• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 32
  • 15
  • 11
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 44
  • 36
  • 29
  • 26
  • 26
  • 25
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Les Modèles Economiques dans la Transition Energétique bas carbone à l'Echelle Locale / Energy Transition Business Models at the Local Scale

Ragazzi, Graziella 27 November 2018 (has links)
Face à l'urgence dans la lutte contre le réchauffement climatique, la transition énergétique bas carbone est une transition sociétale constituant un véritable défi du fait de ses singularités. Les conditions de sa réalisation résident dans un pilotage politique multi-niveaux afin d'agir dès à présent sur les différents leviers d'action possibles. En effet les Etats interviennent d'une part lors des négociations internationales afin de parvenir à un accord universel sur le climat, et d'autre part dans la législation de leur cadre réglementaire national. Les collectivités locales interviennent également du fait de leurs compétences leur conférant un pouvoir d'influence conséquent sur les modes de production décentralisés et sur la consommation d'énergie. L'échelle locale joue un rôle de premier ordre car elle bénéficie des liens de proximités et de confiance qui favorisent l'action collective et constitue un véritable effet de levier. C'est au niveau des territoires que les projets de la transition énergétique émergent et que la lutte contre le réchauffement climatique se concrétise. C'est pourquoi il est nécessaire de comprendre quels types de projets locaux pour la transition énergétique émergent, et quelle est leur performance tant d'un point de vue économique, que social et environnemental. Cela permettra d'une part aux pouvoirs publics d'identifier les types de projets performants pour impulser leur développement, et d'autre part quels sont les freins à lever le cas échéant pour faire émerger des projets innovants. Sur le long-terme, il s'agit de comprendre quels types de projets se déploieront et se généraliseront dans le cadre de la transition énergétique en fonction du type de valeur qu'ils parviendront à générer. Pour répondre à cela, l'approche des business models est pertinente : elle constitue en effet une grille d'analyse permettant de déterminer les caractéristiques de chaque projet, en décrivant sa proposition de valeur et la configuration de cette valeur, et de déterminer sa viabilité et sa durabilité en fonction de la création (ou destruction) de valeurs (économique, financière, sociale, environnementale) qu'il génère. La thèse propose ainsi une typologie des business models de la transition énergétique à l'échelle locale, une grille d'analyse de projet adaptée à l'enjeu sociétal que représente la transition énergétique et propose enfin des recommandations pour la politique publique en matière d'évaluation de la performance économique, sociale et environnementale de projets locaux de transition énergétique. / To face the climate change, energy transition is required. Energy transition is a societal transition, which is really challenging because of its singularities. The multi-level governance is necessary in order to act now for the energy transition. Indeed States take action by negotiating international agreements for the climate on the one hand, and on the other hand by legislating their national regulatory framework. Local authorities intervene too owing to their competencies which give them a high influence power on decentralized production system and on energy consumption. The local scale plays a major role because they benefit from closed and trustful relationships which foster collective action and act as a real leverage. It is at the territories level that energy transition projects emerge and that fight against global warming become true. That's why it is necessary to understand what types of local projects for the energy transition arise, and what is their economic, social and environmental performance. This can allow public authorities to identify what are the performant projects and to encourage to replicate them on the one hand, and on the other hand to remove barriers in order to make arise innovant projects. In the long run, we must understand what kinds of projects will unfold and generalize as part of the energy transition depending on the value they will generate. To answer this, the business models perspective is highly appropriate: it constitutes an analytical framework which allows to describe the project features (its value proposition, its value configuration) and to determine its viability and sustainability according to the (economic, financial, social, environmental) values creation it builds. The thesis puts forward a typology of energy transition business models at the local scale, an analytical framework for projects adapted to the energy transition societal stake. Finally the thesis suggests some public policy recommandation in terms of assessment of the economic, social and environmental performance of the local projects for the energy transition.
62

Le Monde selon l’harmonie chinoise : stratégies d’implantation des entreprises publiques chinoises en Malaisie et au Cambodge / The World according to Chinese harmony : establishment strategies of Chinese public companies in Malaysia and Cambodia

