• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 204
  • 102
  • 38
  • 31
  • 18
  • 14
  • 9
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 847
  • 599
  • 283
  • 239
  • 148
  • 117
  • 101
  • 95
  • 83
  • 83
  • 74
  • 74
  • 73
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Semiklassische Dynamik ultrakalter Bose-Gase

Simon, Lena 31 January 2013 (has links)
Die Dynamik anfänglich aus dem Gleichgewicht gebrachter wechselwirkender Quantenvielteilchensysteme wirft aktuell noch spannende Fragen auf. In Bezug auf die Thermalisierung ist z.B. nach wie vor ungeklärt, in welcher Form sie überhaupt stattfindet und in welchen Observablen bzw. auf welcher Zeitskala sie zu beobachten ist. Eine ideale Grundlage zur Erforschung von Relaxationsdynamiken in wechselwirkenden Vielteilchensystemen bieten ultrakalte Quantengase aufgrund ihrer guten Kontrollier- und Variierbarkeit. Ein allgemeiner theoretischer Rahmen, auf dessen Basis solche Prozesse zu untersuchen sind, steht jedoch infolge der großen Anzahl der beteiligten Freiheitsgrade bisher nicht zur Verfügung. Für ultrakalte bosonische Gase stellt die Gross-Pitaevskii-Gleichung eines der wichtigsten theoretischen Werkzeuge dar, eine klassische Feldgleichung für die Kondensatwellenfunktion in Molekularfeldnäherung. Die ihr zugrunde liegende Näherung erlaubt jedoch keine nicht-trivialen Aussagen über den vollen N-Teilchenzustand, dessen Kenntnis für die Untersuchung einer möglichen Relaxationsdynamik unabdingbar ist. Um der theoretischen Beschreibung des vollen bosonischen Feldes einen Schritt näher zu kommen, untersucht die vorliegende Arbeit die Anwendung semiklassischer Methoden auf ultrakalte Bosegase. Diese sind in der Regel dann sehr genau, wenn die beteiligten Wirkungen groß gegenüber dem Planckschen Wirkungsquantum sind. Für bosonische Felder wird dieser Grenzfall durch die Bedingung einer großen Teilchenzahl ersetzt. Die immense Anzahl an Teilchen in den hier behandelten Vielteilchensystemen macht die Anwendung semiklassischer Methoden auf diesem Gebiet also vielversprechend. Als zentrales Modellsystem wird ein anfänglich aus dem Gleichgewicht gebrachtes ultrakaltes bosonisches Doppelmuldensystem betrachtet, das eine hochinteressante Dynamik aufweist, die auf das Wechselspiel der Tunneldynamik einerseits und der Wechselwirkung der Teilchen untereinander andererseits zurückzuführen ist. Als Referenz lassen sich aufgrund der speziellen Fallengeometrie im Rahmen der Zwei-Moden-Näherung die Ergebnisse einer numerisch exakten Untersuchung heranziehen. Durch den Einsatz der namhaften WKB-Quantisierung und des besonders aus der Molekülphysik bekannten Reflexionsprinzips wird hier ein geschlossener analytischer Ausdruck für die sogenannte Populationsdifferenz im Doppelminimum hergeleitet, der ausschließlich von den wenigen relevanten Systemparametern abhängt. Diese mächtige Formel erlaubt es nun zum ersten Mal, in quantitativer Weise die charakteristische Sequenz aus Oszillationen, Kollapsen und Revivals in Abhängigkeit der vorausgesetzten Parameter zu untersuchen. Nach dieser ersten erfolgreichen Anwendung semiklassischer Methoden im Modellsystem wird über die reduzierte Dynamik der Populationsdifferenz hinausgegangen. Mithilfe des semiklassischen Herman-Kluk-Propagators lässt sich selbst der volle N-Teilchenzustand untersuchen. Da es letztlich um die Beschreibung ultrakalter Bosonen in beliebigen Potentialen gehen soll, wird zunächst der Herman-Kluk-Propagator für eine Feldtheorie vorgestellt. Im Doppelmuldensystem zeigt sich dann in der Anwendung die semiklassische Propagation in der Lage, für alle untersuchten Parameterregime gute Übereinstimmung mit den numerisch exakten Ergebnissen zu liefern. Zusätzlich findet ein Abgleich der Resultate mit der Truncated Wigner Approximation statt, auf die im Forschungsgebiet ultrakalter Bosonen häufig zurück gegriffen wird. Diese beschreibt die Zeitentwicklung einer Wignerverteilung unter Aussparung der Quanteninterferenzen. In der vorliegenden Arbeit wird gezeigt, dass die Herman-Kluk-Propagation unter Berücksichtigung der Phasen weit über die Truncated Wigner Approximation hinausgeht: Sie gibt alle wichtigen Charakteristika der Dynamik im Doppelmuldensystem wieder. Um die Semiklassik auf ihre Aussagefähigkeit in Bezug auf eine noch komplexere Dynamik zu untersuchen, wird zum Abschluss das Drei-Topf-System