1 |
Sur la géométrie des solitons de Kähler-Ricci dans les variétés toriques et horosphériques / On the geometry of Kähler-Ricci solitons on toric and horospherical manifoldDelgove, François 04 April 2019 (has links)
Cette thèse traite des solitons de Kähler-Ricci qui sont des généralisations naturelles des métriques de Kähler-Einstein. Elle est divisée en deux parties. La première étudie la décomposition solitonique de l’espace des champs de vecteurs holomorphes dans le cas des variétés toriques. La seconde partie étudie de manière analytique les variétés horosphériques en redémontrant par la méthode de la continuité l’existence de solitons de Kähler-Ricci sur ces variétés et en calculant après la borne supérieure de Ricci. / This thesis deal with Kähler-Ricci solitons which are natural generalizations of Kähler-Einstein metrics. It is divided into two parts. The first one studies the solitonic decomposition of the space of holomorphic vector spaces in the case of toric manifold. The second one studies is an analytic way the existence of horospherical Kähler-Ricci solitons on those manifolds and then computes the greatest Ricci lower bound.
|
2 |
O método do referencial móvel e sistemas diferenciais exteriores / Moving frames and exterior differential systtems.Alcantara, Carlos Henrique Silva 19 July 2019 (has links)
Nesse trabalho, estudamos o método do referencial móvel e sistemas diferenciais exteriores. Estabelecemos resultados de Geometria Riemanniana via referenciais móveis e com essa linguagem introduzimos o Teorema de Gauss-Bonnet-Chern e apresentamos uma adaptação da demonstração original de S.-S. Chern presente no artigo A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ao abordar aspectos da teoria de Cartan-Kähler, codificamos as ideias oriundas dos referenciais móveis em sistemas diferenciais exteriores e mostramos algumas aplicações à Geometria Riemanniana. / In this work, we study the method of moving frame and exterior differential systems. We set up results of Riemannian Geometry via moving frames and with this language we introduce the Gauss-Bonnet-Chern Theorem and present an adaptation of the original proof of S.-S. Chern in the article A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. In discussing aspects of Cartan-Kählers theory, we encode the ideas from moving frames into exterior differential systems and use this tool in Riemannian Geometry.
|
3 |
Gauge Theory Dynamics and Calabi-Yau ModuliDoroud, Nima January 2014 (has links)
We compute the exact partition function of two dimensional N=(2,2) supersymmetric gauge theories on S². For theories with SU(2|1)_A invariance, the partition function admits two equivalent representations corresponding to localization on the Coulomb branch or the Higgs branch, which includes vortex and anti-vortex excitations at the poles. For SU(2|1)_B invariant gauge theories, the partition function is localized to the Higgs branch which is generically a Kähler quotient manifold. The resulting partition functions are invariant under the renormalization group flow. For gauge theories that flow in the infrared to Calabi-Yau nonlinear sigma models, the partition functions for the SU(2|1)_A (resp SU(2|1)_B) invariant theories compute the Kähler potential on the Kähler moduli (resp. complex structure moduli) of the Calabi-Yau manifold. We also compute the elliptic genus of such theories in the presence of Stückelberg fields and show that they are modular completions of mock Jacobi forms.
|
4 |
Equations de Monge-Ampère complexes paraboliques / Parabolic complex Monge Ampère equationsDo, Hoang Son 29 September 2015 (has links)
Le but de cette thèse est de contribuer à la compréhension des équations de Monge-Ampère complexes paraboliques sur des domaines de Cn. Cette équation a un lien étroit avec le flot de Kähler-Ricci. Notre étude se concentre sur les cas où la condition initiale n'est pas régulière. Nous voulons démontrer l'existence de solutions satisfaisant la continuité jusqu'à la frontière et jusqu'au temps initial. / The aim of this thesis is to make a contribution to understanding parabolic complex Monge-Ampère equations on domains of Cn. Our study is centered around cases where the initial condition is irregular. We want to prove the existence of solutions which satisfies continuity up to the boundary and continuity up to the initial time.
|
5 |
Sobre rigidez de métricas quasi-Einstein / On rigidity of quasi-Einstein metricsBorges, Laena Furtado 03 March 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-03-17T21:10:56Z
No. of bitstreams: 2
Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:53:29Z (GMT) No. of bitstreams: 2
Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-20T13:53:29Z (GMT). No. of bitstreams: 2
Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we will present some concepts of quasi-Einstein metrics. From this, we will enunciate and demonstrate rigidity results for quasi-Einstein metrics until we have enough material to demonstrate a stiffness result for quasi-Einstein metrics of dimension two. Finally, we will give some concepts of Kähler metrics, prove a theorem and finally demonstrate a corollary that connects the main theorem of our work with Kähler metrics. / Nesse trabalho, apresentaremos alguns conceitos de métricas quasi-Einstein. A partir disso, enunciaremos e demonstraremos resultados de rigidez para métricas quasi-Einstein, até que tenhamos material suficiente para a demonstração de um resultado de rigidez para métricas quasi-Einstein em dimensão dois. Por fim, daremos alguns conceitos de métricas kähler, provaremos um teorema e por fim demonstraremos um corolário que conecta o teorema principal do nosso trabalho com as métricas Kähler.