Morin, Antonin 29 May 2019 (has links)
De 2001 à 2020, la Chine s’est donnée pour objectif «la réalisation des sociétés harmonieuses et socialistes » (社会主义和谐社会). À partir de 2016, la gouvernance des entreprises publiques chinoises a profondément été réformée par le comité du conseil d’État de Chine (SASAC), leur permettant l’accès aux marchés extérieurs (BRI) suivant en cela la diplomatie des « pays avoisinants (Yīquān « 一圏 »). Cette expansion des « marchés socialistes de Chine » touche particulièrement les pays d’Asie du Sud-Est ; les réseaux tracés par la Chine en Malaisie et au Cambodge en sont la démonstration.A partir de l’identification des entreprises publiques chinoises selon les activités ciblées pour préparer le « Made in China 2025 », nous caractérisons l’implantation, les pratiques et les réseaux établis par les entreprises spécialisées dans les énergies renouvelables. Les politiques de transition énergétique en ASEAN servent les stratégies de la Chine et de ses entreprises publiques, ouvrant les territoires au développement de l’interconnectivité en ASEAN, selon les concepts de la société chinoise(Shèhuì社会). / From 2001 to 2020, China set the goal of "achieving harmonious and socialist societies" (社会主义和谐社会). As of 2016, the governance of Chinese State-Owned-Enterprises (SOEs) has been profoundly reformed by the State Council Committee of China (SASAC), allowing them access to external markets (BRI) following the diplomacy of "neighboring countries" ( Yīquān "一圏"). This expansion of the "socialist markets of China" particularly affects the countries of Southeast Asia; the networks drawn by China in Malaysia and Cambodia are the demonstration. From the identification of the Chinese public companies according to the activities by the "Made in China 2025"policy, we describe the establishment, practices and networks established by companies specialized in the renewable energies. Energy transition policies in ASEAN serve the strategies of China and Chinese SOEs, opening the territories to the development of interconnectivity in ASEAN, according to the concepts of Chinese society (Shèhuì社会).
63

Transformation städtischer Infrastruktur: Perspektiven und Elemente eines kommunalen Transformationsmanagementsam Beispiel Energie

