321 |
Propriétés structurales et magnétiques de ferrites de gallium substituées par des terres rares / Structural and magnetic properties of gallium ferrites substituted by rare earth elementsNeacsa Iurcut, Daniela Maria 23 September 2016 (has links)
Nous présentons une contribution expérimentale à l’étude des propriétés structurales et magnétiques de ferrites de gallium substituées par des terres rares. Ce travail s’inscrit dans la thématique plus générale des multiferroïques magnétoélectriques dont fait partie le composé Ga2-xFexO3 qui est ferrimagnétique et présente une polarisation spontanée à température ambiante. On s’intéresse à l’influence de la substitution d’atomes de gallium ou de fer par des éléments de terres rares (Sc, Yb, Er, Sm) sur les paramètres structuraux de Ga2-xFexO3 avec 0,9 x 1,2 et à l’effet de la substitution par Sc et Yb sur la température de transition magnétique et l’aimantation à saturation. On présente une étude expérimentale du magnétisme du composé Ga0.99Yb0.01FeO3, réalisée à partir de mesures de la susceptibilité alternative et de l’aimantation en fonction du champ magnétique, H, et de la température T. Un large domaine d’irréversibilité magnétique est observé dans le diagramme de phase H–T. Les résultats suggèrent que Ga0.99Yb0.01FeO3 constitue un verre de spin Heisenberg tridimensionnel. / We present an experimental contribution to the study of structural and magnetic properties for gallium ferrites substituted by rare earth elements. This work is part of the more general theme of magnetoelectric multiferroïc which includes the Ga2-xFexO3 compound ferrimagnetic and with a spontaneous polarization at room temperature. We study the influence of the substitution of gallium or iron atoms with rare earth elements (Sc, Yb, Er, Sm) on the structural parameters of Ga2-xFexO3 with 0.9 x 1.2 and the effect of the substitution by Sc and Yb on the magnetic transition temperature and the saturation magnetization. We present an experimental study of magnetism Ga0.99Yb0.01FeO3 compound, realized from alternative susceptibility and magnetization measurements as a function of magnetic field, H, and the temperature T. A wide irreversible magnetic area is observed in the phase diagram H–T. The results suggest that Ga0.99Yb0.01FeO3 is a three-dimensional Heisenberg spin glass.
|
322 |
Obten??o de ferrita de cobalto atrav?s de dois m?todos de s?ntese: m?todo de complexa??o combinando EDTA/Citrato e m?todo hidrot?rmico / Obtaining cobalt ferrite through two synthesis methods: Complexation Method Conbining EDTA/Citrate and Hydrothermal MethodMedeiros, Indira Aritana Fernandes de 17 December 2013 (has links)
Made available in DSpace on 2014-12-17T15:01:34Z (GMT). No. of bitstreams: 1
IndiraAFM_DISSERT_Parcial.pdf: 1021016 bytes, checksum: 339ff82fc9edc8d5f827859010abd0dc (MD5)
Previous issue date: 2013-12-17 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work it was synthesized and characterized the cobalt ferrite (CoFe2O4) by
two methods: complexation combining EDTA/Citrate and hydrothermal investigating the
influence of the synthesis conditions on phase formation and on the crystallite size. The
powders were mainly characterized by x-ray diffraction. In specific cases, it was also used
scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray
fluorescence (XRF) and isotherms of adsorption and desorption of nitrogen (BET method).