|
6 |
Métriques de Kähler-Einstein sur les compactifications de groupes / Kähler-Einstein metrics on group compactificationsDelcroix, Thibaut 12 October 2015 (has links)
Le résultat principal de cette thèse est l'obtention d'une condition nécessaire et suffisante pour l'existence d'une métrique de Kähler-Einstein sur une compactification bi-équivariante lisse et Fano d'un groupe complexe réductif connexe. Ces variétés comprennent les variétés toriques et les compactifications magnifiques de groupes semisimples adjoints.Dans la première partie de ce travail sont développés les outils nécessaires à l'étude de l'existence de métriques de Kähler-Einstein sur ces variétés. Nous calculons en particulier la Hessienne complexe d'une fonction $Ktimes K$-invariante sur la complexification d'un groupe compact $K$. Nous associonségalement, à toute métrique invariante à courbure positive sur un fibré linéarisé ample sur une compactification de groupe, une fonction convexe dont le comportement asymptotique est prescrit. Ceci est utilisé une première fois pour obtenir une formule pour l'invariant alpha d'un fibré en droite ample sur une compactification de groupe Fano. Cette formule est obtenue par le calcul des seuils log canoniques des métriques hermitiennes invariantes à courbure positive, et induit, dans le cas particulier des variétés toriques, un résultat obtenu auparavant, figurant dans l'article par ailleurs inclus en appendice de la thèse.Nous prouvons ensuite le résultat principal en obtenant des estimées $C^0$ le long de la méthode de continuité, en se ramenant à une équation de Monge-Ampèreréelle sur un cône. La condition obtenue est que le barycentre du polytope associé à la compactification de groupe, par rapport à la mesure de Duistermaat-Heckman, doit être dans une zone particulière du polytope. Cette condition peut être vérifiée sur les exemples, donne de nouveaux exemples de variétés deKähler-Einstein Fano, et donne aussi un exemple qui n'admet aucun soliton de Kähler-Ricci. Nous calculons de plus la plus grande borne inférieure de Ricci lorsqu'il n'y a pas de métrique de Kähler-Einstein. / The main result of this work is a necessary and sufficient condition for the existence of a Kähler-Einstein metric on a smooth and Fano bi-equivariant compactification of a complex connected reductive group. Examples of such varieties include wonderful compactifications of adjoint semisimple groups.The tools needed to study the existence of Kähler-Einstein metrics on these varieties are developed in the first part of the work, including a computation of the complex Hessian of a $Ktimes K$-invariant function on the complexification of a compact group $K$. Another step is to associate to any non-negatively curved invariant hermitian metric on an ample linearized line bundle on a group compactification a convex function with prescribed asymptotic behavior. This is used a first time to derive a formula for the alpha invariantof an ample line bundle on a Fano group compactification. This formula is obtained through the computation of the log canonical thresholds of any non-negatively curved invariant hermitian metric, and gives the sameresult, for toric manifolds, as the one we obtained before, in an article that is included in this thesis as an appendix.Then we prove the main result by obtaining $C^0$ estimates along the continuity method, using the tools developed to reduce to a real Monge-Ampère equation on a cone. The condition obtained is that the barycenter of the polytope associated to the group compactification, with respect to the Duistermaat-Heckman measure, lies in a certain zone in the polytope. This condition can be checked on examples, gives new examples of Fano Kähler-Einstein manifolds, and also gives an example that admits no Kähler-Ricci solitons. We also compute the greatest Ricci lower bound when there are no Kähler-Einstein metrics.
|
7 |
Weak solutions to a Monge-Ampère type equation on Kähler surfacesRao, Arvind Satya 01 May 2010 (has links)
In the context of moment maps and diffeomorphisms of Kähler manifolds, Donaldson introduced a fully nonlinear Monge-Ampère type equation. Among the conjectures he made about this equation is that the existence of solutions is equivalent to a positivity condition on the initial data. Weinkove later affirmed Donaldson's conjecture using a gradient flow for the equation in the space of Kähler potentials of the initial data. The topic of this thesis is the case when the initial data is merely semipositive and the domain is a closed Kähler surface. Regularity techniques for degenerate Monge-Ampère equations, specifically those coming from pluripotential theory, are used to prove the existence of a bounded, unique, weak solution. With the aid of a Nakai criterion, due to Lamari and Buchdahl, it is shown that this solution is smooth away from some curves of negative self-intersection.
|
8 |
Study of a class of compact complex manifoldsManjarín Arcas, Mònica 06 July 2006 (has links)
No description available.