Libbe, Jens 03 June 2015 (has links)
Die Deutsche Bundesregierung hat nach Jahrzehnten intensiver energiepolitischer Diskussionen und infolge der Ereignisse im japanischen Fukushima im Frühjahr 2011 die sogenannte Energiewende beschlossen. Diese läuft auf einen grundsätzlichen Umbau, eine Transformation der gegebenen Versorgungsstrukturen hinaus. Damit ist ein Kernproblem jedweder langfristigen Planung berührt: die Unmöglichkeit, längerfristig verlässliche Aussagen treffen zu können, und gleichzeitig anerkennen zu müssen, dass gerade infrastrukturelle Entscheidungen eine enorme zeitliche Reichweite besitzen. Dieses Zukunftsdilemma lässt sich letztlich nur durch Formen sozialen Lernens bewältigen, die sich über bestimmte Prinzipien der Planung ausdrücken, die man prozessual auch als das Ausloten von Korridoren nachhaltiger Entwicklung bezeichnen könnte. Ziel der vorliegenden Arbeit ist es, die Gestaltungschancen und -notwendigkeiten des Umbaus auf der Ebene der Kommunen genauer auszuloten. Zum einen geht es dabei um die Verknüpfung des neuen Forschungs- und Politikfeldes der Transformation beziehungsweise des Transformationsmanagements mit der aktuellen Debatte um das Management konzeptioneller Stadtentwicklungspolitik. Zum anderen geht es um die Verknüpfung der Transformationsforschung mit dem Forschungsfeld der öffentlichen Wirtschaft und damit verbunden mit der Frage, inwieweit gerade aus der anstehenden Aufgabe des energiewirtschaftlichen Umbaus auch neue Begründungen für die kommunale Energieversorgungswirtschaft erwachsen. Transformationsmanagement bedeutet einen Multiakteursprozess unter Einbindung von (kommunaler) Politik und Verwaltung, etablierten wie neuen Marktakteuren der Versorgungswirtschaft, Wohnungswirtschaft, Wissensträgern aus Forschung und Politikberatung, sozialen Organisationen oder auch intermediären Organisationen wie beispielsweise Energieagenturen. Die Zusammensetzung der Akteure innerhalb der Transformationsarena und damit verbunden auch der Governance- Form kann und wird dabei je nach Kommune unterschiedlich sein, da sie abhängig ist von politischen Allianzen, Verwaltungsaufbau, institutionellen Konfigurationen der Energieversorgung, Beteiligungskultur, Gemeindegröße und vielem anderen mehr. Wichtig ist gleichwohl, dass die Kommune eine koordinierende Rolle im Netzwerk der verschiedenen Akteure einnimmt und proaktiv als gestaltende Kraft das Transformationsmanagement angeht. Insbesondere die Stadtentwicklung als strategische städtische Ebene ist gefordert, einen entsprechenden Gestaltungsanspruch anzunehmen und ihre integrierenden und moderierenden Kompetenzen einzusetzen.:0. Einführung ........................................................................................................................ 7 1. Transformation und Transformationsmanagement ............................................................ 12 1.1 Transformationsmanagement sozio-technischer Systeme................................................. 12 1.1.1 Phasen des Transformationsmanagements ............................................................ 15 1.1.2 Charakterisierung des Transformationsmanagements............................................. 18 1.2 Der gestaltende Staat – ein Leitbild für die Transformation und seine Voraussetzungen ... 19 2. Transformation städtischer Infrastruktur ........................................................................... 25 2.1 Grundlagen der Infrastrukturpolitik und -planung ........................................................... 25 2.1.1 Begriffsbestimmung ............................................................................................. 25 2.1.2 Städtebaulich relevante Infrastruktur und räumlich differenzierte Infrastruktur ....... 27 2.1.3 Typische Charakteristika von Infrastruktur ............................................................ 28 2.2 Transformation stadttechnischer Infrastruktur entwicklungsgeschichtlich und techniktheoretisch betrachtet......................................................................................... 31 2.2.1 Genese stadttechnischer Infrastrukturen ............................................................... 31 2.2.2 Technisch-wirtschaftliche Entwicklungsphasen..................................................... 34 2.2.3 Phasen einschneidender Veränderungen .............................................................. 35 2.2.4 Pfadabhängigkeit und Pfadprozesse...................................................................... 36 2.2.5 Koevolution von Stadtentwicklung und Infrastruktur ............................................. 38 2.3 Handlungsrahmen der Transformation – wo steht die städtische Infrastruktur heute ......... 39 2.3.1 Übergeordnete Megatrends .................................................................................. 39 2.3.2 Technisch-wirtschaftliche Funktionsgrenzen......................................................... 45 2.3.3 Neue technische Optionen .................................................................................. 45 2.3.4 Die Energiewende als Impuls für die Transformation............................................. 46 2.3.5 Implikationen der Transformation ........................................................................ 48 3. Wirtschaftliche Betätigung der Kommunen – ordnungspolitischer Rahmen........................ 50 3.1 Dienstleistungen von allgemeinem wirtschaftlichen Interesse in der Europäischen Union...................................................................................................... 50 3.2 Öffentliche Unternehmen zwischen Wettbewerb und Gemeinwohl ................................ 53 3.2.1 Funktionen und Abgrenzungsmerkmale öffentlicher Unternehmen ........................ 54 3.2.2 Öffentliche Unternehmen im Spannungsfeld von öffentlichem Auftrag und Wettbewerb ........................................................................................................ 55 4. Grundsätzliche Optionen der Kommunen bei der Erbringung von Dienstleistungen von allgemeinem (wirtschaftlichen) Interesse ................................................................. 58 4.1 Öffentliche Aufgabenerledigung aus Perspektive der Neuen Institutionenökonomik......... 58 4.2 Koordinationsformen öffentlicher Leistungserbringung im Vergleich ............................... 61 4.2.1 Kommunale Dienstleistungen in der Eigenerstellung ............................................. 