• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 13
  • 12
  • 9
  • 8
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 151
  • 29
  • 25
  • 20
  • 19
  • 16
  • 15
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigation of Photochemical Upconversion Based on Triplet-Triplet Annihilation

Cao, Xian 26 May 2016 (has links)
No description available.
62

Mesoscopic Fuel Consumption and Emission Modeling

Yue, Huanyu 24 April 2008 (has links)
The transportation sector is a major contributor to U.S. fuel consumption and emissions. Consequently, assessing the environmental impacts of transportation activities is essential for air-quality improvement programs. Current state-of-the-art models estimate vehicle emissions based on typical urban driving cycles. Most of these models offer simplified mathematical expressions to compute fuel consumption and emission rates based on average link speeds while ignoring transient changes in a vehicle's speed and acceleration level as it travels on a highway network. Alternatively, microscopic models capture these transient effects; however, the application of microscopic models may be costly and time consuming. Also, these tools may require a level of input data resolution that is not available. Consequently, this dissertation attempts to fill the void in energy and emission modeling by a framework for modeling vehicle fuel consumption and emissions mesoscopically. This framework is utilized to develop the VT-Meso model using a number of data sources. The model estimates average light-duty vehicle fuel consumption and emission rates on a link-by-link basis using up to three independent variables, namely: average travel speed, average number of stops per unit distance, and average stop duration. The mesoscopic model utilizes a microscopic vehicle fuel consumption and emission model that was developed at Virginia Tech to compute mode-specific fuel consumption and emission rates. This model, known as VT-Micro, predicts the instantaneous fuel consumption and emission rates of HC, CO and NOx of individual vehicles based on their instantaneous speed and acceleration levels. The mesoscopic model utilizes these link-by-link input parameters to construct a synthetic drive cycle and compute average link fuel consumption and emission rates. After constructing the drive cycle, the model estimates the proportion of time that a vehicle typically spends cruising, decelerating, idling and accelerating while traveling on a link. A series of fuel consumption and emission models are then used to estimate the amount of fuel consumed and emissions of HC, CO, CO2, and NOX emissions for each mode of operation. Subsequently, the total fuel consumed and pollutants emitted by a vehicle while traveling along a segment are estimated by summing across the different modes of operation and dividing by the distance traveled to obtain distance-based average vehicle fuel consumption and emission rates. The models are developed for normal and high emitting vehicles. The study quantifies the typical driver deceleration behavior for incorporation within the model. Since this model constructs a drive cycle which includes a deceleration mode, an accurate characterization of typical vehicle deceleration behavior is critical to the accurate modeling of vehicle emissions. The study demonstrates that while the deceleration rate typically increases as the vehicle approaches its desired final speed, the use of a constant deceleration rate over the entire deceleration maneuver is adequate for environmental modeling purposes. Finally, the study validates the model on a freeway and urban arterial network. The results demonstrate that the model provides accurate estimates of vehicle fuel consumption and emission rates and is adequate for the evaluation of transportation operational projects. / Ph. D.
63

Development of the Advanced Emitter Turn-Off (ETO) Thyristor

Zhang, Bin 11 February 2005 (has links)
Advancements in the power electronics systems have been directly related to the availability of improved power semiconductor devices. The device performance greatly determines the efficiency, reliability, volume, and cost of the power electronics system. This dissertation is dedicated to develop an advanced high power semiconductor device, the emitter turn-off (ETO) thyristor, which is targeted to improve the limitations of the present high power devices. Major improvements in electrical and mechanical designs of the ETO for high power and high frequency operation are proposed which result in improved snubberless turn-off capability, low conduction loss, and low gate drive power consumption of the new generation ETO. A revolutionary self-power generation method of the ETO is proposed. Different from the conventional high power devices which require the external power input for their gate drivers, ETO achieves complete optically controlled turn-on and turn-off and all the internal power required is self-generated. This advancement will have a major impact to high power converter designs. A novel integrated method to eliminate the dead-time requirement is proposed for ETO. This method not only improves the output waveform quality but also increases the reliability and reduces the cost of the high power PWM voltage source converters. With this unique function, the upper and the lower ETO's within a converter phase leg can receive the ideal complementary (without dead-time) PWM signals and solve shoot-through problems. Method to measure the ETO current and transfer the current information to a PWM signal is proposed. Based on the ETO's built-in current sensor, the over-current protection function of the ETO is designed as well. The experimental results show that the built-in current sensor has a very high precision, and the over-current protection function can effectively protect the ETO during the short circuit faults. In order to improve ETO's turn-off capability, a comprehensive investigation of the turn-off failure mechanism of the ETO was performed. A series of simulations and experiments are carried out to study the ETO turn-off operation. The detail turn-off failure mechanisms are presented. The conditions to cause the ETO failure are addressed. The approaches to improve the ETO's turn-off capability are discussed. / Ph. D.
64