betrachtet, das zusätzlich chaotische Regionen im Phasenraum aufweist. Auch hier zeigt sich, dass die semiklassische Berücksichtigung der Phasen die Truncated Wigner Approximation in den Schatten stellt. Allerdings ergeben sich durch die Instabilität der Trajektorien für stark chaotische Regime numerische Probleme, die es in der Zukunft zu lösen gilt. / The dynamics of initially non equilibrium interacting quantum many body systems is an ongoing and interesting field of research. It is still an open question in which form relaxation occurs in such systems, and in which observables and on which timescales a possible thermalization might appear. A perfect playground for the investigations of relaxation dynamics in interacting many body schemes is provided by ultracold quantum gases, which are easily to be controlled and varied in experiments. However, a general theoretical framework for the investigation of such processes is still missing, due to the huge amount of involved degrees of freedom. One of the main theoretical tools in the field of ultracold bosonic gases represents the famous Gross-Pitaevskii equation, a field equation for the Bose-Einstein condensate wave function in terms of a mean-field approximation. However, the underlying approximation prevents the possibility to draw non-trivial conclusions about the full N-particle state, the information of which is necessary for the analysis of relaxation processes. To gain the theoretical description of the full bosonic field, the present thesis deals with the application of semiclassical methods to ultracold boson gases. Those techniques become in general exact, as long as the involved actions are large compared to Planck's constant. For many body systems it turns out that semiclassics are expected to give good results also for the condition of high particle numbers, which is precisely fulfilled in these schemes, making the semiclassical approaches promising. As an essential model system an initially out of equilibrium ultracold bosonic double-well system is investigated. This configuration provides highly interesting dynamics due to the interplay of the tunneling dynamics on the one hand and the interaction amongst the particles on the other. The special trap geometry makes exact numerical calculations in the framework of the two-mode approximation available, which serve in the following as reference data. By applying the common semiclassical WKB approximation and the reflection principle known from molecule physics, a closed analytical expression for the so-called population imbalance of the bosons in the double-well is derived, depending only on the few relevant system parameters. This mighty formula allows for the first time the quantitative investigation of the characteristic sequence consisting of oscillations, collapse and revivals in dependence on the parameters of the system. Since the semiclassical approaches succeeded for the double-well model so far the so-called Herman-Kluk propagator is adopted, to go beyond the reduced dynamics of the population imbalance. The propagator provides the possibility to treat the full N-particle state theoretically and is introduced for the most general case of a bosonic quantum field. Its application to the double-well system yields for all investigated parameter regimes very good agreement with the numerical exact results. Furthermore the outcomes are compared to the Truncated Wigner approximation, which is frequently used in the research field of ultracold bosons. This approach pictures the time evolution of a Wigner distribution, without taking into account the quantum interferences. In the present thesis it is shown that the Herman-Kluk propagation goes clearly beyond the truncated Wigner approach by considering in addition the quantum phases: The propagator is able to reproduce all of the distinctive features of the double-well dynamics. In order to test the performance of semiclassical methods in matters of even more complex systems, the ultracold bosonic triple-well model is finally considered, which exhibits unlike the double-well scheme chaotic regions in phase space. It turns out that the semiclassical propagation outplays again the truncated Wigner approximation. On the other hand the instability of the highly chaotic trajectories causes numerical problems, which have to be solved in the future.
432

