Role of Poly-(ADP-ribose)-ylation signaling pathway in the chromatin remodeling after DNA damage / Étude de la voie de signalisation Poly-(ADP-ribose)-ylation dans les mécanismes de remodelage de la chromatine suite aux dommages à l'ADN

Sellou, Hafida 30 September 2016 (has links)
Chaque cellule humaine est constamment soumise à des agressions extérieures comme l'exposition aux rayons Ultra-Violets, agents chimiques, etc. ou endogènes provenant de la production de métabolites par la cellule elle-même. Ces agressions induisent des dommages dans l'ADN. Ces dommages, s'ils ne sont pas réparés correctement, peuvent induire un dérèglement des fonctions de base de la cellule qui peut alors devenir cancéreuse. Pour réparer leur ADN, les cellules activent divers mécanismes de réparation et établissent une signalisation au niveau des sites endommagés. Dans le noyau, l'ADN est associé à des protéines appelées histones pour former la chromatine. La chromatine se caractérise par différents niveaux d'organisation, aboutissant à la formation d'une structure très compacte. Cette compaction élevée de la chromatine peut représenter une barrière pour la machinerie de réparation. En effet, pour être réparé, l'ADN endommagé doit être accessible à la machinerie de réparation. Pour cela, les cellules ont développé des mécanismes permettant d'accéder à l'ADN endommagé. Ces mécanismes de réponse aux dommages à l'ADN impliquent l'activation de voies de signalisation. L'un des signaux précurseurs activés après dommage à l'ADN est la Poly-ADP-Ribosylation (PARylation). La PARylation est une modification post-traductionnelle composée d'une répétition de petites molécules appelées Poly-ADP-Riboses, qui s'accrochent notamment sur les histones pour signaler la présence de cassures dans l'ADN et permettent ainsi de recruter les protéines impliquées dans la réparation des dommages. Lorsque l'ADN est endommagé, l'activation de processus de réparation induit de manière précoce le recrutement de facteurs de remodelage de la chromatine. Le rôle exact de la signalisation via la PARylation durant les étapes précoces de la réponse aux dommages à l'ADN et plus particulièrement lors du remodelage de la chromatine reste encore mal caractérisé. Durant ma thèse, j'ai utilisé des techniques avancées en microscopie pour étudier la dynamique de la chromatine après induction de dommages à l'ADN. J'ai ainsi tenté d'élucider le rôle de la PARylation dans le mécanisme de remodelage de la chromatine au niveau des dommages dans l'ADN, en recherchant des facteurs permettant d'altérer de manière spécifique la dynamique de la chromatine. Cette méthodologie nous a permis d'identifier différents facteurs impliqués dans le remodelage de la chromatine après dommage à l'ADN. / In each human cell, many thousands of DNA lesions arise every day, challenging continuously the genome integrity. The majority of these lesions results from byproducts of normal cell metabolism or DNA replication, but they are also induced by exposure to radiations and genotoxic chemicals. The integrity of the genome is preserved by a plethora of different DNA damage signalling and repair machinery arranged by the cells. In the cell nucleus, DNA associates with scaffolding proteins to form the chromatin. The chromatin is tightly packed in the nucleus through several levels of organization. Such high-packing state poses a significant challenge for the repair machinery. Indeed, the damaged DNA needs to be accessible to repair proteins, and for that, cells have developed several mechanisms to allow the access to the damaged chromatin. The early steps of the DNA damage response involve the activation of proteins that are part of signalling pathways. One of the proteins activated upon DNA damage is PARP1, which synthetizes long and branched chains of ADP-ribose (poly-ADP-ribose or PAR) on itself and other chromatin factors, including histones. The activation of PARP1 leads to the recruitment of several effectors involved in DNA repair and chromatin remodeling. However the exact function of the PAR-signalling during early DNA damage response and in particular during chromatin remodeling at DNA breaks remains unclear. During my PhD, I used advanced fluorescent imaging tools to study in living cells the dynamics of chromatin in the nucleus at a local scale upon DNA damage. I used these tools to study PAR-dependent chromatin relaxation after DNA damage and to screen factors that selectively alter the dynamic behaviour of the damaged chromatin. This methodology allowed us to identify PAR-dependent factors involved in the local chromatin remodeling upon DNA damage.
35