Advanced Semiconductor Device and Topology for High Power Current Source Converter

Xu, Zhenxue 08 December 2003 (has links)
This dissertation presents the analysis and development of an innovative semiconductor device and topology for the high power current source converter (CSC). The CSC is very attractive in high power applications due to its lower output dv/dt, easy regeneration capability and implicit short-circuit protection. Traditionally, either a symmetrical gate turn-off (GTO) thyritor or an asymmetrical GTO in series with a diode is used as the power switch in the CSC. Since the GTO has a lower switching speed and requires a complicated gate driver, the symmetrical GTO based CSC usually has low dynamic response speed and low efficiency. To achieve high power rating, fast dynamic response speed and low harmonics, an advanced semiconductor device and topology are needed for the CSC. Based on symmetrical GTO and power MOSFET technologies, a symmetrical emitter turn-off (ETO) thyristor is developed that shows superior switching performance, high power rating and reverse voltage blocking capability. The on-state characteristics, forced turn-on characteristics, forced turn-off characteristics and the load-commutated characteristics are studied. Test results show that although the load-commutation loss is high, the developed symmetrical ETO is suitable for use in high power CSC due to its low conduction loss, fast switching speed and reverse voltage blocking capability. The snubberless turn-on capability is preferred for a semiconductor device in a power conversion system, and can be achieved for devices with forward biased safe operation area (FBSOA). The FBSOA of the ETO is investigated and experimentally demonstrated. The ETO device has excellent FBSOA due to the negative feedback provided by the emitter switch. However, the FBSOA for a large area ETO is poor. A new ETO concept is therefore proposed for future development in order to demonstrate the FBSOA over a large area device. To improve the turn-on performance of the large area ETO, a novel concept, named the transistor-mode turn-on, is proposed and studied. During the transistor-mode turn-on process, the ETO behaves like a transistor instead of a thyristor. Without a snubber, the transistor-mode turn-on for the ETO is hard to achieve. Through the selection of a proper gate drive and di/dt snubber, the transistor-mode turn-on can be implemented, and the turn-on performance for the ETO can be dramatically improved. To increase the power rating of the CSC without degrading the utilization of power semiconductor devices, a novel multilevel CSC, named the parallel-cell multilevel CSC, is proposed. Based on a six-switch CSC cell, the parallel-cell multilevel CSC has the advantages of high power rating, low harmonics, fast dynamic response and modularity. Therefore, it is very suitable for high power applications. The power stage design, modeling, control and switching modulation scheme for a parallel-cell multilevel CSC based static var compensator (STATCOM) are analyzed and verified through simulation. / Ph. D.
65

On the Use of Convolutional Neural Networks for Specific Emitter Identification

Wong, Lauren J. 12 June 2018 (has links)
Specific Emitter Identification (SEI) is the association of a received signal to an emitter, and is made possible by the unique and unintentional characteristics an emitter imparts onto each transmission, known as its radio frequency (RF) fingerprint. SEI systems are of vital importance to the military for applications such as early warning systems, emitter tracking, and emitter location. More recently, cognitive radio systems have started making use of SEI systems to enforce Dynamic Spectrum Access (DSA) rules. The use of pre-determined and expert defined signal features to characterize the RF fingerprint of emitters of interest limits current state-of-the-art SEI systems in numerous ways. Recent work in RF Machine Learning (RFML) and Convolutional Neural Networks (CNNs) has shown the capability to perform signal processing tasks such as modulation classification, without the need for pre-defined expert features. Given this success, the work presented in this thesis investigates the ability to use CNNs, in place of a traditional expert-defined feature extraction process, to improve upon traditional SEI systems, by developing and analyzing two distinct approaches for performing SEI using CNNs. Neither approach assumes a priori knowledge of the emitters of interest. Further, both approaches use only raw IQ data as input, and are designed to be easily tuned or modified for new operating environments. Results show CNNs can be used to both estimate expert-defined features and to learn emitter-specific features to effectively identify emitters. / Master of Science
66

