• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 14
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 17
  • 14
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Concise Modeling of Humanoid Dynamics / Kortfattad Modellering av Humanoiddynamik

Joachimbauer, Florian January 2017 (has links)
Simulation of mechanical systems like walking robots, is an essential part in developingnew and more applicable solutions in robotics. The increasing complexity of methodsand technologies is a key challenge for common languages. That problem creates a needfor flexible and scalable languages. The thesis concludes that an equation-based toolusing the Euler-Lagrange can simplify the process cycle of modeling and simulation. Itcan minimize the development effort, if the tool supports derivatives. Regretfully, it isnot common to use equation-based tools with this ability for simulation of humanoidrobots.The research in this thesis illustrates the comparison of equation-based tools to commonused tools. The implementation uses the Euler-Lagrange method to model andsimulate nonlinear mechanical systems. The focus of this work is the comparison ofdifferent tools, respectively the development of a humanoid robot in a stepwise mannerbased on the principle of passive walking. Additionally, each developed model has givenan informal argument to its stability. To prove the correctness of the thesis statementthe equation-based tool called Acumen is evaluated in contrast to a common used tool,MATLAB.Based on the achieved results, it can be concluded that the use of equation-based toolsusing Euler-Lagrange formalism is convenient and scalable for humanoid robots. Additionally,the development process is significantly simplified by the advantages of suchtools. Due to the experimental nature of Acumen further research could investigatethe possibilities for different mechanical systems as well as other techniques.
32

COUPLED LAGRANGE-EULER MODEL FOR SIMULATION OF BUBBLY FLOW IN VERTICAL PIPES CONSIDERING TURBULENT 3D RANDOM WALKS MODELS AND BUBBLES INTERACTION EFFECTS

Ali Abd El Aziz Essa ., Mohamed 07 December 2012 (has links)
Una nueva aproximación euleriana-lagarangiana, en su forma de acople en dos vías, para la simulación de flujo de burbujas, agua-aire es presentada en la tesis, en la que se incluyen los efectos de las colisiones entre burbujas, así como las posibles roturas o coalescencia de burbujas. Esta aproximación utiliza el modelo Continuous Random Walk, CRW, para tener en cuenta las fluctuaciones de la velocidad. Esta aproximación se enmarca dentro de un modelo de turbulencia k-epsilon para la fase continua del líquido. En esta tesis se estudiarán los métodos para realizar el acople entre ambas aproximaciones, el efecto de la fuerza lift y de la dispersión turbulenta sobre la distribución de la fracción de huecos, así como los modelos de coalescencia y rotura de burbujas que puedan ser empleados en este tipo de aproximación. Se ha partido de un código euleriano para simular la parte continua, y sobre él se ha acoplado la aproximación lagrangiana. Para que ese acople afecte a la fase continua sobre su solver ser han añadido fuentes de momento y turbulencia. Además se ha modificado el volumen computacional de cada celda para que tenga en consideración el volumen ocupado por la fase dispersa. El acople en doble vía hace que los perfiles de velocidad y turbulencia de la fase continua se modifiquen notablemente y que se aproximen a los reales, lo que resulta básico para la correcta simulación de las fuerzas interfaciales. La colisión entre burbujas, y burbujas y pared se ha incluido. Este efecto es necesario como paso previo a incluir los procesos de rotura o coalescencia de burbujas, aunque la colisión en sí tenga efectos limitados en la distribución de la fracción de huecos. El proceso de coalescencia se basa en el modelo de Chester ( 1991 ) , el modelo compara el tiempo de colisión con el tiempo de drenaje de la película entre burbujas para determinar si existe o no coalescencia. El modelo de rotura se basa en el modelo de Martínez-Bazán. Uno de los principales hitos de / Ali Abd El Aziz Essa ., M. (2012). COUPLED LAGRANGE-EULER MODEL FOR SIMULATION OF BUBBLY FLOW IN VERTICAL PIPES CONSIDERING TURBULENT 3D RANDOM WALKS MODELS AND BUBBLES INTERACTION EFFECTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18068 / Palancia
33

Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations / Asymptotische und Stationäre Erhaltungsverfahren für Kinetische und Hyperbolische Partielle Differentialgleichungen