Multiscale analysis of poly-ADP-ribosylation dependent chromatin remodeling mechanisms at DNA breaks / Analyse multi-échelle des processus de remodelage de la chromatine au niveau des dommages de l'ADN contrôlés par la poly-ADP-ribosylation

Lebeaupin, Théo 18 October 2017 (has links)
Pendant longtemps, la chromatine a été uniquement décrite comme un moyen de compacter près de deux mètres d’ADN dans un noyau de quelques micromètres de diamètre. On sait aujourd’hui que la chromatine représente en fait un élément majeur de régulation de toutes les fonctions nucléaires impliquant l’ADN. Dans le contexte de dommages de l’ADN induits par irradiations UV, la chromatine endommagée subit une décondensation rapide et transitoire qui l’amène à occuper un volume 1,5 fois plus grand que son volume initial. Cette relaxation chromatinienne est associée à une plus grande accessibilité de l’ADN. Néanmoins, le lien entre ces deux effets découlant de la présence de dommages, n’a pas été établi, ni caractérisé. En couplant l’imagerie de cellules vivantes à l’induction de dommages ciblés au sein de noyaux cellulaires par micro-irradiation laser, ces travaux ont permis de mettre en évidence le rôle majeur de PARP1 dans la réponse chromatinienne aux dommages de l’ADN. En effet, certaines conclusions contradictoires présentes dans la littérature scientifique concernant l’action de PARP1 sur la chromatine ont été réconciliées en démontrant que PARP1 seul peut se lier à la chromatine et entraîner une plus forte compaction de celle-ci, tandis que son activité catalytique de PARylation va, quant à elle, conduire à une décompaction de la structure chromatinienne. Cette étude s’est aussi intéressée à la dynamique particulière de l’histone H1 suite aux dommages de l’ADN. En effet, celui-ci est rapidement exclu des zones de dommages par un mécanisme encore inconnu, et les éléments apportés ici suggèrent que H1 pourrait jouer un rôle dans la décondensation de la chromatine suite aux dommages de l’ADN. Pour finir, des techniques de photo-perturbation et de spectroscopie de corrélation de fluorescence ont été employées pour comprendre et caractériser l’environnement moléculaire que constitue la chromatine endommagée et décondensée. Bien qu’une augmentation significative des interactions entre la chromatine et certains de ses partenaires d’interactions soit observée au sein des zones endommagées, aucun changement en termes d’encombrement moléculaire n’a pu être mis en évidence à ce niveau qui pourrait expliquer une plus grande accessibilité de l’ADN. / For a long time, chromatin was only described as a mean to fit the two-meters long DNA molecule into a nucleus of only a few microns. It is admitted today that chromatin actually represents a key element in the regulation of all nuclear functions dependent on DNA. In the context of UV-induced DNA damage, chromatin undergoes a rapid and transient relaxation which leads to an expansion of the damaged area to 1.5 times its original size. While this chromatin response to damage is associated with a higher DNA accessibility, the link between those two phenomena, as well as the mechanisms driving them, are still poorly understood. Using live-cell imaging and laser micro-irradiation to induce DNA damage on specific nuclear areas, this work allowed to gain hindsight on the predominant role played by PARP1 in the DNA damage-induced chromatin relaxation. Indeed, showing that PARP1 at DNA damage sites can both induce chromatin compaction through its recruitment at DNA breaks or chromatin decondensation through its PARylation activity helped reconcile its apparent opposite effects described in the literature. A focus was also made on the linker histone H1, as it displays a peculiar behavior upon DNA damage, being rapidly released from the site of DNA lesions. Even if the driving force behind H1 release from damaged chromatin areas has not been identified yet, its behavior suggests that H1 might play a part in chromatin relaxation or in increasing DNA accessibility upon DNA damage. Lastly, combining photo-activation techniques and fluorescence correlation spectroscopy, experiments were performed in order to understand the physical environment that damaged, relaxed chromatin constitutes. We report here that, while enhanced binding of random DNA binding factors is observed in the damaged chromatin area, no significant change is observed in the macromolecular crowding levels that could potentially explain this enhanced binding, as well as a higher DNA accessibility.
36

