1 |
Structural and functional studies of eukaryotic translation initiation factorsLiu, Yi 29 July 2014 (has links)
No description available.
|
2 |
Electric power quality in low voltage grid : Office buildings and rural substationAndersson, Robin January 2015 (has links)
The modern society uses more and more electronic devices needed to being able to function together. This put higher demands on the electrical grid together with that the typical load have changed from the past. Therefore utility companies are obliged to keep the voltage within certain limits for this to function. What exact these limits have been have not always been clear since they have not been gathered in one single document. This thesis is a cooperation with Kraftringen who also has been the initiator. Kraftringen would like to become more proactive in their work regarding electric power quality. For becoming more proactive continuously measurements have to be done but the locations have to be carefully selected in the beginning to get a wider perspective of the grid. Energy markets inspectorate (EI) is supervisory of the electric power quality in Sweden and since 2011 they have published a code of statutes (EIFS 2011:2 later 2013:1) intended to summarize limits on voltage. Some of the electrical power quality aspects are not mentioned in EIFS 2013:1 and standards have to be used to find limited values. Flicker and interharmonics are not mentioned in EIFS 2013:1 and for values on flicker the standard SS-EN 50160 has to be used and for interharmonics the standard SS-EN 61000-2-2 state limit values. Besides all this there are standards with stricter limits than EIFS 2013:1 e.g. for total harmonic distortion on voltage were SS-EN 61000-2-2 suggest 6 % instead of 8 %. Three different field studies have been conducted in order to get some perception of the present situation regarding electric power quality. Two measurements were conducted on a typical office building because they represents a large part of the typical load in Lund. The third measurement was conducted on a substation in a rural area to get a perception of the situation outside urban areas. These measurements shown that the overall electric power quality was within given limits according to EIFS 2013:1 and different standards. However, conducted measurements shown some interesting results. Both the typical office buildings have a slightly capacitive power factor which results in that the voltage inside the building is going to be slightly higher than at the substation. Since the voltage level at the measured urban substation was above nominal voltage level with about 2-5 % this could be problematic. Another eventual problem with a load with a capacitive power factor is resonance with the inductive parts of the grid like transformers leading to magnified harmonic levels. It is suggested that Kraftringen expand their number of permanent electric power quality measurement locations to get a better overview of the present situation. The best suited locations to start with are such that have received complaints earlier, preferably measured on the low voltage side of the transformer for also register the amount of zero sequence harmonics. Next step in the measurement expansion would be substations known to be under higher load than others or substations with a PEN-conductor in a smaller area than the phase conductors, supplying a typical office load with high amounts of third harmonics and unbalance. From this it would be appropriate to spread out the measurement locations geographically to better get to know the grids behaviour.
|
3 |
Fretting behavior of AISI 301 stainless steel sheet in full hard conditionHirsch, Michael Robert 10 July 2008 (has links)
Fretting, which can occur when two bodies in contact undergo a low amplitude relative slip, can drastically reduce the fatigue performance of a material. The extent of fretting damage is dependent on the material combination and is affected by many parameters, making it difficult to design against fretting. Some of these parameters include contact force, displacement amplitude, and contacting materials. This work develops a method for quantifying the extent of damage from fretting as a function of these parameters for a thin sheet of AISI 301 stainless steel in the full hard condition in contact with both ANSI A356 aluminum and AISI 52100 steel contacting bodies. Fretting experiments were conducted on a Phoenix Tribology DN55 Fretting Machine using a fixture which was developed for holding thin specimens. The displacement amplitude and normal force were systematically varied in order to cover a range that could typically be experienced during service. The tribological behavior was studied by analyzing friction force during cycling and inspecting the resulting surface characteristics. Fretting damaged specimens were cycled in tension in a servohydraulic test system to failure. The decrease in fatigue life caused by fretting damage was determined by comparing the stress-life (S-N) response of the fretted specimens to the S-N response of the virgin material, thus characterizing the severity of the fretting damage. The conditions that lead to the greatest reduction in life were identified in this way. Using the fracture mechanics based NASGRO model, an Equivalent Initial Flaw Size (EIFS) was used to quantify the level of fretting damage, thus separating the life of the component into crack nucleation and subsequent propagation. This method and data will allow engineers to design more robust components that resist fretting damage, thus increasing the safety and reliability of the system.