Kanbar, Farah January 2023 (has links) (PDF)
In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of MHD equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate AP schemes for kinetic equations and their ability to preserve stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed to capture good solutions of the model. For such kinetic models, equilibrium solutions are reached after large time. Thus we need a new technique to numerically preserve stationary solutions for AP schemes. We find a criterion for SP schemes for kinetic equations which states, that AP schemes under a particular discretization are also SP. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. Our AP scheme is proven to have a SP property under the condition that the pressure is a function of the density and the latter is obtained as a solution of an elliptic equation. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. / In dieser Arbeit interessieren wir uns für numerisch erhaltende stationäre Lösungen von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced Finite-Volumen Verfahren für das System der Euler-Gleichungen und das System der MHD-Gleichungen mit Gravitationsquell term. Da Strömungsmodelle und kinetische Modelle miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP) Verfahren für kinetische Gleichungen und ihre Fähigkeit, stationäre Lösungen zu erhalten. Kinetische Modelle haben typischerweise einen steifen Term, so dass AP Verfahren erforderlich sind, um gute Lösungen des Modells zu erhalten. Bei solchen kinetischen Modellen werden Gleichgewichtslösungen erst nach langer Zeit erreicht. Daher benötigen wir eine neue Technik, um stationäre Lösungen für AP Verfahren numerisch zu erhalten. Wir finden ein Kriterium für stationär-erhaltende (SP) Verfahren für kinetische Gleichungen, das besagt, dass AP Verfahren unter einer bestimmten Diskretisierung auch SP sind. In dem Versuch unser Ergebnis für kinetische Gleichungen im Kontext von Strömungsmodellen nachzuahmen, haben wir für die isentropen Euler-Gleichungen ein AP Verfahren für den Grenzwert der Mach-Zahl gegen Null, entwickelt. Unser AP Verfahren hat nachweislich eine SP Eigenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und letztere als Lösung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des von uns entwickelten und seine Kriterien werden anhand verschiedener Testfälle aus der Literatur numerisch validiert. / In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
34

Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFD

Dapelo, Davide, Bridgeman, John 15 June 2018 (has links)
Yes / An Euler-Lagrange CFD model is applied to a full-scale, biogas-mixed anaerobic digester to improve mixing efficiency and improve overall performance. Two quantitative mixing criteria previously adopted in anaerobic digestion (viz., uniformity index and dead volume) are critically assessed for the first time. A novel qualitative method is introduced to clarify the output of the quantitative methods. The first-ever quantitative assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion is then proposed, and a strategy to improve mixing, involving the combined use of concentric nozzle manifolds at the base of the digester, is evaluated. / University of Birmingham (UK) Postgraduate Teaching Assistantship award; University of Bradford (UK) Postdoctoral research assistant contract, who provided financial support
35

Large eddy simulation of evaporating sprays in complex geometries using Eulerian and Lagrangian methods / Large Eddy Simulation von verdampfenden Sprays in komplexen Geometrien mit Euler und Lagrange Methoden