Régulation de la maturation en 3' des pré-ARNm en réponse aux dommages de l'ADN. / Regulation of Pre-mRNA 3'-end Processing Following DNA Damage

Sfaxi, Rym 12 October 2017 (has links)
La maturation 3’ des pré-ARNm constitue une étape majeure dans la régulation post-transcriptionnelle de l’expression des gènes, indispensable à la stabilité, l’export vers le cytoplasme et la traduction des ARNm. Elle est composée de deux réactions : un clivage à l’extrémité 3’ suivie de l’addition d’une queue poly(A). Des études ont montré que la maturation en 3’ est inhibée en réponse aux dommages de l’ADN. Cependant, la cellule a mis en place des mécanismes compensatoires qui permettent à certains pré-ARNm d’être correctement maturés assurant ainsi le maintien de son intégrité. Les travaux que nous avons menés ont mis en évidence un mécanisme de résistance à l’inhibition de maturation en 3’ du pré-ARNm codant pour le suppresseur de tumeur p53. Ce mécanisme fait intervenir l’hélicase DHX36 qui déplie une structure secondaire appelée G-quadruplexe située en aval du site de clivage. Par ailleurs dans une deuxième étude, nous avons montré que la maturation en 3’ maintenue du pré-ARNm p53 en réponse aux dommages de l’ADN, est découplée du processus de transcription, contrairement au pré-ARNm TBP dont la maturation 3’ est inhibée en réponse aux dommage de l’ADN. Ce découplage a lieu grâce à un clivage co-transcriptionnelle du pré-ARNm p53 au niveau de la chromatine qui entraîne sa libération dans le nucléoplasme où il subit sa maturation en 3’. Une étude à grande échelle nous a permis de montrer que ce mécanisme de maturation en 3’ survenant dans le nucléoplasme est associé au maintien d'une maturation en 3’ efficace en réponse aux dommages de l’ADN. / The 3’-end processing of pre-mRNA, a key step in the post-transcriptional gene expression regulation, is essential for mRNA stability, export and translation. This process is a two-step reaction composed of a cleavage at the 3’-end followed by the addition of a poly(A) tail. Studies have shown that pre-mRNA 3’-end processing is inhibited in response to DNA damage. However, compensatory mechanisms exist to allow some pre-mRNA to be properly processed at their 3’-end in order to maintain cell integrity. For instance, in response to DNA damage, the 3’-end processing of the pre-mRNA coding for the tumor suppressor p53 is able to escape from its inhibition. In the present work, we have shown that the underlying mechanism involves the DHX36 helicase that unwinds a secondary structure called G-quadruplex located downstream of the cleavage site of the p53 pre-mRNA. Moreover, in a second study, we have shown that the maintained p53 pre-mRNA 3’-end processing in response to DNA damage is uncoupled from the transcription process, unlike the inhibited TBP pre-mRNA 3’-end processing. This uncoupling takes place through a co-transcriptional cleavage of p53 pre-mRNA from the chromatin and its release in the nucleoplasm where it undergoes its 3’-end processing. A genome-wide study allowed us to show that the pre-mRNA 3’-end processing occurring in the nucleoplasm is associated with a maintained 3’end processing in response to DNA damage
37

Évaluation, à partir de modélisations nanodosimétriques, de l'influence de la compaction de la chromatine sur les effets radio-induits précoces et extension aux effets tardifs (réparation des dommages à l’ADN et mort cellulaire). / Evaluation, from nanodosimetric modeling, of the influence of chromatin compaction on early radiation-induced effects and extension to late effects (DNA damage repair and cell death).