The study of the crystallite size was based on the interpretation of x-ray diffractograms
obtained and estimated by the method of Halder-Wagner-Scherrer and Langford. An
experimental design was made in order to assist in quantifying the influence of synthesis
conditions on the response variables. The synthesis parameters evaluated in this study were:
pH of the reaction medium (8, 9 and 10), the calcination temperature (combined complexation
method EDTA/Citrate 600?C, 800?C and 1000?C), synthesis temperature (hydrothermal
method 120?C, 140?C and 160?C), calcination time (combined complexation method
EDTA/Citrate - 2, 4 and 6 hours) and time of synthesis (hydrothermal method 6, 15 and 24
hours). By the hydrothermal method was possible to produce mesoporous powders with high
purity, with an average crystallite size up to 7 nm, with a surface area of 113.44 m?/g in the
form of pellets with irregular morphology. By using the method of combined complexation
EDTA/Citrate, mesoporous powders were produced with greater purity, crystallite size up to
22nm and 27.95 m?/g of surface area in the form of pellets with a regular morphology of
plaques. In the experimental design was found that the hydrothermal method to all the studied
parameters (pH, temperature and time) have significant effect on the crystallite size, while to
the combined complexation method EDTA/Citrate, only temperature and time were
significant / Neste trabalho foi sintetizada e caracterizada a ferrita de cobalto (CoFe2O4)
atrav?s dos m?todos complexa??o combinada EDTA/Citrato e hidrot?rmico, investigando a
influ?ncia das condi??es de s?ntese na forma??o da fase e no tamanho m?dio de cristalito. Os
p?s foram caracterizados principalmente por difra??o de raios-x. Em casos espec?ficos,
tamb?m foi utilizado microscopia eletr?nica de varredura (MEV), espectroscopia de energia
dispersiva (EDS), fluoresc?ncia de raios-x (FRX) e isotermas de adsor??o e dessor??o de
nitrog?nio (M?todo BET). O estudo do tamanho de cristalito foi baseado na interpreta??o dos
difratogramas de raios-x obtidos e estimado atrav?s do m?todo de Halder-Wagner-Langford
(HWL) e de Scherrer. Um planejamento experimental foi realizado com a finalidade de
auxiliar na quantifica??o da influ?ncia das condi??es de s?ntese nas vari?veis-resposta. Os
par?metros de s?ntese avaliados neste trabalho foram: pH do meio reacional (8, 9 e 10),
temperatura de calcina??o (m?todo de complexa??o combinando EDTA/Citrato 600?C,
800?C e 1000?C), temperatura de s?ntese (m?todo hidrot?rmico 120?C, 140?C e 160?C),
tempo de calcina??o (m?todo de complexa??o combinando EDTA/Citrato 2, 4 e 6 hrs) e
tempo de s?ntese (m?todo hidrot?rmico 6, 15 e 24 hrs). Pelo m?todo hidrot?rmico foi
poss?vel produzir p?s mesoporosos com elevado grau de pureza, com tamanho m?dio de
cristalito de at? 7nm, com ?rea superficial de 113,44m?/g e na forma de aglomerados com
morfologia irregular. Ao se utilizar o m?todo de complexa??o combinando EDTA/Citrato
foram produzidos p?s mesoporosos com maior pureza, cristalitos com at? 22nm de tamanho,
27,95m?/g de ?rea superficial e na forma de aglomerados com morfologia regular de placas.
No planejamento experimental foi constatado que no caso do m?todo hidrot?rmico todos os
par?metros estudados (pH, Temperatura e tempo) apresentam efeito significativo no tamanho
de cristalito, enquanto que, para o m?todo de complexa??o combinando EDTA/Citrato,
apenas a temperatura e o tempo foram significativos / 2020-01-01
|
323 |
Estratégia sustentável na remediação de cromo em efluente industrial utilizando matriz magnéticaSouza, Daiane Requião de 29 July 2016 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The presence of high concentrations of toxic metals in water bodies requires a
constant search for new and more effective methods to treat industrial waste.