Jaegle, Félix 14 December 2009 (has links)
Dû aux efforts apportés à la réduction des émissions de NOx dans des chambres de combustion aéronautiques il y a une tendance récente vers des systèmes à combustion pauvre. Cela résulte dans l'apparition de nouveaux types d'injecteur qui sont caractérisés par une complexité géométrique accrue et par des nouvelles stratégies pour l'injection du carburant liquide, comme des systèmes multi-point. Les deux éléments créent des exigences supplémentaires pour des outils de simulation numériques. La simulation à grandes échelles (SGE ou LES en anglais) est aujourd’hui considérée comme la méthode la plus prometteuse pour capturer les phénomènes d'écoulement complexes qui apparaissent dans une telle application. Dans le présent travail, deux sujets principaux sont abordés : Le premier est le traitement de la paroi ce qui nécessite une modélisation qui reste délicate en SGE, en particulier dans des géométries complexes. Une nouvelle méthode d'implementation pour des lois de paroi est proposée. Une étude dans une géométrie réaliste démontre que la nouvelle formulation donne de meilleurs résultats comparé à l’implémentation classique. Ensuite, la capacité d'une approche SGE typique (utilisant des lois de paroi) de prédire la perte de charge dans une géométrie représentative est analysée et des sources d'erreur sont identifiés. Le deuxième sujet est la simulation du carburant liquide dans une chambre de combustion. Avec des méthodes Eulériennes et Lagrangiennes, deux approches sont disponibles pour cette tâche. La méthode Eulérienne considère un spray de gouttelettes comme un milieu continu pour lequel on peut écrire des équations de transport. Dans la formulation Lagrangienne, des gouttes individuelles sont suivies ce qui mène à des équations simples. D’autre part, sur le plan numérique, le grand nombre de gouttes à traiter peut s’avérer délicat. La comparaison des deux méthodes sous conditions identiques (solveur gazeux, modèles physiques) est un aspect central du présent travail. Les phénomènes les plus importants dans ce contexte sont l'évaporation ainsi que le problème d'injection d'un jet liquide dans un écoulement gazeux transverse ce qui correspond à une version simplifiée d’un système multi-point. Le cas d'application final est la configuration d’un seul injecteur aéronautique, monté dans un banc d'essai expérimental. Ceci permet d'appliquer de manière simultanée tous les développements préliminaires de ce travail. L'écoulement considéré est non-réactif mais à part cela il correspond au régime ralenti d'un moteur d'avion. Dû aux conditions préchauffées, le spray issu du système d'injection multi-point s'évapore dans la chambre. Cet écoulement est simulé utilisant les approches Eulériennes et Lagrangiennes et les résultats sont comparés aux données expérimentales. / Due to efforts to reduce NOx emissions of aeronautical combustors, there is a recent trend towards lean combustion technologies. This results in novel injector designs, which are characterized by increased geometrical complexity and new injection strategies for the liquid fuel, such as multipoint systems. Both elements create additional challenges for numerical simulation tools. Large-Eddy simulation (LES) is regarded as the most promising method to capture complex flow phenomena in such an application. In the present work, two main areas of interest are considered: The first is wall modeling, which remains a challenging field in LES, in particular for complex geometries. A new implementation method for wall functions that uses a no-slip condition at the wall is proposed. It is shown that in a realistic burner geometry the new formulation yields improved results compared to a classical implementation. Furthermore, the capability of a typical LES with wall models to predict the pressure drop in a representative geometry is assessed and sources of error are identified. The second topic is the simulation of liquid fuel in a combustor. With Eulerian and Lagrangian methods, two different approaches are available for this task. The Eulerian approach considers a droplet spray as a continuum for which transport equations can be formulated. In the Lagrangian formulation, individual droplets are tracked, which leads to a simple formulation but can be challenging in terms of numerics due to the large number of particles to be treated. The comparison of these methods under identical conditions (gaseous flow solver, physical models) is a central aspect of the present work. The most important phenomena that are studied in view of the final application are evaporation and the problem of transverse liquid jets in a gaseous crossflow as a simplified representation of a multipoint system. The final application case is the configuration of a single aeronautical injector mounted in an experimental test bench. It allows to simultaneously apply all preliminary developments. The flow considered is non-reactive but otherwise corresponds to a partial load regime in an aeroengine Due to the pre-heated conditions, the spray issued by the multi-point injection undergoes evaporation. This flow is simulated using Eulerian and Lagrangian methods and the results are compared to experimental data.
36

Development and validation of the Euler-Lagrange formulation on a parallel and unstructured solver for large-eddy simulation / Développement et validation du formalisme Euler-Lagrange dans un solveur parallèle et non-structuré pour la simulation aux grandes échelles

García Martinez, Marta 19 January 2009 (has links)
De nombreuses applications industrielles mettent en jeu des écoulements gaz-particules, comme les turbines aéronautiques et les réacteurs a lit fluidisé de l'industrie chimique. La prédiction des propriétés de la phase dispersée, est essentielle à l'amélioration et la conception des dispositifs conformément aux nouvelles normes européennes des émissions polluantes. L'objectif de cette these est de développer le formalisme Euler- Lagrange dans un solveur parallèle et non-structuré pour la simulation aux grandes échelles pour ce type d'écoulements. Ce travail est motivé par l'augmentation rapide de la puissance de calcul des machines massivement parallèles qui ouvre une nouvelle voie pour des simulations qui étaient prohibitives il y a une décennie. Une attention particulière a été portée aux structures de données afin de conserver une certaine simplicité et la portabilité du code sur des differentes! architectures. Les développements sont validés pour deux configurations : un cas académique de turbulence homogène isotrope décroissante et un calcul polydisperse d'un jet turbulent recirculant chargé en particules. L'équilibrage de charges de particules est mis en évidence comme une solution prometteuse pour les simulations diphasiques Lagrangiennes afin d'améliorer les performances des calculs lorsque le déséquilibrage est trop important. / Particle-laden flows occur in industrial applications ranging from droplets in gas turbines tofluidized bed in chemical industry. Prediction of the dispersed phase properties such as concentration and dynamics are crucial for the design of more efficient devices that meet the new pollutant regulations of the European community. The objective of this thesis is to develop an Euler-Lagrange formulation on a parallel and unstructured solver for large- eddy simulation. This work is motivated by the rapid increase in computing power which opens a new way for simulations that were prohibitive one decade ago. Special attention is taken to keep data structure simplicity and code portability. Developments are validated in two configurations : an academic test of a decaying homogeneous isotropic turbulence and a polydisperse two-phase flow of a confined bluff body. The use of load-balancing capabilities is highlighted as a promising solut! ion in Lagrangian two-phase flow simulations to improve performance when strong imbalance of the dispersed phase is present
37