63 4.2.2 Erbringung öffentlicher Dienstleistungen in einer Kooperationsgesellschaft als gemischt-wirtschaftliches Unternehmen ............................................................... 65 4.2.3 Delegation der Dienstleistungserbringung an Private als vertragliche Public Private Partnership oder durch Fremderstellung ......................................... 66 4.2.4 Regionale interkommunale Kooperation zur Stärkung kommunaler Dienstleistungen.................................................................................................. 68 5. Rekommunalisierung und Transformation ........................................................................ 71 5.1 Öffentliche versus private Leistungserbringung im historischen Rückblick ....................... 71 5.2 Aktuelle Marktstruktur in der Energiewirtschaft............................................................... 73 5.3 Formen und Gründe der Rekommunalisierung ............................................................... 74 5.4 Gestaltungspotenziale für die Transformation ................................................................. 75 5.4.1 Gründung von Stadtwerken.................................................................................. 75 5.4.2 Konzessionsvergabe und Konzessionsübernahmen ............................................... 76 5.5 Rechtlicher Bezugsrahmen der Rekommunalisierung ...................................................... 80 5.6 Ökonomischer Bezugsrahmen der Rekommunalisierung ................................................. 80 5.6.1 Wahl der Organisationsform und ökonomische Theorie........................................ 81 5.6.2 Auswirkungen auf den kommunalen Haushalt ...................................................... 82 5.6.3 Leistungsbemessung öffentlicher Unternehmen..................................................... 82 5.7 Gemeinwohlsicherung als Herausforderung ................................................................... 83 5.7.1 Prozessstufen und Entscheidungskriterien der Organisationsformenwahl ............... 84 5.7.2 Gemeinwohlbestimmung in prozeduralen Verfahren ............................................ 86 6. Strategien lokaler Versorger in der Transformation ........................................................... 88 6.1 Technische Optionen .................................................................................................... 88 6.1.1 Flexibler Kraftwerkspark und Sicherung von Reservekapazitäten ........................... 88 6.1.2 Steigerung der Energieeffizienz durch den Ausbau von Kraft-Wärme-Kopplung und Blockheizkraftwerken ................................................................................... 89 6.1.3 Ausbau dezentraler Erzeugung und Nutzung erneuerbarer Energien ...................... 90 6.1.4 Ausbau intelligenter Netze und virtueller Kraftwerke ............................................ 93 6.1.5 Ausbau von Speicherkapazitäten.......................................................................... 94 6.1.6 Spartenübergreifende Vernetzung ........................................................................ 95 6.2 Geschäftsmodelle lokaler Energieversorger..................................................................... 95 6.3 Unternehmerisches Handeln in der Transformation: Dezentralisierung, Integration und Dienstleistung ........................................................................................................ 97 7. Räumliche Implikationen der Transformation ..................................................................100 7.1 Regionale und überregionale Ausprägungen..................................................................100 7.2 Dezentralisierung und Flächen für erneuerbare Energien in urbanen Räumen.................101 7.3 Differenzierte Versorgungslösungen auf verschiedenen Maßstabsebenen .......................102 8. Stadtentwicklungs- und Infrastrukturkonzepte .................................................................105 8.1 Kommunale Planungskonzepte .....................................................................................105 8.1.1 Konzepte der Stadtentwicklung und Stadtplanung................................................105 8.1.2 „Sektorale Planungskonzepte“ in den Bereichen Klima und Energie .....................107 8.2 Stadtentwicklungspolitische Bestandsaufnahme.............................................................108 8.3 Integrierte beziehungsweise integrale Konzepte auf der Ebene der Gesamtstadt oder des Quartiers und teilweise sektoraler Fokussierung ......................................................109 8.3.1 Integrierte Stadtentwicklungsplanung ..................................................................110 8.3.2 Integrierte Stadtentwicklungskonzepte (INSEK oder SEKo) ....................................111 8.3.3 Technische Infrastrukturen in integrierten Konzepten...........................................112 4 9. Bausteine für das kommunale Transformationsmanagement.............................................116 9.1 Prinzipien einer nachhaltigen Infrastrukturentwicklung..................................................116 9.2 Organisation des Prozesses ...........................................................................................118 9.2.1 Akteure der Transformation.................................................................................118 9.2.2 Stadtentwicklungsplanung als koordinierender Akteur .........................................120 9.3 Transformation im Realexperiment des „Urban Lab“......................................................121 9.4 Problemstrukturierung ..................................................................................................122 9.5 Leitbilder, Leitlinien und Ziele als Orientierungsrahmen................................................126 9.6 Formulierung von (teil)integrierten, gesamtstädtischen oder teilräumlichen Handlungsprogrammen und deren Wirkungsabschätzung..............................................127 9.7 Strategische Erfolgskontrolle und Fortschreibung ...........................................................129 10. Energiewende als gesamtstädtische Strategie einer Vielzahl von gesellschaftlichen Akteuren – ein Fazit in Hinblick auf den Umgang mit Komplexität und Unsicherheit .....133 Anhang .................................................................................................................................137 Literatur ................................................................................................................................140
64