|
4 |
Implementation of the IEEE 802.11a MAC layer in C language / Implementering av IEEE 802.11a MAC lagret i programspråket CPortales, Maria January 2004 (has links)
<p>There are several standards for wireless communication. People that are involved in computers and networking recognize names like Bluetooth, HiperLAN and IEEE 802.11. The last one was standardized in 1997 [2,6]and has begun to reach acceptance as a solid ground for wireless networking. A fundamental part of an IEEE 802.11 node is the Medium Access Controller, or MAC. It establishes and controls communication with other nodes, using a physical layer unit. </p><p>The work has been carried out as final project at Linkopings Universitet, it has been about the improvement of the functions of MAC layer. I have developed some of the required functions that PUM uses to interact with the MAC layer. Because of that, I have implemented the Reception functions of MAC layer, having the possibility of using short control frames RTS/CTS to minimize collision.</p>
|
5 |
Implementation of the IEEE 802.11a MAC layer in C language / Implementering av IEEE 802.11a MAC lagret i programspråket CPortales, Maria January 2004 (has links)
There are several standards for wireless communication. People that are involved in computers and networking recognize names like Bluetooth, HiperLAN and IEEE 802.11. The last one was standardized in 1997 [2,6]and has begun to reach acceptance as a solid ground for wireless networking. A fundamental part of an IEEE 802.11 node is the Medium Access Controller, or MAC. It establishes and controls communication with other nodes, using a physical layer unit. The work has been carried out as final project at Linkopings Universitet, it has been about the improvement of the functions of MAC layer. I have developed some of the required functions that PUM uses to interact with the MAC layer. Because of that, I have implemented the Reception functions of MAC layer, having the possibility of using short control frames RTS/CTS to minimize collision.
|
6 |
Fuktrelaterade risker vid lågenergikonstruktion i lättbetong : En studie av ett nyproducerat passivhus / Moisture related risks with aerated concrete in low energy constructions : A study of a newly produced passive houseJansson, Sebastian, Niklasson, Erik January 2014 (has links)
Trenden i byggbranschen är att efterfrågan på täta, energisnåla byggnader ökar. Passivhus och andra lågenergikonstruktioner blir vanligare och vanligare. Riskerna med att bygga in organiskt material som trä i dessa konstruktioner har fått branschen att börja titta på alternativa material. Lättbetong är ett material som både har bärande och isolerande egenskaper. Dessutom är det inte organiskt vilket gör det okänsligt för mikrobiell påväxt. Det som är intressant med lättbetong, ur fuktsynpunkt, är att materialet levereras från tillverkare med en stor mängd byggfukt. Våren 2014 färdigställde Bollnäs Bostäder passivhus- projektet Sundsbro i Bollnäs, där lättbetong ingår i utfackningsväggarna. Sett inifrån består väggen av ett tunt lager kc-puts, lättbetong, cellplast, mineralull, kc-baserad grovputs och ytputs. I detta arbete användes projektet i Bollnäs som referensobjekt och en risk- och känslighetsanalys av väggkonstruktionen utfördes. Arbetet utreder risken för fuktrelaterade problem med väggen vid de extra uttorkningsinsatser som vidtogs i referensobjektet och vid normala uttorkningsbetingelser. Vidare utreds vilka parametrar som är viktiga för väggens fuktfunktion och vad man behöver tänka på när man projekterar och bygger i lättbetong. Arbetet har genomförts i samarbete med AK-Konsult Indoor Air AB och deras senior konsult Anders Kumlin. Fuktberäkningsprogrammet WUFI Pro 5.3 har använts för simuleringar. Beräkningarna gjordes endimensionellt på väggkonstruktionen. Resultaten med den ökade uttorkning som utfördes i referensobjektet visar inget högre fuktinnehåll längst ut i väggen på grund av byggfukt från lättbetongen som vandrar utåt. Farhågan var att så skulle kunna ske och att det skulle kunna leda till mögelproblem. Däremot visar resultaten att bygg-fukt från putsen kan fukta upp mineralullen. Det finns dock inga kända skadefall av detta slag och därför dras ändå slutsatsen att konstruktionen är riskfri. Tack vare en förutseende fukt-projektering och väl utförd uttorkning eliminerades risken för mögel. Hade inte dessa åtgärder vidtagits så visar resultaten att en liten mängd byggfukt hade kunnat