Simulation numérique directe et analyse des transferts de chaleur dans les lits de particules fixes et mobiles / Direct numerical simulations and analysis of heat transfer through fixed and fluidized beds

Euzenat, Florian 11 December 2017 (has links)
Ces travaux de recherche s'intéressent à la caractérisation des transferts thermiques dans les milieux fluide-particules, et en particulier, les lits fluidisés au sein desquels un solide divisé est mis en suspension par un fluide. La grande diversité d'échelles spatiales et temporelles dans ces procédés nécessite d'étudier les interactions hydrodynamiques, thermiques et/ou chimiques entre les particules et le fluide à l'aide d'une approche multi-échelles. Une étude des transferts thermiques dans des lits fixes puis fluidisés, est réalisée à deux échelles : locale (Particle Resolved Simulation) et moyennée (Discrete Element Method-Computional Fluids Dynamics). L'étude PRS permet de caractériser les couplages locaux des transferts thermiques entre particules ainsi que la dynamique de ces transferts dans les configurations fluidisées. Une étude comparative entre les échelles met en évidence les limites du modèle DEM-CFD à capter les fluctuations des transferts thermiques observées dans les simulations PRS. Dans un dernier temps, les fermetures du modèle DEM-CFD sont améliorées de manière à réintroduire les fluctuations perdues par le changement d'échelles. / This work aims at characterizing heat transfer into fluid-solid flows, and more particularly fluidized beds, into which a solid phase is suspended by a flowing fluid. The wide range of spatial and temporal scales present in such processes encourage to study hydrodynamic, thermal and/or chemical interactions between the particles and the fluid through a multi-scale strategy. The analysis of thermal interactions was first carried out for fixed bed configurations and then, fluidized beds at two overlapping scales: local (PRS; Particle Resolved Simulation) and mesoscopic (DEMCFD; Discrete Element Method-Computional Fluids Dynamics). The PRS approach accounts for the local coupling of heat transfer between the particles and its dynamics into fluidized beds. A comparative study of the two scales indicated the limits of the DEM-CFD model to capture the heat transfer fluctuations observed into PRS. In a last step, the closure laws for DEM-CFD were improved to reintroduce the fluctuations lost at this scale.
38

Modelagem matemática e controle de atitude e posição do quadrotor / Mathematical modeling and attitude control and position quadrotor

Benigno, Tayara Crystina Pereira 28 August 2015 (has links)
Made available in DSpace on 2016-08-31T13:33:46Z (GMT). No. of bitstreams: 1 TayaraCPB_Dissert.pdf: 1984521 bytes, checksum: 5a46c1781124a49b404a083b87b969bd (MD5) Previous issue date: 2015-08-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / With advances in technology and the popularization of the use of Unmanned Aerial Vehicles (UAV's) so does the need to use more robust and more effective control techniques. Among the various types of unmanned aerial vehicles, this paper will focus on quadrotor model, which has a mechanical structure in the form of x, whose ends have an engine and propeller assembly, where the rotation of this group is responsible for the lift and the movements developed by quadrotor. This feeling, aiming to apply drivers that provide stability to the dynamic system. This study aims to conduct mathematical modeling using the Euler-Lagrange. With this, it is proposed a PID controller (Proportional Integral Derivative) to maintain stable the three orientation angles and height to a desired value. The development of the proposed controller will be validated via simulation confirming the application feasibility of the technique presented stability / Com o avanço tecnológico e a popularização do uso dos Veículos Aéreos Não Tripulados (VANT s) cresce também a necessidade do uso de técnicas de controle mais robustas e mais eficazes. Dentre os mais diversos tipos de veículos aéreos não tripulados, este trabalho irá focar no modelo do quadrotor, que possui uma estrutura mecânica em forma de cruz, cujas extremidades têm um conjunto de motor e hélice, onde a rotação desse conjunto é responsável pela força de sustentação e pelos movimentos desenvolvidos pelo mesmo. Objetivando aplicar controladores que proporcione estabilidade ao sistema dinâmico deste veiculo aéreo. O presente trabalho tem como objetivo realizar a modelagem matemática deste sistema usando as equações de Euler-Lagrange. Tendo isso, é proposto um controlador PID (Proporcional Integral Derivativo) para manter os três ângulos de orientação estáveis e a altura em um valor desejado. O desenvolvimento do controlador proposto será validado via simulação confirmando a viabilidade da aplicação da técnica de estabilidade apresentada
39

Etude de la structure des flammes diphasiques dans les brûleurs aéronautiques / Analysis of two-phase-flow flame structure in aeronautical burners