Potential rooftop photovoltaic energy production calculation for Residential Buildings in Visby-----Case study about Gotlandshem

Li, Xiang January 2022 (has links)
Solar energy is one type of the most commonly used renewable energy sources. It can produce electricity and heat without creating any Greenhouse Gases (GHG). Sweden has set up the goal of 100% electricity generated by the renewable energy source by 2040 and chosen Gotland as a pioneer project for self-electricity supply by renewable energy sources by 2030. Taking the year 2017 as an example, the total electricity production of Gotland in 2017 was about 1080 GWh, a share of 621GWh imported from mainland Sweden, 457GWh produced by Gotland's local wind energy, 1.6GWh produced by local photovoltaic energy and a very small fraction produced by local hydropower. Gotland has a high potential for photovoltaic power. This quantitative research case study used data to collect and a building model to measure the potential electricity production by photovoltaic power at three locations in Visby, Höken, Castor and Skalbaggen. Further, an analysis of the current value of installing photovoltaic panels for a public housing company to increase the capacity of renewable energy to stimulate the target towards 100% electricity from renewable energy sources by 2040. The result indicated that the ratio of production/Consumption at Höken, Castor and Skalbaggen were 73%, 52% and 1000%. According to the calculation, the LCOE of Höken is around about 0.74 to 1.17 SEK/kWh. For Castor, it is from 0.73 to 1.16 SEK/ kWh due to the range of interest rates. For Skalbaggen, it is around 0.70 to 1.11 SEK/ kWh. However, since the current limitation from both technical and legislative sectors were not allowed to transfer electricity between the adjacent building. Further research is required on how to facilitate tenants' use of renewable electricity produced by public housing itself, as well as how to maximize the penetration of smart grids.
65

Fossil Fuel (In)Dependency In Agriculture : Communicating complexity through design

Sensener, Kim January 2022 (has links)
Despite the destructive and limited nature of fossil fuels, most human-made systems are dependent on the use of oil, gas and coal. Especially agriculture relies on diesel machinery, fertilizer, transport, and cooling systems that are commonly powered by non-renewable energy sources. This independent project in design specifically focuses on the dependency on fossil fuels within agriculture. With the investigation “Vägen mot fossiloberoende jordbruk” (Utredningen om fossiloberoende jordbruk, 2021), or “Pathway to fossil independent agriculture”, Sweden is aspiring to make farming fossil-free by 2030. Consequently, a lot of responsibility to invest in new technologies and alternative energies lies on farmers. In collaboration with Länsstyrelsen Kronoberg, the author explores how farmers can be supported to transition towards renewable energies, focusing on the Swedish region Kronoberg. Through participatory design and design research, notions of fossil fuel (in)dependency are being explored in collaborative ways. Here, the farmers become the ‘experts of their experience’ (Sanders & Stappers, 2012). This independent design project examines ways to transition towards fossil fuel independent agriculture in Sweden, existing challenges and potential solutions. To communicate the complex network of energy and agriculture in Kronoberg to Länsstyrelsen, the author designed an Actor-Network-Model, which highlights the necessity of systems thinking and collaboration.
66

Where does the wind blow? : Unfolding the paradoxes of wind energy expansion in Brazil / Vart blåser vinden? : En studie av paradoxerna med vindkraftsexpansionen i Brasilien

Olofsson, Veronica January 2022 (has links)
Transitioning towards renewable energy sources is crucial in mitigating climate change and reducing greenhouse gas emissions. Global energy consumption is expected to increase 50 % by 2050, meaning one of today’s main challenges is complying with those demands without tampering with the uncertainties of global climate change. To address climate change renewable energy sources are essential and wind power plays a great role in the energy matrix. Brazil is one of the front runners in the energy transition, where wind power has expanded since the early 2000’s. The state of Bahia, in Northeastern Brazil, is currently the region where wind energy is expanding the most. However, conflicts related to territoriality and justice aspects are increasing in the state due to the fast-expanding wind energy sector. This study applies document and content analysis to explore the multiple narratives regarding the wind energy expansion in the state of Bahia, Brazil. Framing theory and theories addressing power struggles and conflicts in relation to the energy transition will guide the analysis of the 27 documents included in the material.  Based on the analysis of the Bahian case, this study shows that different actors frame the matter of wind energy expansion differently depending on their positionings. Civil society and local perspectives are not present in policies and decision-making processes, including the planning and installation of wind energy parks in the studied case. The results suggest that inclusion and participation of local actors, stakeholders and the civil society is essential to ensure a just and sustainable transition to clean energy sources.
67

Phase Out the Old to Phase In the New: Managing the Heat Transition in Leiden, the Netherlands