Méthodes numériques pour la simulation d'équations aux dérivées partielles stochastiques non-linéaires en condensation de Bose-Einstein / Numerical methods for the simulation of nonlinear stochastic partial differential equations in Bose-Einstein condensation

Poncet, Romain 02 October 2017 (has links)
Cette thèse porte sur l'étude de méthodes numériques pour l'analyse de deux modèles stochastiques apparaissant dans le contexte de la condensation de Bose-Einstein. Ceux-ci constituent deux généralisations de l'équation de Gross-Pitaevskii. Cette équation aux dérivées partielles déterministe modélise la dynamique de la fonction d'onde d'un condensat de Bose-Einstein piégé par un potentiel extérieur confinant.Le premier modèle étudié permet de modéliser les fluctuations de l'intensité du potentiel confinant et prend la forme d'une équation aux dérivées partielles stochastiques. Celles-ci conduisent en pratique à un échauffement du condensat, et parfois mêmeà son effondrement. Nous proposons dans un premier chapitre la construction d'un schéma numérique pour la résolution de ce modèle. Il est fondé sur une discrétisation spectrale en espace, et une discrétisation temporelle de type Crank-Nicolson. Nous démontrons que le schéma proposé converge fortement en probabilité à l'ordre au moins 1 en temps, et nous présentons des simulations numériques illustrant ce résultat. Le deuxième chapitre est consacré à l'étude théorique et numérique de la dynamique d'une solution stationnaire (pour l'équation déterministe) de type vortex. Nous étudions l'influence des perturbations aléatoires du potentiel sur la solution, et montrons que la solution perturbée garde les symétries de la solution stationnaire pour des temps au moins de l'ordre du carré de l'inverse de l'intensité des fluctuations. Ces résultats sont illustrés par des simulations numériques exploitant une méthode de Monte-Carlo adaptée à la simulation d'événements rares.Le deuxième modèle permet de modéliser les effets de la température sur la dynamique d'un condensat. Lorsque celle-ci n'est pas nulle, la condensation n'est pas complète et le condensat interagit avec les particules non condensées. Ces interactions sont d'un grand intérêt pour comprendre la dynamique de transition de phase et analyser les phénomènes de brisure de symétrie associés, comme la formation spontanée de vortex. Nous nous sommes intéressés dans les chapitres 3 et 4 à des questions relatives à la simulation de la distribution des solutions de cette équation en temps long. Le troisième chapitre est consacré à la construction d'une méthode d’échantillonnage sans biais pour des mesures connues à une constante multiplicative près. C'est une méthode de Monte Carlo par chaînes de Markov qui a la particularité de permettre un échantillonnage non-réversible basé sur une équation de type Langevin sur-amortie. Elle constitue une extension de Metropolis-Adjusted Langevin Algorithm (MALA). Le quatrième chapitre est quant à lui consacré à l'étude numérique de dynamiques métastables liées à la nucléation de vortex dans des condensats en rotation. Un intégrateur numérique pour la dynamique étudiée est proposé, ainsi qu'une méthode de Monte-Carlo adaptée à la simulation d'événements rares correspondant aux changements de configurations métastables. Cette dernière est basée sur l'algorithme Adaptive Multilevel Splitting (AMS). / This thesis is devoted to the numerical study of two stochastic models arising in Bose-Einstein condensation physics. They constitute two generalisations of the Gross-Pitaevskii Equation. This deterministic partial differential equation model the wave function dynamics of a Bose-Einstein condensate trapped in an external confining potential. The first chapter contains a simple presentation of the Bose-Einstein condensation phenomenon and of the experimental methods used to construct such systems.The first model considered enables to model the fluctuations of the confining potential intensity, and takes the form of a stochastic partial differential equation. In practice, these fluctuations lead to heating of the condensate and possibly to its collapse. In the second chapter we propose to build a numerical scheme to solve this model. It is based on a spectral space discretisation and a Crank-Nicolson discretisation in space. We show that the proposed scheme converges strongly at order at least one in probability. We also present numerical simulations to illustrate this result. The third chapter is devoted to the numerical and theoretical study of the dynamics of a stationary solution (for the deterministic equation) of vortex type. We study the influence of random disturbances of the confining potential on the solution. We show that the disturbed solution conserves the symmetries of the stationary solution for times up to at least the square of the inverse of the fluctuations intensity. These results are illustrated with numerical simulations based on a Monte-Carlo method suited to rare events estimation.The second model can be used to model the effects of the temperature on the dynamics of a Bose-Einstein condensate. In the case of finite temperature, the Bose-Einstein condensation is not complete and the condensate interacts with the non-condensed particles. These interactions are interesting to understand the dynamics of the phase transition and analyse the phenomena of symmetry breaking associated, like the spontaneous nucleation of vortices We have studied in the fourth and the fifth chapters some questions linked to the long time simulation of this model solutions. The fourth chapter is devoted to the construction of an unbiased sampling method of measures known up to a multiplicative constant. The distinctive feature of this Markov-Chain Monte-Carlo algorithm is that it enables to perform an unbiased non-reversible sampling based on an overdamped Langevin equation. It constitutes a generalization of the Metropolis-Adjusted Langevin Algorithm (MALA). The fifth chapter is devoted to the numerical study of metastable dynamics linked to the nucleation of vortices in rotating Bose-Einstein condensates. A numerical integrator and a suited Monte-Carlo methods for the simulation of metastable dynamics are proposed. This Monte-Carlo method is based on the Adaptive Multilevel Splitting (AMS) algorithm.
433