Hannebique, Grégory 09 April 2013 (has links)
La régulation des polluants a mené à la création de nouveaux systèmes de combustion. Le carburant étant stocké sous forme liquide, sa transformation jusqu’à sa combustion est complexe. La capacité de la Simulation aux grandes échelles à simuler des écoulements turbulents réactifs a été montrée sur des cas académiques comme sur des configurations industrielles, tout en prenant en compte les phénomènes multiphysiques intervenant dans ces configurations, mais les études sur la structure de flamme diphasique sont encore trop peu nombreuses. La présence de deux solveurs pour la simulation d’une phase liquide étant disponible dans le code AVBP, leur utilisation permet une comparaison et une compréhension des phénomènes en jeu combinant dispersion, évaporation, et combustion. La première partie de l’étude relate la validation du modèle d’injection FIM-UR. Ce modèle est capable de reconstruire les profils de vitesses et de granulométrie à l’injecteur sans avoir à simuler les phénomènes d’atomisation primaire et secondaire. Une validation en régime turbulent avait déjà été réalisée, et on propose ici de valider le modèle dans un cas laminaire. Des comparaisons entre simulations monodisperses et polydisperse et des expériences sont effectuées. La simulation monodisperse Lagrangienne donne une bonne structure globale mais la simulation polydisperse Lagrangienne permet de retrouver le comportement au centre du cône avec la présence des petites gouttes et à la périphérie du cône par la présence des grosses gouttes. De plus, des améliorations sont apportées au modèle pour le formalisme Eulérien et montrent de bons résultats. La partie suivante s’intéresse à caractériser un spray polydisperse par une distribution monodisperse. En effet, au cas où une approche polydisperse n’est pas possible, le choix du diamètre moyen à prendre pour une simulation monodisperse est délicat. On propose donc d’analyser le comportement d’un spray polydisperse en le comparant à ceux de sprays monodisperses. Deux configurations académiques sont choisies : des cas de Turbulence Homogène Isotrope chargée en particules pour étudier la dynamique, et des calculs d’évaporation 0D. Trois paramètres sont étudiés pour la dynamique : la concentration préférentielle (ou ségrégation), la traînée moyenne et la traînée réduite moyenne. Cette dernière et la ségrégation de la distribution polydisperse semblent affectées par les tailles de goutte les plus faibles, et la concentration préférentielle apparait alors comme la moyenne des ségrégations des classes qui la composent pondérées par l’inverse du nombre de Stokes associé à chacune de ces classes. La traînée moyenne de la simulation polydisperse possède un comportement proche des diamètres moyens D10 et D20. Ces analyses nous poussent donc à choisir le D10 pour caractériser la dynamique d’un spray polydisperse. Les calculs d’évaporation 0D ne permettent pas dans un premier temps de caractériser efficacement la masse évaporée d’un spray polydisperse par celle d’un spray monodisperse équivalent, mais la définition de nouveaux diamètres issus de la littérature des lits fluidisés comme le D50% le permet, ce qui le place autour du D32. On propose donc de caractériser l’évaporation d’un spray polydisperse par ce diamètre. Enfin, la dernière partie étudie la structure de flamme diphasique dans la chambre MERCATO, à l’aide du formalisme Lagrangien, monodisperse et polydisperse, mais aussi en utilisant le formalisme Eulérien. La validation du modèle FIM-UR du premier chapitre et ses améliorations sont utilisées pour représenter les conditions d’injection liquide. En plus d’un calcul polydisperse, deux simulations monodisperses Lagrangiennes sont réalisées en prenant les diamètres moyens D10 et D32, suite à la partie précédente. Des comparaisons qualitatives et des validations sont réalisées, en comparant des profils de vitesses gazeuses axiale et fluctuante et vitesse axiale liquide issus de l’expérience. / Regulations on pollutants have led to the creation of new combustion systems. Giving that fuel is stored in a liquid form, its evolution until combustion is complex. The ability of Large Eddy Simulation has been demonstrated on academic cases, as well as on industrial configurations, by taking into account the multi-physics phenomena, but there is a lack of studies about two-phase flow flame structures. Two solvers for the simulation of two-phase flows are available in the AVBP code, hence both simulations are performed to compare and increase understanding of the phenomena involved such as dispersion, evaporation and combustion. The first part of the study focuses on the validation of the FIM-UR injection model. This model is able to build velocity and droplet profiles at the injector, without simulating primary and secondary break up. A validation in a turbulent case has already been done, and this study validates the model in a laminar case. Comparisons between monodisperse and polydisperse simulations, and experiments are performed. The monodisperse Lagrangian simulation shows good results but the polydisperse simulation is able to represent profiles in the center of the cone by small droplets and at the peripheral part of the cone, by big ones. Moreover, improvements in the Eulerian model exhibit good results. The next section tries to evaluate the impact of polydispersion. Indeed, when a polydisperse approach is not available, choosing the mean diameter can be tricky. A comparison between the behavior of polydisperse spray and monodisperse sprays ones is realised. Two academic cases are studied: Homogeneous Isotropic Turbulence with particles to analyze the dynamics, and 0D evaporation cases. For the dynamics, preferential concentration, mean drag and reduced mean drag are studied. The latter and preferential concentration are affected by small droplets, and the preferential concentration of a polydisperse spray is equivalent to the average of preferential concentration of classes, extracted from the polydisperse distribution, weighted by the inverse of the Stokes number of each class. The mean drag behaves like the D10 and D20 mean drags. This analysis allows us to choose the D10 to characterize a polydisperse distribution for the dynamics. Zero-D evaporation simulations cannot characterize the polydisperse spray evaporated mass by the evaporated mass of monodisperses sprays. New definitions of diameters from fluidized bed literature enable the use of D50%, which is close to D32. We propose to use this diameter to characterize the evaporation of a polydisperse spray. Finally, the last section studies the structure of two-phase flames in the MERCATO bench, using the Lagrangian formalism, monodisperse and polydisperse but also using the Eulerian formalism. The validation of FIM-UR model and improvements from the first section are used to represent liquid injection conditions. A polydisperse simulation is realized and two monodisperse simulations are computed using mean diameters D10 and D32, thanks to the previous section. Qualitative comparisons and validations are realized, comparing gaseous velocity profiles and liquid velocity profiles. Good agreements are found and the mean diameter D32 seems to be close to the polydisperse spray. A comparison between mean flames is done with an Abel transform of the flame from the experiments. The flame has an "M shape", anchored by small recirculation zones out of the swirler, and by a point at the tip of the central recirculation zone. Then, the impact of droplet distributions is analyzed. Even if few bigger droplets from the polydisperse distribution are convected in the hot gases due to bigger particular time and evaporation time, two-phase flow flame structures are equivalent. Different combustion regimes appeared with premixed flames and pockets of fuel burning in the hot gases.
40