Tang, Nicolas 02 October 2019 (has links)
Ce travail de thèse s'inscrit dans le cadre d'une recherche fondamentale visant à améliorer la compréhension des mécanismes d'interaction des rayonnements ionisants avec la matière biologique en s’intéressant à la prédiction par simulations numériques des dommages précoces radio-induits à l’ADN. Dans un premier temps, une étude sur le rôle des différents niveaux de compaction de la chromatine (hétérochromatine et euchromatine) dans l’induction de ces premiers effets, à savoir les cassures de brins de l’ADN, est proposée. De nouveaux modèles géométriques réalistes de noyaux cellulaires intégrant la compaction de la chromatine ont donc été créés et utilisés dans une chaîne de calcul, basée sur le code Monte Carlo ouvert et généraliste Geant4 et son extension Geant4-DNA, permettant de simuler les étapes physique, physico-chimique et chimique menant aux cassures de brin. Les développements effectués dans cette thèse ont également permis d’étudier l’impact de plusieurs types de rayonnement (protons, alphas, photons) sur les dommages radio-induits. Les différents résultats ont été confrontés à des données expérimentales et en particulier à celles obtenues par l’équipe de radiobiologistes de l’IRSN. Enfin, une étude portant sur les effets plus tardifs comme la réparation de l’ADN et la mort cellulaire a été réalisée par l’utilisation conjointe de la chaîne de calcul et de certains modèles paramétriques issus de la littérature. Ainsi, les résultats obtenus dans cette thèse ont permis d’acquérir de nouvelles connaissances et de développer des outils de calcul qui seront bientôt disponibles en accès libre à la communauté scientifique afin de prédire des effets biologiques de plusieurs types de rayonnement dans la perspective d’améliorer les modèles de risque. / This thesis work is part of a fundamental research aimed at improving the understanding of the mechanisms of interaction of ionizing radiation with biological matter by focusing on the prediction of early radiation-induced DNA damage by numerical simulations. As a first step, a study on the role of the different levels of chromatin compaction (heterochromatin and euchromatin) in the induction of these early effects, namely DNA strand breaks, is proposed. New realistic geometric models of cell nuclei integrating chromatin compaction have therefore been created and used in a calculation chain, based on the open source and general purpose Monte Carlo code Geant4 and its extension Geant4-DNA, to simulate the physical, physico-chemical and chemical stages leading to strand breaks. Developments in this thesis have also allowed studying the impact of several types of radiation (protons, alphas, photons) on radiation-induced damage. The various results were compared with experimental data and in particular those obtained by the IRSN team of radiobiologists. Finally, a study on later effects such as DNA repair and cell death was carried out using both the calculation chain and some parametric models from the literature. Thus, the results obtained in this thesis have made it possible to acquire new knowledge and to develop calculation tools that will soon be delivered in free access to the scientific community in order to predict the biological effects of several types of radiation with the aim of improving risk models.
38

Étude du rôle de la phosphorylation du complexe Mre11-Rad50-Xrs2 dans le maintien de l'intégrité génomique