State-dependent disordered potential for studies of Anderson transition with ultracold atoms / Potentiel désordonné sélectif en état de spin pour les études de la transition d'Anderson avec des atomes froids

Mukhtar, Musawwadah 11 February 2019 (has links)
Dans ce manuscrit, nous présentons notre avancement pour réaliser une méthode spectroscopique pour étudier la transition d’Anderson avec des atomes froids. Cela repose sur la réalisation d'un potentiel désordonné sélectif en état de spin, le désordre n'étant significatif que pour l'un des deux états de spin impliqués. En combinant cela avec la technique de transfert par radiofréquence d’un état insensible au désordre à un état exclusivement sensible au désordre, il devient possible de charger une onde de matière dans le désordre dans des états d’énergie bien définies. Pour prouver le concept, nous avons effectué des mesures des fonctions spectrales d’atomes ultra-froids dans des potentiels désordonnés, qui sont directement proportionnels au taux de transfert des atomes. Nous présentons les résultats en montrant un excellent accord avec les calculs numériques. Cela a ouvert des perspectives pour d’autres études sur la transition d’Anderson. En particulier, nous cherchons à observer la transition entre les états diffusifs et les états localisés séparés par une énergie critique, appelée le seuil de mobilité. Une telle étude nécessite la réalisation d’un désordre sélectif en état de spin qui permet un long temps de propagation dans le désordre afin de distinguer les deux phases. À cette fin, nous présentons un nouveau schéma du désordre sélectif en état de spin avec deux lasers du speckle (speckle bichromatique). Cela ouvre la voie à une approche spectroscopique de la transition d’Anderson avec des atomes froids avec une résolution en énergie bien supérieure à celles des expériences précédentes. / In this manuscript, we present our progress towards realizing a spectroscopic method to study of Anderson transition with ultracold atoms. This relies on the realization of state-dependent disordered potential whereby the disorder is significant only for one of two involved spin-states. Combined with technique of radio-frequency transfer from the disorder-free state to the state with controlled disorder, it becomes possible to load a matter wave in the disorder in a well-defined energy states. As a proof of principle, we have performed measurements of the spectral functions of ultracold atoms in disordered potentials, which are directly proportional to the transfer rate of the atoms. We present the results showing excellent agreement with numerical calculations. This has opened up prospects for further studies of the Anderson transition. In particular we seek to observe transition between the diffusive and the localized states separated by a critical energy, the so-called mobility edge. Such study requires realization of state-dependent disorder which allows long propagation time in the disorder in order to distinguish the two phases. For this purpose, we present a new scheme of the state-dependent disorder with two laser speckles (bichromatic laser speckle). This paves the way towards spectroscopic approach of Anderson transition with ultracold atoms with energy resolution much higher than those in the previous experiments.
434