Model development for simulating bubble coalescence in disperse bubbly flows with the Euler-Lagrange approach

Yang, Xinghao 09 November 2021 (has links)
This thesis presents the investigation of an Euler-Lagrange framework for modeling bubble coalescence in dispersed bubbly flows. The interaction between bubbles may be caused by several mechanisms. Among them, the random motion due to turbulent fluctuations is normally of major significance. One focus of this work is to apply a bubble dispersion model for modeling turbulence-induced coalescence, occurring in a certain percentage of collision events. Large bubbles appear due to coalescence, and their disturbance to the liquid phase is not negligible in most circumstances. However, the point-mass Euler-Lagrange method requires the bubble or particle size to be much smaller than the cell size when the interphase coupling is considered. Otherwise, numerical instabilities may arise. Therefore, interpolation methods between the Euler and the Lagrange phase for finite-size bubbles that are bigger than or of the same size as numerical cells are studied. The Euler-Lagrange method describes the continuous phase on the Euler grid, and the dispersed phase is treated as Lagrange points in the simulation. Bubble motion is governed by an ordinary differential equation for the linear momentum considering different forces. The turbulent dispersion of the dispersed phase is reconstructed with the continuous random walk (CRW) model. Bubble-bubble collisions and coalescence are accounted for deterministically. The time-consuming search for potential collision partners in dense bubbly flows is accelerated by the sweep and prune algorithm, which can be utilized in arbitrary mesh types and sizes. If the interphase coupling is considered in the simulations, the spatially distributed coupling method is used for the Lagrange-to-Euler coupling. For the Euler-to-Lagrange coupling, a new approach is proposed. To evaluate the dispersion and coalescence models, one-way coupled simulations of bubbly pipe flows at low Eötvös numbers are conducted. Validation against the experiments demonstrates that the one-way coupled EL-CRW dispersion model can well reproduce the bubble distribution in a typical dense bubbly pipe flow. Good agreement of the bubble size distribution at the pipe outlet between the simulation and the experiment is obtained. Two-way coupled simulations are performed to validate the interpolation methods. A combination of coupling approaches is employed in a square bubble column reactor to examine the general validity for a large-scale bubbly flow. Combining the proposed interpolation scheme with the dispersion and bubble interaction models, the coalescence and breakage in bubbly flows are studied in a turbulent pipe flow. The predicted bubble size distribution shows a good match to the measurement. The results are independent of the mesh resolution in the studied range from point-mass simulations to finite-size situations.:Nomenclature 1 Introduction 1.1 Motivation and background for the thesis 1.2 Outline 2 Equations for modeling bubbly flows 2.1 Governing equations of the continuous phase 2.2 Governing equations of the dispersed phase 2.3 Modifications to the bubble force equations 2.3.1 One-way coupled simulations with RANS modeling 2.3.2 Two-way coupled simulations 2.4 Generation of fluctuations 2.4.1 Different approaches to dispersion modeling 2.4.2 Normalized continuous random walk model 2.4.3 Employing the mean velocity field to determine forces 3 Bubble collision, coalescence and breakup 3.1 Previous studies and requirement of the interaction modeling 3.2 Detection of collisions with the sweep and prune algorithm 3.3 