Dekking, Anoek January 2021 (has links)
By 2050, the Netherlands wants to reduce its use of natural gas for heating to zero. Currently, over 90%of houses are dependent on the fossil resource to warm their houses. As such, the phase-out of natural gas hasbecome an important policy project. The government delegated the formulation of the phase-out strategy andexecution to the 347 municipalities. This thesis examines how one municipality, Leiden, has formulated andimplemented this strategy. In doing so, the thesis addresses two matters in the literature on energy transitionswhich have received little attention: heating and deliberate decline. Traditionally, the focus within this field hasbeen on electricity and innovation. This thesis aims to find out to what extent the Transition Management (TM)framework by Derk Loorbach (2010) can be applied as a guide to a phase-out policy formulation process of theWarmtevisie of the Dutch municipality of Leiden. The thesis uses the process tracing methodology to combinedata generated from document analysis and two interviews with policy makers involved in the policy formulationprocess. By comparing the process followed in Leiden with the analytical framework of TM, the thesis shows thatthe TM framework could be used to guide to the phase-out policy formulation process to a large extent. However,the case study also shows that knowledge and expertise must increase substantially for a sound strategy to emerge.Additionally, it shows that even within phase-out strategies the focus remains on innovation practises.
68

Rooftop Solar Power Production Potential of Existing Public Housing Buildings in Singapore

Liew, Jamie January 2021 (has links)
The importance of increasing renewable energy production to facilitate a sustainable energy transition has been well-discussed and reinforced worldwide. In land- and resource-scarce and tropical Singapore, solar has been deemed the most feasible renewable energy technology for the country moving forward. Previous studies have focused on assessing the feasibility of various solar technologies. This paper instead analyses the rooftop solar power production potential of existing high-rise residential buildings in Singapore, and thus contributes to reaching the national solar goal using geographic information system geospatial imagery.  For this study, the chosen focus area is the south of Jurong East in Singapore. Results show that solar deployment on all available public high-rise residential building rooftop areas in the focus area will be able to generate a total potential solar peak power and annual solar energy output of 2-megawatt peak and 2.8-gigawatt hour per year respectively. This equates to meeting the energy demand of 679 public residential apartments in the focus area and meeting 0.18% of the national solar goal of reaching 1.5- gigawatt peak by 2025. In an urban context, the use of geospatial analysis has been presented to benefit urban planning especially with regards to the integration of rooftop solar photovoltaic systems.
69

Transformation of the German energy system - Towards photovoltaic and wind power: Technology Readiness Levels 2018