Procédés innovants adaptés aux cellules photovoltaïques PERC en couches minces de silicium cristallin / Innovative processes adapted to PERC thin-film crystalline silicon solar cells

Gérenton, Félix 16 December 2016 (has links)
Le coût de fabrication des modules photovoltaïques est un point critique pour implanter l’énergie solaire dans le mix énergétique. L’un des moyens d’abaisser ce coût est la réduction de l’épaisseur de silicium utilisé pour la fabrication des cellules photovoltaïques. Il est techniquement possible de produire des cellules photovoltaïques en silicium cristallin d’une épaisseur de quelques dizaines de micromètres d’épaisseur seulement, bien que cela représente un défi à la fois pour le procédé de fabrication de telles cellules et pour leur optimisation. Celle-ci est différente des cellules d’épaisseur conventionnelle notamment par le besoin d’un piégeage optique et d’une passivation de surface de haut niveau. Cet aspect sera étudié au travers de deux structures : un réflecteur en face arrière de la cellule, et un procédé de texturisation innovant pour limiter la gravure du silicium de la cellule, déjà mince. Enfin, l’implantation du réflecteur dans des cellules photovoltaïques sera traitée. L’optimisation du réflecteur considéré pour des cellules minces en silicium cristallin a montré de très bonnes propriétés réfléchissantes et de passivation de surface, ainsi qu’une compatibilité avec l’ensemble des étapes du procédé de fabrication. Ensuite, la texturisation avancée développée dans ce travail a montré un gain potentiel important en photogénération pour des cellules de faible épaisseur. La caractérisation de ces structures a montré des performances optiques et électriques comparables à l’état-de-l’art. Enfin, la fabrication de cellules photovoltaïques d’épaisseur standard utilisant le procédé développé pour les cellules minces a montré le gain du réflecteur développé pour la face arrière par rapport à une structure classique de cellule. De plus, la réalisation de ces cellules avec le procédé destiné aux cellules minces a permis d’établir que les étapes non-standard du procédé sont compatibles avec l’obtention de cellules photovoltaïques performantes. / The cost of fabrication of photovoltaic modules is a critical figure for settling solar power into the energy mix. One way to lower this cost is to decrease silicon use in photovoltaic cells. It is technically possible to produce crystalline silicon solar cells only a few dozens of microns thick, although this represents a challenge both for their fabrication process and their optimization. This last one is different from cells of standard thickness, especially by the need of high level light trapping and surface passivation. Two structures will be studied in order to fulfill these aspects : a reflector on the rear side of the cell, and an innovative texturing process used to limit the etching of the already thin silicon absorber. Eventually, the implementation of the rear side reflector into photovoltaic cells will be discussed. The rear side reflector optimized for thin-film crystalline silicon solar cells has shown very good passivating and reflecting properties, as well as compatibility with the overall fabrication process. Moreover, the advanced texturation process developped in this work has shown a large potential gain in photogeneration for thin solar cells. These structures have been characterized and have shown a reflectivity and a passivation level coherent with the state-of-the-art. Finally, solar cells of standard thickness have been fabricated with the thin solar cells process, and have shown an improvement from the rear side reflector in comparison with a standard cell structure. Moreover, making these cells with the thin cells process has shown that the non-standard steps of this process are compatible with high-performance solar cells fabrication.
67

Untersuchungen zum Einfluss von 211At, 188Re und Doxorubicin auf die DNA-Schädigung humaner Lymphozyten