Coalescence modeling 3.3.1 Condition of bubble coalescence 3.3.2 Model of Kamp et al. [2001] 3.3.3 Model of Hoppe and Breuer [2018] 3.3.4 Model of Schwarz et al. [2013] 3.3.5 Comparison of coalescence models 3.4 Breakup modeling 3.4.1 Turbulence induced breakups 3.4.2 Post-breakup treatment 4 Interpolation techniques for two-way coupled simulations 4.1 Lagrange-to-Euler coupling 4.1.1 Introduction to the spatially distributed coupling 4.1.2 Intersection plane method 4.1.3 Subcell method 4.1.4 Random points method 4.2 Euler-to-Lagrange coupling 4.2.1 Approaches for computing the undisturbed velocity 4.2.2 Coarser grid method 4.2.3 Averaging the fluid velocity in front of the bubble 4.2.4 Velocity from upstream disk 4.2.5 Gradient of the undisturbed liquid velocity 5 One-way coupled simulation of bubble dispersion and resulting interaction 5.1 Implementation and verification of the continuous random walk model 5.2 Bubble dispersion in turbulent channel flows 5.3 Bubble dispersion and interaction in turbulent pipe flows 5.3.1 Overview of studied cases 5.3.2 Results of the bubble dispersion 5.3.3 Results of the bubble coalescence 6 Two-way coupled simulation of finite-size bubbles 6.1 Flow solver and algorithm 6.2 Assessing the Lagrange-to-Euler coupling methods 6.2.1 Previous studies 6.2.2 Simulation setups for a single bubble in quiescent liquid 6.2.3 Results and discussion 6.3 Assessing the Euler-to-Lagrange coupling methods 6.3.1 Simulation of two bubbles rising inline 6.3.2 Simulation of a bubble rising in linear shear flows 6.4 Large-eddy simulation for a square bubble column 6.5 Bubble coalescence in a turbulent pipe flow 7 Conclusions and outlook Appendices A.1 Equations of turbulence models A.2 Numerical implementation of the full CRW drift term A.3 Results of bubble coalescence modeling for case B to case E A.4 Search algorithm of the upstream disk method Bibliography / Diese Arbeit stellt die Untersuchung eines Euler-Lagrange-Rahmens zur Modellierung der Blasenkoaleszenz in dispergierten Blasenströmungen vor. Die Interaktion zwischen Blasen kann durch mehrere Mechanismen verursacht werden. Unter ihnen sind die zufälligen Bewegungen aufgrund von turbulenten Fluktuationen von großer Bedeutung. Ein Schwerpunkt dieser Arbeit ist die Anwendung eines Blasendispersionsmodells zur Modellierung der turbulenzinduzierten Koaleszenz, die in einem bestimmten Prozentsatz der Kollisionsereignisse auftritt. Große Blasen entstehen durch Koaleszenz und ihre Störung der flüssigen Phase ist in den meisten Fällen nicht zu vernachlässigen. Die Punkt-Masse-Euler-Lagrange-Methode erfordert jedoch, dass die Blasengröße viel kleiner als die Zellgröße ist, wenn die Interphasenkopplung berücksichtigt wird. Andernfalls kann es zu numerischen Instabilitäten kommen. Daher werden Interpolationsmethoden zwischen den zwei Phasen untersucht. Die kontinuierliche Phase wird auf dem Euler-Gitter beschrieben und die dispergierte Phase wird als Punkte behandelt. Die Blasenbewegung wird durch eine gewöhnliche Differentialgleichung unter Berücksichtigung verschiedener Kräfte bestimmt. Die turbulente Dispersion der Blasen wird mit dem CRW-Modell (continuous random walk) rekonstruiert. Blasen-Blasen-Kollisionen werden deterministisch berücksichtigt. Die Suche nach potentiellen Kollisionspartnern wird durch den Sweep- und Prune-Algorithmus beschleunigt, der in beliebigen Gittertypen und -größen eingesetzt werden kann. Wird die Interphasenkopplung berücksichtigt, so wird für die Lagrange-zu-Euler-Kopplung die spatially distributed coupling verwendet. Für die Euler-zu-Lagrange-Kopplung wird ein neuer Ansatz vorgeschlagen. Um die Dispersions- und Koaleszenzmodelle zu bewerten, werden Einweg-gekoppelte