vandra utåt och kondensera i mineralullen under första vintern. Då hade det funnits risk för mikrobiell påväxt. Detta visar att det är av största vikt att utföra en noggrann fuktprojektering vid byggnation av välisolerade hus i allmänhet och i synnerhet när lättbetong används. Lyckligtvis gjordes detta på ett bra sätt i referensprojektet. Känslighetsanalysen visar att isoleringens diffusionstäthet är avgörande för hur stor del av bygg-fukten som kan vandra utåt och därmed hur stor risken för problem blir. Lägre täthet ger större risk och högre täthet reducerar risken. Resultaten visar också att det är viktigt att inte montera täta skikt på insidan för tidigt. Den allmänna rekommendationen från leverantör är att lättbetongen skall torkas till 15 % fuktkvot på 50 millimeters djup innan målning och tapetsering på insida vägg får ske. Studien visar att detta är ett för högt fukttillstånd om det skikt som appliceras på insida vägg är tätt. Lättbetongen bör torkas till 5 % på 50 millimeters djup innan helt täta skikt kan monteras utan mögelrisk. / The trend in the construction industry is that the demand for tight, energy-saving buildings is rising. Passive houses and low energy constructions are becoming more and more common. The risk with using organic material in this type of constructions has made the industry look at alternative materials. Aerated concrete is a material that has both load-bearing and insulating properties. In addition to that it is not organic, which makes it insensitive to microbial growth. What is interesting with aerated concrete, from a moisture point of view, is that the material is delivered from the producer with a large amount of construction moisture. In the spring of 2014, the passive-house project Sundsbro in Bollnäs with aerated concrete in the wall construction, was finished by Bollnäs Bostäder. In this study the project in Bollnäs was used as reference object and a risk- and sensitivity analysis was made. The study examines the risk of moisture related problems with the wall construction during normal dehydration conditions and after the increased dehydration efforts that were taken in the reference project. The study also examines which parameters are important for the moisture function of the wall construction and what you need to think about when you project and build with aerated concrete. The job has been done in cooperation with AK-Konsult Indoor Air AB and their senior consultant Anders Kumlin. The moisture calculation program WUFI Pro 5.3 has been used for simulations. The results with the increased dehydration that was used in the reference project show no increased moisture content in the outer parts of the construction due to construction moisture from the concrete that wanders outwards. The concern was that so could happen and that it would lead to mould problems. However the results show that construction moisture from the exterior plaster can moisten the mineral wool. There are no known damage cases of this sort and therefore the conclusion is that the construction is free of risk. Thanks to a foreseeing moisture projection and a well performed dehydration the risk of mould was eliminated. If these measures would not have been taken, the results show that a small amount of construction moisture could have wandered outwards and condensed inside the mineral wool during the first winter. Then there would have been a risk of microbial growth. This shows that it is very important to carry out a detailed moisture projection when constructing well insulated houses in general and when using aerated concrete in particular. Fortunately this was properly done in the reference project. The sensitivity analysis shows that the diffusion resistance of the insulation decides how much of the construction moisture that can wander outwards and consequently the size of the problem risk. Results also show that it is crucial not to apply sealing layers on the inside of the wall too early. The general recommendation from the supplier is that the aerated concrete should be dried to 15 % moisture ratio on 50 millimeter depth before painting and paper hanging on the interior surface of the wall can be done. The study shows that the concrete still is too damp at that stage if the layer applied on the inside of the wall is impermeable. The concrete should be dried down to 5 % moisture ratio before sealing layers can be applied without mould risk.
|
Page generated in 0.0232 seconds