|
9 |
Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes / Vanishing theorems and structure theorems of compact kähler manifoldsCao, Junyan 18 September 2013 (has links)
L'objet principal de cette thèse est de généraliser un certain nombre de résultats bien connus de la géométrie algébrique au cas k"{a}hlerien non nécessairement projectif. On généralise d'abord le théorème d'annulation de Nadel au cas k"{a}hlerien arbitraire. On obtient aussi un cas particulier du théorème d'annulation de Kawamata-Viehweg pour les variétés qui admettent une fibration vers un tore dont la fibre générique est projective. En utilisant ce résultat, on étudie le problème de déformation pour les variétés k"{a}hlériennes compactes sous une hypothèse portant sur les fibrés canoniques. On étudie enfin les variétés à fibré anticonique nef. On montre que si le fibré anticanonique est nef, alors le fibré tangent est à pentes semi-positif relative à la filtration de Harder-Narasimhan pour la polarization $omega_X ^{n-1}$. Comme application, on donne une preuve simple de la surjectivité de l'application d'Albanese, et on étudie aussi la trivialité locale de l'application d'Albanese. / The aim of this thesis is to generalize a certain number of results of algebraic geometry to K"{a}hler geometry. We first generalize the Nadel vanishing theorem to arbitrary compact K"{a}hler manifolds. We prove also a particular version of the Kawamata-Viehweg vanishing theorem for manifolds admitting a fibration to a torus such that the generic fiber is projective. Using this result, we study the theory of deformations of compact Kähler manifolds under certain assumptions on their canonical bundles. Finally, we study varieties with nef anticanonical bundles. We prove that the slopes of the Harder-Narasimhan filtration of the tangent bundles with respect to a polarization of the form $omega_X^{n-1}$ are semi-positive. As an application, we give a simple proof of the surjectivity of the Albanese map, and we investigate also the local triviality of the Albanese map.
|
10 |
Imersões PPMC em espaços hiperbólicos e imersões plurimínimas em espaços produtoAlmeida, Kelly Alves Marães de, 92-99129-8546 30 June 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-30T19:12:42Z
No. of bitstreams: 1
Tese - Kelly A. m. Almeida.pdf: 1155345 bytes, checksum: dec9667081e7741da147db25d66d7fe2 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-30T19:12:55Z (GMT) No. of bitstreams: 1
Tese - Kelly A. m. Almeida.pdf: 1155345 bytes, checksum: dec9667081e7741da147db25d66d7fe2 (MD5) / Made available in DSpace on 2017-08-30T19:12:55Z (GMT). No. of bitstreams: 1
Tese - Kelly A. m. Almeida.pdf: 1155345 bytes, checksum: dec9667081e7741da147db25d66d7fe2 (MD5)
Previous issue date: 2017-06-30 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Let E"(c) be a space of constant sectional curvature c # 0. We prove that minimal or pluriminimal Kahler submanifolds in En(c) x JR are surfaces. For a pluriminimal immersed submanifold into CPn x R, there exists a dense open sub-set that it admits a foliation by holomorphics (or antiholomorphics) submanifolds of CPn . We investigate pluriminimal immersions of compact Kahler manifolds with first Chern class positive into CP" x R. In this case, it is holomorphic (an-tiholoforphic) in the first factor. In addition, for a half isotropic ppmc immersion of Kahler manifolds into hyperbolic space we have that either it is decomposable in Lorentz space, or it comes from ppmc immersion of Rn or it is immersion of surfa-ces with parallel mean curvature. We also prove that ppmc immersion of compact Kahler manifolds with positive first Chern class into hyperbolic space either it is decomposable in Lorentz space, or it comes from ppmc immersion of IR". Keywords: pluriminimal immersion, ppmc immersion, Kahler manifolds, pa-rallel plurimean curvature. / Neste trabalho provamos que variedades Kãhler imersas mínima ou pluriminimante no espaço produto E"(c) x IR, onde En(c) é um espaço de curvatura seccional constante c # O, são superfícies. Enquanto as imersas pluriminimamente em CP" x IR admitem um aberto denso folheado por subvariedades holomorfas ou antiholomorfas de CP". Além disso, para variedades Kãhler compactas com primeira classe de Chern positiva, provamos que as imersões pluríminimas em CP" x IR são holomorfas em CP". Estudamos também imersões ppmc semi-isotrópica de variedades Kãhler no espaço hiperbólico e concluímos que, ou elas são decomponíveis no espaço de Lorentz, ou são provenientes de imersões ppmc no Rn, ou são imersões de superfícies com curvatura média paralela. Como consequência, verificamos que imersões ppmc de variedades Kãhler com primeira classe de Chern positiva no espaço hiperbólico ou são decomponíveis no espaço de Lorentz, ou são provenientes de imersões ppmc no Rn.
|
Page generated in 0.0419 seconds