The present work proposes a technique for the removal of chromium present in
leather tannery effluent, using a hybrid magnetic adsorbent, CoFe2O4/NOM,
synthesized using an environmentally friendly procedure. Salts of the metals
(Co and Fe) were used as precursors and natural organic matter (NOM) was
used as the gelification agent, replacing the traditional reagents that are toxic
and expensive. Comparisons were made of CoFe2O4/NOM produced at
ambient temperature (FeAMB) and the materials produced after calcination at
200 (Fe200), 400 (Fe400), and 800 °C (Fe800). The materials were analyzed
by X-ray diffractometry and infrared spectroscopy, which revealed the presence
of NOM in the structure of the material, together with the formation of cobalt
ferrite, hence confirming the suitability of the new synthesis route. Adsorption
tests, performed as a function of pH and time, showed the effectiveness of
FeAMB at the natural pH of the effluent (pH 4.2), while at pH 6.0 the removal
percentages were approximately 94, 100, 98, and 89% for FeAMB, Fe200,
Fe400, and Fe800, respectively, with corresponding equilibration times of 60,
120, 120, and 60 minutes, respectively. Kinetics assays showed that high
adsorption of 70-87% was achieved after only 20 minutes. The adsorption
kinetics could be fitted using a pseudo-second order model, and the likely
removal mechanism was electrostatic attraction between carboxylate groups
and the cationic chromium species CrOH2+ and Cr(OH)2
+. Amongst the
adsorbents studied, the FeAMB/NOM hybrid material was especially attractive
because it did not require heat treatment and showed high removal capacities
during five reuse cycles, ranging from 96% in the first cycle to 82% in the fifth
cycle. The residues remaining after the reuse cycles, comprising the FeAMB
hybrid saturated with chromium (FeAMB_Sat) and the desorbed chromium
solution (dried and calcined at 500 °C, denoted CrD), showed excellent catalytic
activity in the reduction of 4-nitrophenol to 4-aminophenol, the latter being an
important compound used in the synthesis of pharmaceuticals and corrosion
inhibitors. The conversion rates and times were 99.9% and 55 seconds for
vi
FeAMB_Sat, and 99.9% and 3 seconds for CrD. A magnetic hybrid material
(denoted FeSF) was also synthesized replacing the analytical grade iron salt
precursor by a ferric sulfate solution derived from the treatment of iron ore
mining waste. This hybrid was highly efficient as an adsorbent, with 98%
removal of chromium present in an industrial effluent in only 20 minutes. The
technique described here contributes to the development of industrial symbiosis
since it uses materials prepared using natural substances and enables the
reuse of waste in the production cycle. The procedure is a technologically viable
alternative for the remediation of metal-contaminated effluents. / O aumento da concentração de metais tóxicos nos corpos hídricos impulsiona
uma busca constante por tratamentos eficientes para remediar resíduos
industriais. Portanto, neste trabalho é proposto a remediação do cromo
existente em efluente industrial de curtimento de couro utilizando um
adsorvente híbrido magnético, CoFe2O4/MON, sintetizado por uma rota
modificada, eco-amigável. Utiliza-se como precursores sais dos metais de
interesse e a matéria orgânica natural (MON) como substância gelificante, em
substituição aos reagentes tradicionais que são tóxicos e de alto custo. Para
fins comparativos, a CoFe2O4/MON obtida à temperatura ambiente (FeAMB) foi
calcinada a 200 (Fe200), 400 (Fe400) e 800°C (Fe800) e a formação do
material foi confirmada por difratometria de raios x, que indicou também,
simultaneamente, com o infravermelho, a presença da MON na estrutura do
material, a formação da ferrita de cobalto e assim, a eficácia da rota de síntese
proposta. Os ensaios de adsorção em função do pH e do tempo, evidenciaram
a eficiência da FeAMB, no pH natural do efluente (4,2), enquanto que para os
demais, no pH 6,0; com percentuais de remoção de aproximadamente 94, 100,
98 e 89% para FeAMB, Fe200, Fe400, Fe800, respectivamente, e tempos de
equilíbrio de 60, 120, 120 e 60 minutos. Entretanto, com apenas 20 minutos de
ensaios cinéticos houve uma alta resposta de adsorção, entre 70-87%. A
cinética de adsorção ajustou-se melhor ao modelo de pseudo-segunda ordem e
o possível mecanismo de remoção ocorre por atração eletrostática entre os
grupos carboxilatos e as espécies catiônicas do cromo, CrOH2+, Cr(OH)2
+. O
material híbrido FeAMB/MON destaca-se entre os demais adsorventes em
estudo por não ter sido submetido a tratamento térmico e porque apresentou
uma elevada capacidade de remoção após ser submetido a cinco ciclos de
reutilização, variando de 96% no primeiro ciclo para 82% no quinto ciclo. Os
resíduos decorrentes dos ciclos de reutilização, o híbrido FeAMB saturado com
cromo (FeAMB_Sat) e a solução de cromo dessorvido, seca e calcinada a
500°C (CrD), apresentaram excelentes potenciais catalíticos na redução do 4-
nitrofenol a 4-aminofenol, o qual é um importante insumo para a síntese de
produtos farmacêuticos e inibidores de corrosão. A taxa e o tempo de
conversão da redução, foram de 99,9% e 55 segundos para FeAMB_Sat e
99,9% e 3 segundos para CrD. De modo eminente, também foi sintetizado um
material híbrido magnético substituindo o precursor sal de ferro em grau
analítico por solução de sulfato férrico oriunda de um resíduo tratado da
mineração de ferro, denominado FeSF. Este híbrido revelou uma eficiência
notável como adsorvente, pois o percentual de remoção de cromo presente em
efluente industrial foi de 98% em apenas 20 minutos. Diante disso, o presente
estudo contribuiu para a prática da simbiose industrial ao propor o emprego de
substâncias naturais na elaboração de materiais, bem como a reutilização dos
resíduos, e sua reinserção no ciclo produtivo desenvolvendo uma alternativa
tecnologicamente viável para remediação de metais.