Aspects of Quantum Fluctuations under Time-dependent External Influences

Uhlmann, Michael 01 October 2007 (has links)
The vacuum of quantum field theory is not empty space but filled with quantum vacuum fluctuations, which give rise to many intriguing effects. The first part of this Thesis addresses cosmic inflation, where the quantum fluctuations of the inflaton field freeze and get amplified in the expanding universe. Afterwards, we turn our attention towards Bose-Einstein condensates, a laboratory system. Since most of our calculations are performed using a mean-field expansion, we will study the accuracy of a finite-range interaction potential onto such an expansion. Exploiting the universality of quantum fluctuations, several aspects of cosmic inflation will be identified in ballistically expanding Bose-Einstein condensates. The effective action technique for calculating the quantum backreaction will be scrutinized. Finally, we consider dynamic quantum phase transitions in the last part of this Thesis. To this end two specific scenarios will be investigated: firstly, the structure formation during the superfluid to Mott-insulator transition in the Bose-Hubbard model; and secondly, the formation of spin domains as a two-dimensional spin-one Bose gas is quenched from the (polar) paramagnetic to the (planar) ferromagnetic phase. During this quench, the symmetry of the ground state is spontaneously broken and vortices (topological defects) form.
435

A numerical investigation of Anderson localization in weakly interacting Bose gases / En numerisk undersökning av Anderson-lokalisering i svagt interagerande Bose-gaser

Ugarte, Crystal January 2020 (has links)
The ground state of a quantum system is the minimizer of the total energy of that system. The aim of this thesis is to present and numerically solve the Gross-Pitaevskii eigenvalue problem (GPE) as a physical model for the formation of ground states of dilute Bose gases at ultra-low temperatures in a disordered potential. The first part of the report introduces the quantum mechanical phenomenon that arises at ground states of the Bose gases; the Anderson localization, and presents the nonlinear eigenvalue problem and the finite element method (FEM) used to discretize the GPE. The numerical method used to solve the eigenvalue problem for the smallest eigenvalue is called the inverse power iteration method, which is presented and explained. In the second part of the report, the smallest eigenvalue of a linear Schrödinger equation is compared with the numerically computed smallest eigenvalue (ground state) in order to evaluate the accuracy of a linear numerical scheme constructed as first step for numerically solving the non-linear problem. In the next part of the report, the numerical methods are implemented to solve for the eigenvalue and eigenfunction of the (non-linear) GPE at ground state (smallest eigenvalue). The mathematical expression for the quantum energy and smallest eigenvalue of the non-linear system are presented in the report. The methods used to solve the GPE are the FEM and inverse power iteration method and different instances of the Anderson localization are produced. The study shows that the error of the smallest eigenvalue approximation for the linear case without disorder is satisfying when using FEM and Power iteration method. The accuracy of the approximation obtained for the linear case without disorder is satisfying, even for a low numbers of iterations. The methods require many more iterations for solving the GPE with a strong disorder. On the other hand, pronounced instances of Anderson localizations are produced in a certain scaling regime. The study shows that the GPE indeed works well as a physical model for the Anderson localization. / Syftet med denna avhandling är att undersöka hur väl Gross-Pitaevskii egenvärdesekvation (GPE) passar som en fysisk modell för bildandet av stationära elektronstater i utspädda Bose-gaser vid extremt låga temperaturer. Fenomenet som skall undersökas heter Anderson lokalisering och uppstår när potentialfältets styrka och störning i systemet är tillräckligt hög. Undersökningen görs i denna avhandling genom att numeriskt lösa GPE samt illustrera olika utfall av Anderson lokaliseringen vid olika numeriska värden. Den första delen av rapporten introducerar det icke-linjära matematiska uttrycket för GPE samt de numeriska metoderna som används för att lösa problemet numerisk: finita elementmetoden (FEM) samt egenvärdesalgoritmen som heter inversiiteration. Finita elementmetoden används för att diskretisera variationsproblemet av GPE och ta fram en enkel algebraisk ekvation. Egenvärdesalgoritmen tillämpas på den algebraiska ekvation för att iterativt beräkna egenfunktionen som motsvarar det minsta egenvärdet. Det minsta egenvärdet av en fullt definierad (linjär) Schrödinger ekvation löses i rapportens andra del. Den linjära ekvationen löses för att ta fram en förenklad numerisk algoritm att utgå ifrån innan den icke-linjära algoritmen tas fram. För att försäkra sig att den linjära algoritmen stämmer bra jämförs det exakta egenvärdet för problemet med ett numeriskt framtaget värde. Undersökningen av den linjära algoritmen visar att vi får en bra uppskattning av egenvärdet - även vid få iterationer. Vidare konstrueras den ickelinjära algoritmen baserat på den linjära. Ekvationen löses och undersökes. Egenfunktionen som motsvarar minsta egenvärdet framtas och beskriver kvantsystemet i lägsta energitillståndet, så kallade grundtillståndet. Undersökningen av GPE visar att de numeriska metoderna kräver många fler iterationer innan en tillräckligt bra uppskattning av egenvärdet fås. Å andra sidan fås markanta Anderson lokaliseringar för ett skalningsområde som beskrivs av styrkan av potentialfältet i relation till dess störning. Slutsatsen är att Gross-Pitaevskii egenvärdesekvation passar bra som en fysisk modell för detta kvantsystem.
436