Pieper, Christoph 20 September 2019 (has links)
The aim of this thesis is to objectify the discussion regarding the availability of technologies related to the German energy transition. This work describes the state of development of relevant technologies on the basis of Technology Readiness Levels. Further, it points out development potentials and limits as well as the necessary power capacities needed for a certain energy system design that is mainly based on electricity. Thus, the scope is set to renewable energy sources suited to provide electricity in Germany, technologies that convert primary electricity for other energy sectors (heating and mobility) and storage technologies. Additionally, non-conventional technologies for electricity supply and grid technologies are examined. The underlying Technology Readiness Assessment is a method used to determine the maturity of these systems or their essential components. The major criteria for assessment are scale, system fidelity and environment. In order to estimate the relevant magnitudes for certain energy technologies regarding power and storage capacities, a comprehensible simulation model is drafted and implemented. It allows the calculation of a renewable, volatile power supply based on historic data and the display of load and storage characteristics. As a result, the Technology Readiness Level of the different systems examined varies widely. For every step in the direct or indirect usage of renewable intermittent energy sources technologies on megawatt scale are commercially available. The necessary scale for the energy storage capacity is in terawatt hours. Based on the examined storage technologies, only chemical storages potentially provide this magnitude. Further, the required total power capacities for complementary conversion technologies lay in the two-digit gigawatt range.:Abstract 2 Contents 3 1. Introduction 7 2. General remarks on the current state of the German energy system 12 3. Method of Technology Readiness Assessment 16 3.1. Fundamentals of the method 16 3.2. Drawbacks of TRA 19 3.3. Extended Readiness Levels 20 3.4. Conducting the Technology Readiness Assessment 21 3.5. Expert interviews 23 3.6. References 24 4. Preliminary remarks on the TRL assessment 25 4.1. Mission and environment 25 4.2. Simplifications and neglected aspects 26 4.3. References 26 5. Wind power 27 5.1. Technology description 27 5.2. Estimation of potential 32 5.3. Representation of the achieved state of expansion 37 5.4. TRL assessment 39 5.5. References 40 6. Solar energy 44 6.1. Technology description 44 6.2. Solar thermal energy 44 6.3. Photovoltaic technologies 45 6.4. Estimation of potential 48 6.5. Representation of the achieved state of expansion 52 6.6. TRL assessment 53 6.7. References 54 7. Geothermal energy 56 7.1. Technology description 56 7.2. Estimation of potential 59 7.3. Description of the current level of expansion 62 7.4. TRL assessment 63 7.5. References 64 8. Hydropower 66 8.1. Technology description 66 8.2. Estimation of potential 68 8.3. Description of the current level of development 70 8.4. TRL assessment 71 8.5. References 72 9. Biomass 73 9.1. Technology description 73 9.2. Estimation of potential 75 9.3. Representation of the achieved state of expansion 79 9.4. TRL assessment 81 9.5. References 82 10. Transmission and distribution grids 84 10.1. Technology description 84 10.2. Estimation of potential 90 10.3. Representation of the achieved state of expansion 94 10.4. TRL assessment 95 10.5. References 96 11. Power-to-heat 100 11.1. Technology description 100 11.2. Estimation of potential 104 11.3. Representation of the achieved state of expansion 107 11.4. TRL assessment 108 11.5. References 109 12. Power-to-cold 111 12.1. Technology description 111 12.2. Estimation of potential 114 12.3. Representation of the achieved state of expansion 117 12.4. TRL assessment 118 12.5. References 120 13. Power-to-chemicals 122 13.1. Technology description 122 13.2. Estimation of potential 134 13.3. Representation of the achieved state of expansion 137 13.4. TRL assessment 138 13.5. Manufacturer overview for electrolysis systems 140 13.6. References 142 14. Mechanical storage 146 14.1. Technology description 146 14.2. Estimation of potential 148 14.3. Representation of the achieved state of expansion 155 14.4. TRL assessment 155 14.5. References 158 15. Thermal storage 160 15.1. Technology description 160 15.2. Estimation of potential 164 15.3. Representation of the achieved state of expansion 169 15.4. TRL assessment 170 15.5. References 172 16. Chemical storage systems 175 16.1. Technology description 175 16.2. Estimation of potential 180 16.3. Representation of the achieved state of expansion 185 16.4. TRL assessment 186 16.5. References 188 17. Electro-chemical storage systems 191 17.1. Technology description 191 17.2. Estimation of potential 198 17.3. Representation of the achieved state of expansion 202 17.4. TRL assessment 202 17.5. References 204 18. Gas engines/gas turbines for hydrogen combustion 207 18.1. Technology description 207 18.2. Estimation of potential 208 18.3. Representation of the achieved state of expansion 211 18.4. TRL assessment 211 18.5. References 213 19. Chemicals-to-Power – Fuel cells 214 19.1. Technology description 214 19.2. Estimation of potential 218 19.3. Representation of the achieved state of expansion 221 19.4. TRL assessment 223 19.5. References 225 20. Interim conclusion for TRA 227 21. Evaluation of system integration 230 21.1. Modelling approach 230 21.2. Scenarios for a renewable energy supply 238 21.3. Results of the simulation 238 21.4. Consequences 244 21.5. References 245 22. Summary and Outlook 247 23. Abbreviations and symbols 249 24. Indices 254 25. List of Figures 255 26. List of Tables 258 27. Appendix 260 27.1. DOE TRL definition and description 260 27.2. Visualized summary of TRLs 262
70

3. Freiberger Kolloquium Elektrische Antriebstechnik: Kolloquium im Rahmen des 72. BHT - Freiberger Universitätsforum 2021

Kertzscher, Jana 02 August 2021 (has links)
Dieser Konferenzband stellt alle schriftlich eingereichten Beiträge zum 3. Freiberger Kolloquium Elektrische Antriebstechnik zusammen. Thematische Schwerpunkte waren 2021: Modellierung und Simulation von elektrischen Maschinen und Antrieben, Auslegung und Fertigung neuer Motorenkonzepte, Thermische Untersuchungen an elektrischen Maschinen, Regelung elektrischer Maschinen, Ladetechnologien für Elektrofahrzeuge, Theoretische Elektrodynamik von Traktionsantrieben

Page generated in 0.1286 seconds