Simoneau, Antoine 11 1900 (has links)
L'ADN de chaque cellule est constamment soumis à des stress pouvant compromettre son intégrité. Les bris double-brins sont probablement les dommages les plus nocifs pour la cellule et peuvent être des sources de réarrangements chromosomiques majeurs et mener au cancer s’ils sont mal réparés. La recombinaison homologue et la jonction d’extrémités non-homologues (JENH) sont deux voies fondamentalement différentes utilisées pour réparer ce type de dommage. Or, les mécanismes régulant le choix entre ces deux voies pour la réparation des bris double-brins demeurent nébuleux. Le complexe Mre11-Rad50-Xrs2 (MRX) est le premier acteur à être recruté à ce type de bris où il contribue à la réparation par recombinaison homologue ou JENH. À l’intersection de ces deux voies, il est donc idéalement placé pour orienter le choix de réparation. Ce mémoire met en lumière deux systèmes distincts de phosphorylation du complexe MRX régulant spécifiquement le JENH. L’un dépend de la progression du cycle cellulaire et inhibe le JENH, tandis que l’autre requiert la présence de dommages à l’ADN et est nécessaire au JENH. Ensembles, nos résultats suggèrent que le complexe MRX intègre différents phospho-stimuli pour réguler le choix de la voie de réparation. / The genome of every cell is constantly subjected to stresses that could compromise its integrity. DNA double-strand breaks (DSB) are amongst the most damaging events for a cell and can lead to gross chromosomal rearrangements, cell death and cancer if improperly repaired. Homologous recombination and non-homologous end joining (NHEJ) are the main repair pathways responsible for the repair of DSBs. However, the mechanistic basis of both pathways is fundamentally different and the regulation of the choice between both for the repair of DSBs remains largely misunderstood. The Mre11-Rad50-Xrs2 (MRX) complex acts as a DSB first responder and contributes to repair by both homologous recombination and NHEJ. Being at the crossroads of both DSB repair pathways, the MRX complex is therefore in a convenient position to influence the repair choice. This thesis unravels two distinct phosphorylation systems modifying the MRX complex and specifically regulating repair by NHEJ. The first relies on cell cycle progression and inhibits NHEJ, while the second requires the presence of DNA damage and is necessary for efficient NHEJ. Together, our results suggest a model in which the MRX complex would act as an integrator of phospho-stimuli in order to regulate the DSB repair pathway choice.
39

Étude du rôle de la phosphorylation du complexe Mre11-Rad50-Xrs2 dans le maintien de l'intégrité génomique

Simoneau, Antoine 11 1900 (has links)
L'ADN de chaque cellule est constamment soumis à des stress pouvant compromettre son intégrité. Les bris double-brins sont probablement les dommages les plus nocifs pour la cellule et peuvent être des sources de réarrangements chromosomiques majeurs et mener au cancer s’ils sont mal réparés. La recombinaison homologue et la jonction d’extrémités non-homologues (JENH) sont deux voies fondamentalement différentes utilisées pour réparer ce type de dommage. Or, les mécanismes régulant le choix entre ces deux voies pour la réparation des bris double-brins demeurent nébuleux. Le complexe Mre11-Rad50-Xrs2 (MRX) est le premier acteur à être recruté à ce type de bris où il contribue à la réparation par recombinaison homologue ou JENH. À l’intersection de ces deux voies, il est donc idéalement placé pour orienter le choix de réparation. Ce mémoire met en lumière deux systèmes distincts de phosphorylation du complexe MRX régulant spécifiquement le JENH. L’un dépend de la progression du cycle cellulaire et inhibe le JENH, tandis que l’autre requiert la présence de dommages à l’ADN et est nécessaire au JENH. Ensembles, nos résultats suggèrent que le complexe MRX intègre différents phospho-stimuli pour réguler le choix de la voie de réparation. / The genome of every cell is constantly subjected to stresses that could compromise its integrity. DNA double-strand breaks (DSB) are amongst the most damaging events for a cell and can lead to gross chromosomal rearrangements, cell death and cancer if improperly repaired. Homologous recombination and non-homologous end joining (NHEJ) are the main repair pathways responsible for the repair of DSBs. However, the mechanistic basis of both pathways is fundamentally different and the regulation of the choice between both for the repair of DSBs remains largely misunderstood. The Mre11-Rad50-Xrs2 (MRX) complex acts as a DSB first responder and contributes to repair by both homologous recombination and NHEJ. Being at the crossroads of both DSB repair pathways, the MRX complex is therefore in a convenient position to influence the repair choice. This thesis unravels two distinct phosphorylation systems modifying the MRX complex and specifically regulating repair by NHEJ. The first relies on cell cycle progression and inhibits NHEJ, while the second requires the presence of DNA damage and is necessary for efficient NHEJ. Together, our results suggest a model in which the MRX complex would act as an integrator of phospho-stimuli in order to regulate the DSB repair pathway choice.
40