Kibble-Zurek mechanism in a spin-1 Bose-Einstein condensate

Anquez, Martin 07 January 2016 (has links)
The Kibble-Zurek mechanism (KZM) primarily characterizes scaling in the formation of topological defects when a system crosses a continuous phase transition. The KZM was first used to study the evolution of the early universe, describing the topology of cosmic domains and strings as the symmetry-breaking phase transitions acted on the vacuum fields during the initial cooling. A ferromagnetic spin-1 $^{87}$Rb Bose-Einstein condensate (BEC) exhibits a second-order gapless quantum phase transition due to a competition between the magnetic and collisional spin interaction energies. Unlike extended systems where the KZM is illustrated by topological defects, we focus our study on the temporal evolution of the spin populations and observe how the scaling of the spin dynamics depend on how fast the system is driven through the critical point. In our case, the excitations are manifest in the temporal evolution of the spin populations illustrating a Kibble-Zurek type scaling, where the dynamics of slow quenches through the critical point are predicted to exhibit universal scaling as a function of quench speed. The KZM has been studied theoretically and experimentally in a large variety of systems. There has also been a tremendous interest in the KZM in the cold atoms community in recent years. It has been observed not only in ion chains and in atomic gases in optical lattices, but also in Bose gases through the formation of vortices or solitons. The KZM in the context of crossing the quantum phase transition in a ferromagnetic BEC has been theoretically studied, but this thesis is the first experimental investigation of this phenomenon.
437

Investigation of the 2+ Hoyle state candidates in 12C

Nemulodi, Fhumulani 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Please refer to full text. / AFRIKAANSE OPSOMMING: Sien asb volteks vir opsomming
438