Runge, Roswitha 01 December 2010 (has links) (PDF)
Ionisierende Strahlung verursacht in Abhängigkeit von den strahlenphysikalischen Eigenschaften der Radionuklide Zellschäden unterschiedlicher Komplexität. An humanen Lymphozyten wurde untersucht, ob die biologische Wirksamkeit von Alpha- und Betastrahlung sowie der Einfluss von Doxorubicin der Qualität des Strahlenschadens zugewiesen werden kann. Die DNA-Schäden und deren Reparatur wurden mit zellbiologischen Methoden quantifiziert.
68

Single and Multiple Emitter Localization in Cognitive Radio Networks

Ureten, Suzan January 2017 (has links)
Cognitive radio (CR) is often described as a context-intelligent radio, capable of changing the transmit parameters dynamically based on the interaction with the environment it operates. The work in this thesis explores the problem of using received signal strength (RSS) measurements taken by a network of CR nodes to generate an interference map of a given geographical area and estimate the locations of multiple primary transmitters that operate simultaneously in the area. A probabilistic model of the problem is developed, and algorithms to address location estimation challenges are proposed. Three approaches are proposed to solve the localization problem. The first approach is based on estimating the locations from the generated interference map when no information about the propagation model or any of its parameters is present. The second approach is based on approximating the maximum likelihood (ML) estimate of the transmitter locations with the grid search method when the model is known and its parameters are available. The third approach also requires the knowledge of model parameters but it is actually based on generating samples from the joint posterior of the unknown location parameter with Markov chain Monte Carlo (MCMC) methods, as an alternative for the highly computationally complex grid search approach. For RF cartography generation problem, we study global and local interpolation techniques, specifically the Delaunay triangulation based techniques as the use of existing triangulation provides a computationally attractive solution. We present a comparative performance evaluation of these interpolation techniques in terms of RF field strength estimation and emitter localization. Even though the estimates obtained from the generated interference maps are less accurate compared to the ML estimator, the rough estimates are utilized to initialize a more accurate algorithm such as the MCMC technique to reduce the complexity of the algorithm. The complexity issues of ML estimators based on full grid search are also addressed by various types of iterative grid search methods. One challenge to apply the ML estimation algorithm to multiple emitter localization problem is that, it requires a pdf approximation to summands of log-normal random variables for likelihood calculations at each grid location. This inspires our investigations on sum of log-normal approximations studied in literature for selecting the appropriate approximation to our model assumptions. As a final extension of this work, we propose our own approximation based on distribution fitting to a set of simulated data and compare our approach with Fenton-Wilkinson's well-known approximation which is a simple and computational efficient approach that fits a log-normal distribution to sum of log-normals by matching the first and second central moments of random variables. We demonstrate that the location estimation accuracy of the grid search technique obtained with our proposed approximation is higher than the one obtained with Fenton-Wilkinson's in many different case scenarios.
69

The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters 223Ra, 188Re, and 99mTc

Runge, Roswitha, Oehme, Liane, Kotzerke, Jörg, Freudenberg, Robert 16 January 2017 (has links)
BACKGROUND: DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by (223)Ra compared to (188)Re and (99m)Tc modulated by the radical scavenger dimethyl sulfoxide (DMSO). METHODS: Radioactive solutions of (223)Ra, (188)Re, or (99m)Tc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. RESULTS: Exposure to 120 Gy of (223)Ra, (188)Re, or (99m)Tc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy (223)Ra and 500 Gy (188)Re or (99m)Tc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter (223)Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with (223)Ra, (188)Re, and (99m)Tc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for (223)Ra, (188)Re, and (99m)Tc, respectively. CONCLUSIONS: For (223)Ra, as well as for (188)Re and (99m)Tc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage.
70

Untersuchungen zum Einfluss von 211At, 188Re und Doxorubicin auf die DNA-Schädigung humaner Lymphozyten

Runge, Roswitha 06 October 2009 (has links)
Ionisierende Strahlung verursacht in Abhängigkeit von den strahlenphysikalischen Eigenschaften der Radionuklide Zellschäden unterschiedlicher Komplexität. An humanen Lymphozyten wurde untersucht, ob die biologische Wirksamkeit von Alpha- und Betastrahlung sowie der Einfluss von Doxorubicin der Qualität des Strahlenschadens zugewiesen werden kann. Die DNA-Schäden und deren Reparatur wurden mit zellbiologischen Methoden quantifiziert.

Page generated in 0.0384 seconds