|
324 |
Automated Production Technologies and Measurement Systems for Ferrite Magnetized Linear GeneratorsKamf, Tobias January 2017 (has links)
The interest in breaking the historical dependence on fossil energy and begin moving towards more renewable energy sources is rising worldwide. This is largely due to uncertainties in the future supply of fossil fuels and the rising concerns about humanity’s role in the currently ongoing climate changes. One renewable energy source is ocean waves and Uppsala University has since the early 2000s been performing active research in this area. The Uppsala wave energy concept is centered on developing linear generators coupled to point absorbing buoys, with the generator situated on the seabed and connected to the buoy on the sea surface via a steel wire. The motion of the buoy then transfers energy to the generator, where it is converted into electricity and sent to shore for delivery into the electrical grid. This thesis will mainly focus on the development and evaluation of technologies used to automate the manufacturing of the translator, a central part of the linear generator, using industrial robotics. The translator is a 3 m high and 0.8 m wide three sided structure with an aluminum pipe at its center. The structure consists of alternating layers of steel plates (pole-shoes) and ferrite magnets, with a total of 72 layers per side. To perform experiments on translator assembly and production, a robot cell (centered on an IRB6650S industrial robot) complimented with relevant tools, equipment and security measures, has been designed and constructed. The mounting of the pole-shoes on the central pipe, using the industrial robot, proved to be the most challenging task to solve. However, by implementing a precise work-piece orientation calibration system, combined with selective compliance robot tools, the task could be performed with mounting speeds of up to 50 mm/s. Although progress has been made, much work still remains before fully automated translator assembly is a reality. A secondary topic of this thesis is the development of stand-alone measurement systems to be used in the linear generator, once it has been deployed on the seabed. The main requirements of such a measurement system is robustness, resistance to electrical noise, and power efficiency. If possible the system should also be portable and easy to use. This was solved by developing a custom measurement circuit, based on industry standard 4–20 mA current signals, combined with a portable submersible logging unit. The latest iteration of the system is small enough to be deployed and retrieved by one person, and can collect data for 10 weeks before running out of batteries. Future work in this area should focus on increasing the usability of the system. The third and final topic of this thesis is a short discussion of an engineering approach to kinetic energy storage, in the form of high-speed composite flywheels, and the design of two different prototypes of such flywheels. Both designs gave important insights to the research group, but a few crucial design faults unfortunately made it impossible to evaluate the full potential of the two designs.