Towards the creation of Fock states of atoms

Kelkar, Hrishikesh Vidyadhar 19 October 2009 (has links)
Ultracold atoms have been successfully used to study numerous systems, previously unaccessible, but a precise control over the atom number of the sample still remains a challenge. This dissertation describes our progress towards achieving Fock states of atoms. The first three chapters cover the basic physics necessary to understand the techniques we use in our lab to manipulate atoms. We then summarize our experimental results from an earlier setup where we did two experiments. In the first experiment we compare the transport of cold atoms and a Bose Einstein Condensate (BEC) in a periodic potential. We find a critical potential height beyond which the condensate behavior deviates significantly from that of thermal atoms. In the second experiment we study the effect of periodic temporal kicks by a spatially periodic potential on a BEC in a quasi one dimensional trap. We observe a limit on the energy that the system can absorb from the kicks, which we conclude is due to the finite height of the trap rather than quantum effects. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during tr₀ansport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. / text
439

Condensats de Bose-Einstein de spin 1 : étude expérimentale avec des atomes de sodium dans un piège optique

Jacob, David 25 May 2012 (has links) (PDF)
Mon projet de thèse a eu pour objectif l'étude des propriétés magnétiques de condensats de Bose-Einstein d'atomes de Sodium confinés dans un piège optique. Dans la première partie, nous présentons le dispositif expérimental et le protocole suivi pour la production tout-optique de condensats. La première étape consiste dans le chargement d'un piège dipolaire croisé désaccordé vers le rouge à partir d'atomes pré-refroidis dans un piège magnéto-optique. La deuxième étape est le refroidissement évaporatif dans un piège dipolaire composite, combinaison du piège dipolaire croisé avec un faisceau fortement focalisé. Nous sommes ainsi capables de réaliser des condensats de Bose-Einstein quasi-purs contenant environ 3000 atomes. Dans la deuxième partie, nous nous intéressons aux propriétés magnétiques qui découlent de la présence de trois espèces de spin simultanément piégées. Nous présentons des méthodes de contrôle de la magnétisation des nuages ultra-froids, ainsi que des procédures de diagnostic de la composition de spin. Nous utilisons ces échantillons pour explorer le diagramme de phase à basse température, en fonction de la magnétisation et du champ magnétique. Nous montrons l'accord satisfaisant de ces résultats expérimentaux avec une théorie de champ champ moyen dans l'approximation de mode commun. Enfin, nous observons des fluctuations anormales des populations à bas champ et basse magnétisation. On les relie à des fluctuations collectives tendant à restaurer la symmétrie de spin, qui disparaissent à la limite thermodynamique mais sont présentes dans nos échantillons de taille finie.
440

Generating and Manipulating Quantized Vortices in Highly Oblate Bose-Einstein Condensates

Samson, Edward Carlo Copon January 2012 (has links)
This dissertation presents several experimental methods that were devised to generate or manipulate quantized vortices in highly oblate dilute-gas Bose-Einstein condensates (BECs). Studies that involve single vortex dynamics, vortex-vortex interactions, and vortex-impurity interactions are essential in developing a deeper understanding of the nature of superfluidity and in particular, superfluid turbulence. In highly oblate systems, vortex dynamics have a two-dimensional (2D) nature and the resulting superfluid characteristics may be substantially different from those in three-dimensional (3D) superfluids. However, there have been remarkably few experimental studies of 2D vortex dynamics in superfluids. Therefore, to study 2D vortex dynamics and interactions, it is necessary to first develop experimental methods that can generate vortices and vortex distributions in nominally 2D systems, such as highly oblate BECs. Four main experiments are discussed in this dissertation. Two of these experiments generate multiple singly quantized vortices in a relatively stochastic manner leading to disordered vortex distributions. From these two vortex methods, the physics of high vorticity and highly disordered systems may be observed and studied in a highly oblate system. These methods may prove useful in studies of 2D quantum turbulence. The other two experiments involve newly developed techniques for controlled generation and manipulation of vortices. One of these methods creates multiply quantized pinned vortices with a control in the generated vorticity. The other method reliably creates a pair of singly quantized vortices of opposite circulation, whose positions can be easily manipulated after creation, such that they can be placed in any location within the BEC. The two techniques may be scalable to higher number of vortices and may prove useful in superfluid dynamics and vortex interactions that require repeatable vortex distributions. Taken together, these tools and methods may be applicable to many further studies of vortex physics in highly oblate BECs.

Page generated in 0.0247 seconds