Simulationen von blasenbeladenen Rohrströmungen bei niedriger Eötvös-Zahl durchgeführt. Die Validierung zeigt, dass das einseitig gekoppelte EL-CRW-Dispersionsmodell die Blasenverteilung in einer typischen dichten, blasenbeladenen Rohrströmung gut reproduzieren kann. Es wird eine gute Übereinstimmung der Blasengrößenverteilung am Rohrauslass zwischen der Simulation und dem Experiment erzielt. Zur Validierung der Interpolationsmethoden werden Zweiweg-gekoppelte Simulationen durchgeführt. Eine Kombination von Kopplungsansätzen wird in einem Blasensäulenreaktor eingesetzt, um die allgemeine Gültigkeit zu untersuchen. Durch Kombination des vorgeschlagenen Interpolationsschemas mit den Dispersions- und Blasenwechselwirkungsmodellen werden die Koaleszenz und der Zerfall in einer turbulenten blasenbeladenen Rohrströmung untersucht. Die berechnete Blasengrößenverteilung zeigt eine gute Übereinstimmung mit der Messung und erweist sich als unabhängig von der Netzauflösung im untersuchten Bereich von PunktMasse-Simulationen bis zu Situationen mit Blasen endlicher Größe.:Nomenclature 1 Introduction 1.1 Motivation and background for the thesis 1.2 Outline 2 Equations for modeling bubbly flows 2.1 Governing equations of the continuous phase 2.2 Governing equations of the dispersed phase 2.3 Modifications to the bubble force equations 2.3.1 One-way coupled simulations with RANS modeling 2.3.2 Two-way coupled simulations 2.4 Generation of fluctuations 2.4.1 Different approaches to dispersion modeling 2.4.2 Normalized continuous random walk model 2.4.3 Employing the mean velocity field to determine forces 3 Bubble collision, coalescence and breakup 3.1 Previous studies and requirement of the interaction modeling 3.2 Detection of collisions with the sweep and prune algorithm 3.3 Coalescence modeling 3.3.1 Condition of bubble coalescence 3.3.2 Model of Kamp et al. [2001] 3.3.3 Model of Hoppe and Breuer [2018] 3.3.4 Model of Schwarz et al. [2013] 3.3.5 Comparison of coalescence models 3.4 Breakup modeling 3.4.1 Turbulence induced breakups 3.4.2 Post-breakup treatment 4 Interpolation techniques for two-way coupled simulations 4.1 Lagrange-to-Euler coupling 4.1.1 Introduction to the spatially distributed coupling 4.1.2 Intersection plane method 4.1.3 Subcell method 4.1.4 Random points method 4.2 Euler-to-Lagrange coupling 4.2.1 Approaches for computing the undisturbed velocity 4.2.2 Coarser grid method 4.2.3 Averaging the fluid velocity in front of the bubble 4.2.4 Velocity from upstream disk 4.2.5 Gradient of the undisturbed liquid velocity 5 One-way coupled simulation of bubble dispersion and resulting interaction 5.1 Implementation and verification of the continuous random walk model 5.2 Bubble dispersion in turbulent channel flows 5.3 Bubble dispersion and interaction in turbulent pipe flows 5.3.1 Overview of studied cases 5.3.2 Results of the bubble dispersion 5.3.3 Results of the bubble coalescence 6 Two-way coupled simulation of finite-size bubbles 6.1 Flow solver and algorithm 6.2 Assessing the Lagrange-to-Euler coupling methods 6.2.1 Previous studies 6.2.2 Simulation setups for a single bubble in quiescent liquid 6.2.3 Results and discussion 6.3 Assessing the Euler-to-Lagrange coupling methods 6.3.1 Simulation of two bubbles rising inline 6.3.2 Simulation of a bubble rising in linear shear flows 6.4 Large-eddy simulation for a square bubble column 6.5 Bubble coalescence in a turbulent pipe flow 7 Conclusions and outlook Appendices A.1 Equations of turbulence models A.2 Numerical implementation of the full CRW drift term A.3 Results of bubble coalescence modeling for case B to case E A.4 Search algorithm of the upstream disk method Bibliography

Page generated in 0.4819 seconds