|
325 |
Quantitative equilibrium calculations on systems with relevance to copper smelting and convertingBjörkman, Bo January 1984 (has links)
The present thesis gives a summary of results obtained through theoretical and experimental studies of systems with relevance to copper smelting and converting. Many chemical elements are involved in the copper production processes and a detailed experimental study would be very time- consuming and expensive. A complicating fact is also the corrosivity of the liquid phases towards container material. A powerful alternative is equilibrium calculations, in which models for the liquid phases as well as reliable basic thermodynamic data are needed. In the present thesis, a generalized structure based model for liquid silicates was developed and used in assessments of the systems PbO-SiO2, Fe-O-SiO2, CuO0.5-SÌO2 and Cu-Fe-O-SiO2. In the model, the non-ideal silicate melt is treated as an ideal solution but containing a few complexes. The PbO-Si02 melt could be described by introducing the complexes Pb3Si207, Pb4Si4010 and Pb13Si12O37 in addition to the components PbO and Pb2Si04. The species considered in the Fe-O-SiO2 melt were FeO, FeO1.5, Fe2Si04, Fe3Si207, Fe3Si6O15 and in the CUO0.5-SiO2 melt CuO0.5 ana CU4SiO4. Trie calculated phase diagrams, the activities of metal oxides and the oxygen partial pressures were all in good agreement with the published data. Two of the papers in this thesis concern the determination of Gibbs free energies for Cu2S(s,l) and Ca2Fe2O5(s) through emf measurements utilizing a solid electrolyte. Activities and terminal solubilities in the solid solution [Fet,Ca]0 were also determined. The results obtained from the quantitative equilibrium calculations for conventional copper smelting and converting were used to outline the overall reactions taking place and the outcome of changes in process parameters. Comparison with observed values, however, showed that the copper and magnetite contents in slag were calculated too low. These discrepancies could be completely explained by using a non-equilibrium approach in which the converter was assumed to consist of several segments with concentration gradients between the segments. / digitalisering@umu.se
|
326 |
DESIGN, ANALYSIS AND IMPLEMENTATION OF A NOVEL DOUBLE SIDED E-CORETRANSVERSE FLUX MACHINE WITH AXIAL AIRGAPHusain, Tausif January 2017 (has links)
No description available.
|
327 |
Phase formation and structural transformation of strontium ferrite SrFeOxSchmidt, Marek, Wojciech, Marek.Schmidt@rl.ac.uk January 2001 (has links)
Non-stoichiometric strontium iron oxide is described by an abbreviated formula SrFeOx (2.5 ≤ x ≤ 3.0) exhibits a variety of interesting physical and chemical properties over a broad range of temperatures and in different
gaseous environments. The oxide contains a mixture of iron in the trivalent and the rare tetravalent state. The material at elevated temperature is a mixed oxygen conductor and it, or its derivatives,can have practical
applications in oxygen conducting devices such as pressure driven oxygen
generators, partial oxidation reactors in electrodes for solid oxide fuel cells
(SOFC).
¶
This thesis examines the behaviour of the material at ambient and elevated temperatures using a broad spectrum of solid state experimental
techniques such as: x-ray and neutron powder diffraction,thermogravimetric and calorimetric methods,scanning electron microscopy and Mossbauer
spectroscopy. Changes in the oxide were induced using conventional thermal
treatment in various atmospheres as well as mechanical energy (ball milling).
The first experimental chapter examines the formation of the ferrite from
a mixture of reactants.It describes the chemical reactions and phase transitions that lead to the formation of the oxide. Ball milling of the reactants prior to annealing was found to eliminate transient phases from the reaction route and to increase the kinetics of
the reaction at lower temperatures.
Examination of the thermodynamics of iron oxide (hematite) used for the
reactions led to a new route of synthesis of the ferrite frommagnetite and
strontium carbonate.This chapter also explores the possibility of synthesis
of the material at room temperature using ball milling.
¶
The ferrite strongly interacts with the gas phase so its behaviour was studied under different pressures of oxygen and in carbon dioxide.The changes in ferrite composition have an equilibrium character and depend on temperature and oxygen concentration in the
atmosphere. Variations of the oxygen
content x were described as a function of temperature and oxygen partial
pressure, the results were used to plot an equilibrium composition diagram.
The heat of oxidation was also measured as a function of temperature and oxygen partial pressure.
¶
Interaction of the ferrite with carbon dioxide below a critical temperature
causes decomposition of the material to strontium carbonate and SrFe12O19 .
The critical temperature depends on the partial pressure of CO2 and above
the critical temperature the carbonate and SrFe12O19 are converted back into
the ferrite.The resulting SrFe12O19 is very resistant towards carbonation and
the thermal carbonation reaction does not lead to a complete decomposition
of SrFeOx to hematite and strontium carbonate.
¶
The thermally induced oxidation and carbonation reactions cease at room
temperature due to sluggish kinetics however,they can be carried out at ambient temperature using ball milling.The reaction routes for these processes are different from the thermal routes.The mechanical oxidation induces two
or more concurrent reactions which lead to samples containing two or more
phases. The mechanical carbonation on the other hand produces an unknown
metastable iron carbonate and leads a complete decomposition of the ferrite
to strontiumcarbonate and hematite.