Regulation of replication dependent nucleosome assembly

Gopinathan Nair, Amogh 04 1900 (has links)
Chez les cellules humaines, environ 2 mètres d'ADN est compacté dans le noyau cellulaire par la formation d'une structure nucléoprotéique appelée chromatine. La chromatine est composée d'ADN enroulé à la surface d'un octamère de core histones pour former une structure appelée nucléosome. La structure de la chromatine doit être altérée afin d'accéder à l'information génétique pour sa réplication, sa réparation et sa transcription. La duplication de la chromatine lors de la phase S est cruciale pour la prolifération et la survie des cellules. Cette duplication de la chromatine requière une ségrégation des histones parentales, mais aussi une déposition d'histones néo-synthétisées sur l'ADN. Ces deux réactions résultent en formation de chromatine dès qu'une quantité suffisante d'ADNest générée par la machinerie de réplication. De plus, en raison de conditions intrinsèques et extrinsèques, la machinerie de réplication est souvent confrontée à de nombreux obstacles, sous la forme de lésions à l'ADN qui interfèrent avec la réplication de l'ADN. Sous ces conditions, l'assemblage de nucléosomes et la synthèse d'histones sont étroitement régulées afin d'éviter la production d'un excès d'histones et leurs nombreuses conséquences nuisibles à la cellule. "Chromatin Assembly Factor 1" (CAF-1) est responsable de la déposition initiale des molécules d'H3 et H4 derrière les fourches de réplication. Pour permettre sa fonction d'assemblage de chromatine, CAF-1 est localisée aux fourches de réplication en vertue de sa liaison à une protéine appelée Proliferating Cell Nuclear Antigen (PCNA). Cependant, le mécanisme moléculaire par lequel CAF-1 exerce sa function demeure mal compris. Dans le deuxième chapitre de ma thèse, j'ai exploré comment CAF-1 se lie à PCNA d'une manière distincte des nombreux autres partenaires de PCNA. Grâce à nos collaborateurs, des études de crystallographie ont démontré que CAF-1 se lie à PCNA grâce à une interaction non-canonique entre le "PCNA Interaction Peptide" (PIP) de CAF-1 et une interaction de type cation-pi (π). Nous avons aussi montré qu'une substitution d'un seul acide aminé, unique au PIP de CAF-1, abolit son interaction avec PCNA et sa capacité d'assemblage de nuclésomes. Nous avons aussi montré que le PIP de CAF-1 est situé à l'extrémité C-terminale d'une très longue hélice alpha qui est conservée à travers l'évolution parmi de nombreux homologues de CAF-1. Nos études biophysiques ontmontré que cette longue hélice alpha forme des structures oligomériques de type "coiled-coil", ce qui suggère certains mécanismes pour dédier un anneau de PCNA à l'assemblage de chromatine et ce, en dépit des nombreux intéracteurs de PCNA présents aux fourches de réplication. Dans le troisième chapitre de ma thèse, nos collaborateurs et moi-même avons étudié les mécanismes moléculaires par lesquels les cellules parviennent à maintenir un équilibre délicat entre la synthèse d'ADN et la synthèse d'histones et ce, même en présence de lésions à l'ADN qui interfèrent avec la réplication. Chez Saccharomyces cerevisiae, nous avons montré que les kinases de réponse au dommage à l'ADN, Mec1/Tel1 et Rad53, inhibent la transcription des gènes d'histones en réponse aux liaisons à l'ADN qui interfèrent avec la réplication. Nous avons montré que la répression des gènes d'histones induite par le dommage à l'ADN est médiée par une phosphorylation extensive de Hpc2, l'une des sous-unités du complexe "Histone Gene Repressor" (HIR). Hpc2 contient un domaine qui se lie à l'histone H3. À partir de la structure d'Hpc2, nous avons généré des mutants qui, d'après la structure, sont incapables de se lier à l'histone H3. Nos résultats montrent que l'accumulation d'histones en excès provoquée par le dommage à l'ADN entraîne la phosphorylation d'Hpc2 and la liaison de l'excès d'histone H3 à Hpc2. Ces