¶
Thermally and mechanically oxidized samples were studied using Mossbauer
spectroscopy. The author proposes a new interpretation of the Sr4Fe4O11
(x=2.75) and Sr8Fe8O23 (x=2.875)spectra.The interpretation is based
on the chemistry of the compounds and provides a simpler explanation of
the observed absorption lines.The Mossbauer results froma range of compositions
revealed the roomtemperature phase behaviour of the ferrite also
examined using x-ray diffraction.
¶
The high-temperature crystal structure of the ferrite was examined using
neutron powder diffraction.The measurements were done at temperatures
up to 1273K in argon and air atmospheres.The former atmosphere protects
Sr2Fe2O5 (x=2.5) against oxidation and the measurements in air allowed
variation of the composition of the oxide in the range 2.56 ≤ x ≤ 2.81.
Sr2Fe2O5 is an antiferromagnet and undergoes phase transitions to the paramagnetic
state at 692K and from the orthorhombic to the cubic structure
around 1140K.The oxidized formof the ferrite also undergoes a transition
to the high-temperature cubic form.The author proposes a new structural
model for the cubic phase based on a unit cell with the Fm3c symmetry.
The new model allows a description of the high-temperature cubic form of
the ferrite as a solid solution of the composition end members.The results
were used to draw a phase diagramfor the SrFeOx system.
¶
The last chapter summarizes the findings and suggests directions for further research.
|
328 |
Studies of p-type semiconductor photoelectrodes for tandem solar cellsSmith, Thomas January 2014 (has links)
Photoelectrodes and photovoltaic devices have been prepared via multiple thin film deposition methods. Aerosol assisted chemical vapour deposition (AACVD), electrodeposition (ED), chemical bath deposition (CBD) and doctor blade technique (DB) have been used to deposit binary and ternary metal oxide films on FTO glass substrates. The prepared thin films were characterised by a combination of SEM (Scanning Electron Microscopy), powder X-ray diffraction, mechanical strength tests and photochemical measurements. Nickel oxide (NiO) thin films prepared by AACVD were determined to have good mechanical strength . with a photocurrent of 7.6 μA cm-2 at 0 V and an onset potential of about 0.10 V. This contrasted with the dark current density of 0.3 μA cm-2 at 0 V. These NiO samples have very high porosity with crystalline columns evidenced by SEM. In comparison with the AACVD methodology, NiO films prepared using a combination of ED and DB show good mechanical strength but a higher photocurrent of 24 μA cm-2 at 0 V and an onset potential of about 0.10 V with a significantly greater dark current density of 7 μA cm-2 at 0 V. The characteristic features shown in the SEM are smaller pores compared to the AACVD method. Copper (II) oxide (CuO) and copper (I) oxide (Cu2O) films were fabricated by AACVD by varying the annealing temperature between 100-325°C in air using a fixed annealing time of 30 min. It was shown by photocurrent density (J-V) measurements that CuO produced at 325 °C was most stable and provided the highest photocurrent of 173 μA cm-2 at 0 V with an onset potential of about 0.23 V. The alignment of zinc oxide (ZnO) nano-rods and nano-tubes fabricated by CBD have been shown to be strongly affected by the seed layer on the FTO substrate. SEM images showed that AACVD provided the best seed layer for aligning the growth of the nano-rods perpendicular to the surface. Nano-rods were successfully altered into nano-tubes using a potassium chloride bath etching method. NiO prepared by both AACVD and the combined ED/DB method were sensitized to absorb more of the solar spectrum using AACVD to deposit CuO over the NiO. A large increase in the photocurrent was observed for the p-type photoelectrode. These p-type photoelectrode showed a photocurrent density of approximately 100 μA cm-2 at 0 V and an onset potential of 0.3 V. This photocathode was then used as a base to produce a solid state p-type solar cell. For the construction of the solid state solar cells several n-type semiconductors were used, these were ZnO, WO3 and BiVO4. WO3 and BiVO4 were successfully produced with BiVO4 proving to be the optimum choice. This cell was then studied more in depth and optimised by controlling the thickness of each layer and annealing temperatures. The best solid state solar cell produced had a Jsc of 0.541 μA cm-2 (541 nA) and a Voc of 0.14 V, TX146 made up of NiO 20 min, CuFe2O4 50 min, CuO 10 min, BiVO4 27 min, using AACVD and then annealed for 30 min at 600°C.