résultats suggèrent que la répression transcriptionnelle des gènes d'histones induite par le dommage à l'ADN est médiée, du moins en partie, par une simple rétroaction négative impliquant la liaison des histones en excès à la sous-unité Hpc2 du complexe HIR. / In human cells, roughly 2 meters of DNA is compacted into the cell nucleus by the formation of a nucleoprotein complex called chromatin. Chromatin is composed of DNA wrapped around an octamer of core histones to form so-called nucleosomes. Chromatin structure needs to be altered to access genetic information for processes like replication, repair and transcription. Duplication of chromatin during S phase is vital for cell proliferation and viability. Chromatin duplication requires segregation of parental histones, but also deposition of newly synthesized histones onto DNA. This process results in packaging all of the synthesized DNA with histones to form nucleosomes as soon as enough nascent DNA has emerged from the replication machinery. Moreover, as a result of intrinsic and extrinsic conditions, the replication machinery often encounters DNA lesions that impede the continuous synthesis of DNA. Under these conditions, nucleosome assembly and histone synthesis are tightly regulated to prevent the production of an excess of histone proteins and their deleterious consequences. Chromatin Assembly Factor-1 (CAF-1) performs the initial step in chromatin assembly by depositing newly synthesized histone H3-H4 molecules behind replication forks. In order to perform its chromatin assembly function, CAF-1 localizes to DNA replication forks by binding directly to a protein known as the Proliferating Cell Nuclear Antigen (PCNA). However, the exact molecular mechanism by which this is achieved remains poorly understood. Through the second chapter of my thesis, I have explored how CAF-1 binds PCNA in a manner that is distinct from the numerous other binding partners of PCNA. With the help of our collaborators, crystallographic studies demonstrated that CAF-1 binds to PCNA by virtue of a non-canonical PCNA interaction peptide (PIP) and a cation-pi (π) interaction. We have also shown that a single amino acid substitution, unique to the PIP of CAF-1, disrupts its binding to PCNA and chromatin assembly activity. We found that the CAF-1 p150 PIP resides at the extreme C-terminus of a long alpha helix that is evolutionarily conserved among numerous homologues of CAF-1. Our biophysical studies showed that this long alpha-helix is capable of forming higher-order coiled coils, which suggests mechanisms to dedicate one PCNA ring for chromatin assembly despite the presence of multiple PCNA interactors at replication forks. In the third chapter of this thesis, our collaborators and I have addressed the crucial molecular mechanisms by which cells maintain a delicate balance between DNA and histone synthesis despite the presence of DNA lesions that interfere with replication. In Saccharomyces cerevisiae, we showed that the DNA damage response kinases Mec1/Tel1 and Rad53 inhibit histone gene transcription when DNA lesions block DNA replication. We also showed that this repression is mediated by phosphorylation of the Hpc2 subunit of the Histone Gene Repressor complex (HIR). Hpc2 contains a domain that directly binds to histone H3. Interestingly, structure-based mutants of Hpc2 predicted to be incapable of binding H3 are defective in DNA damage-induced transcriptional repression of histone genes in response to DNA damage during replication. Our results indicate that the accumulation of excess histones caused by DNA damage during S phase triggers extensive phosphorylation of Hpc2 and binding of excess H3 to Hpc2. This suggests that DNA damage-induced repression of histone genes is mediated, at least in part, by a simple negative feedback triggered by binding of excess histones to the Hpc2 subunit of the HIR complex.

Page generated in 0.0889 seconds