|
329 |
Investigação da estrutura local e média de nanopartículas por técnicas de espalhamento e difração de raios X / Local and average structure investigation of nanoparticles using X-ray scattering and diffraction methodsIchikawa, Rodrigo Uchida 19 April 2018 (has links)
Neste trabalho, a estrutura local e média de nanopartículas foi estudada utilizando-se métodos de espalhamento e difração de raios X. Os métodos utilizados foram: Análise da Função de Distribuição de Pares Atômicos (Atomic Pair Distribution Function Analysis, em inglês) para o estudo do ordenamento estrutural de curto alcance, Refinamento de Rietveld e Modelamento Total do Perfil de Difração de Pó para o estudo do ordenamento médio. Os materiais estudados foram: nanopartículas de KY3F10 dopadas com Tb, nanocubos núcleo-camada (core-shell, em inglês) de FeO-Fe3O4 e nanopartículas de ferritas de Mn-Zn. O trabalho teve como objetivo demonstrar como os métodos mencionados podem ser utilizados de forma complementar para fornecer informações de curto, médio e longo alcance usando-se dados de espalhamento e difração de raios X. Neste trabalho, ressalta-se a importância de cada método no estudo da estrutura cristalina e demonstra avanço e desenvolvimento de metodologias para a sua aplicação. / In this work, local and average structure of nanoparticles were studied using X-ray scattering and diffraction methods. The methods used were: Atomic Pair Distribution Function Analysis to study the short-range ordering, Rietveld refinement and Whole Powder Pattern Modelling to study the long-range ordering. The studied materials were: Tb-doped KY3F10 nanoparticles, core-shell FeO-Fe3O4 nanocubes and Mn-Zn ferrite nanoparticles. The objective of this work was to demonstrate how the methods mentioned can be used in a complementary way to provide short, average and long range information about the structure using X-ray scattering and diffraction data. The importance of each method to study the crystalline structure is highlighted demonstrating progress and development of methodologies for its application.
|
330 |
Investigação da estrutura local e média de nanopartículas por técnicas de espalhamento e difração de raios X / Local and average structure investigation of nanoparticles using X-ray scattering and diffraction methodsRodrigo Uchida Ichikawa 19 April 2018 (has links)
Neste trabalho, a estrutura local e média de nanopartículas foi estudada utilizando-se métodos de espalhamento e difração de raios X. Os métodos utilizados foram: Análise da Função de Distribuição de Pares Atômicos (Atomic Pair Distribution Function Analysis, em inglês) para o estudo do ordenamento estrutural de curto alcance, Refinamento de Rietveld e Modelamento Total do Perfil de Difração de Pó para o estudo do ordenamento médio. Os materiais estudados foram: nanopartículas de KY3F10 dopadas com Tb, nanocubos núcleo-camada (core-shell, em inglês) de FeO-Fe3O4 e nanopartículas de ferritas de Mn-Zn. O trabalho teve como objetivo demonstrar como os métodos mencionados podem ser utilizados de forma complementar para fornecer informações de curto, médio e longo alcance usando-se dados de espalhamento e difração de raios X. Neste trabalho, ressalta-se a importância de cada método no estudo da estrutura cristalina e demonstra avanço e desenvolvimento de metodologias para a sua aplicação. / In this work, local and average structure of nanoparticles were studied using X-ray scattering and diffraction methods. The methods used were: Atomic Pair Distribution Function Analysis to study the short-range ordering, Rietveld refinement and Whole Powder Pattern Modelling to study the long-range ordering. The studied materials were: Tb-doped KY3F10 nanoparticles, core-shell FeO-Fe3O4 nanocubes and Mn-Zn ferrite nanoparticles. The objective of this work was to demonstrate how the methods mentioned can be used in a complementary way to provide short, average and long range information about the structure using X-ray scattering and diffraction data. The importance of each method to study the crystalline structure is highlighted demonstrating progress and development of methodologies for its application.
|
Page generated in 0.0306 seconds