• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 48
  • 22
  • 20
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 289
  • 88
  • 48
  • 48
  • 40
  • 39
  • 39
  • 34
  • 34
  • 32
  • 28
  • 25
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Nuclear Magnetic Resonance on Selected Lithium Based Compounds

Rudisch, Christian 26 November 2013 (has links)
This thesis presents the NMR measurements on the single crystals LiMnPO4 and Li0.9FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO4 with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO4 shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse x-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO4 measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li0.9FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below Tc ∼ 18 K which demands ferromagnetic coupling of the electrons in the Cooper pairs. In Li0.9FeAs the Li deficit acts like hole doping which suppresses the superconductivity. Then ferromagnetism can arise which is very interesting because of the vicinity to the triplet superconductivity. With the microscopic methods NMR/NQR on the Li and As nuclei, it was investigated where the ferromagnetism can be located in Li0.9FeAs. Recent susceptibility, ESR and µSR studies reveal an internal field due to the ferromagnetism. In contrast, the internal field could not be used to perform zero field NMR measurements. Possible reasons for this discrepancy are discussed. In addition, the automatic insitu AC susceptibility technique by using the NMR radio frequency circuit has been tested by a reference compound Co2TiGa which shows itinerant ferromagnetism. Similar curves are observed for Li0.9FeAs which indicate the existence of itinerant magnetic moments in Li0.9FeAs. Furthermore, in order to determine the size of the dipolar contribution from the magnetic moments of the Fe the dipolar hyperfine coupling tensor was calculated from the crystal structure data. The comparison of the experimental and calculated hyperfine coupling elements reveals transferred hyperfine fields in LiFeAs.
262

Tunable electronic and magnetic properties in 2D-WSe2 monolayer via vanadium (V) doping and chalcogenide (Se) vacancies: A first-principle investigations

Thapa, Dinesh 06 August 2021 (has links)
The first-principles density functional theory (DFT) was implemented to investigate the structural, electronic and magnetic properties of vanadium (V) substituted and chalcogen (Se) vacancies in tungsten diselenide (WSe 2 ) monolayer, novel two dimensional (2D) monolayer (ML) structures in binary compounds ZnX (X= As, Sb, and Bi), and novel 2D electrides on transition metal-rich mono-oxide or chalcogenides, based on Perdew-Burke-Ernzerhof (PBE) exchange functional employed in Vienna Ab-Initio Simulation Packages (VASP). The inherent defect in 2D transition metal dichalcogenides (TMDCs) contains unavoidable substitutional defects and a certain amount of chalcogen vacancies. This type of defect affects the electronic and magnetic properties of 2D-TMDCs. To account for this fact, we demonstrated using DFT that the V-doped WSe 2 monolayer exhibits long-range ferromagnetic order. Further, the chalcogenide (Se) vacancies clustered around V-atom enhance the ferromagnetic properties of the system consistent with experimental findings. This dissertation explores the important role of Se-vacancies in the magnetic properties of the V-doped WSe 2 monolayer and proposes a method to enhance the magnetic properties of such 2D non-magnetic van der Waal (vdW) materials. In the second study, we have attempted theoretically to engineer the monolayer structure in II-V binary compounds ZnX with orthorhombic symmetry. We proved the dynamical stability of the bulk and ML structures manifested by the absence of imaginary frequencies in phonon dispersion curves. Our calculations on the density of states (DOS), and band structures using GGA indicate the increasing value of bandgap as well as the transition from indirect to direct bandgap while going from bulk to monolayer structure of ZnX. Our theoretical calculations will represent an archetype of novel 2D semiconductors on ZnX. Next, we have tailored using DFT, the structural and electronic properties of the 2D electrides that belong to transition metal-rich mono-oxide and chalcogenides with hexagonal (Hf 2 X; X = O, S, Se, Te), and orthorhombic (Ti2S and Zr2S) symmetry thereby introducing novel electrides to the electride family. The Bader charge analysis, electron localization function (ELF), projected DOS, and the calculated value of low work functions provides sufficient theoretical shreds of evidence to prove these materials as electrides.
263

Ferromagnetism and interlayer exchange coupling in then metallic films

Kienert, Jochen 20 October 2008 (has links)
Die vorliegende Arbeit befasst sich mit dem ferromagnetischen Kondo-Gitter-Modell (s-d-, s-f-Modell) für Filmstrukturen. Die Spin-Fermion-Wechselwirkung des Modells kommt in Materialien vor, in denen lokalisierte Spins mit beweglichen Ladungsträgern wechselwirken, wie etwa in (verdünnten) magnetischen Halbleitern, Manganaten, oder Seltene-Erd-Verbindungen. Die durch die Ladungsträger vermittelte, indirekte Wechselwirkung zwischen den lokalisierten Spins reicht von der langreichweitigen, oszillierenden RKKY-Austauschwechselwirkung im Falle schwacher Kopplung bis zur kurzreichweitigen Doppelaustausch-Wechselwirkung bei starker Spin-Fermion-Kopplung. Beide Grenzfälle werden in dieser Arbeit durch die Abbildung des Problems auf ein effektives Heisenberg-Modell erfasst. Der Einfluss von reduzierter Translationssymmetrie auf die effektive Austauschwechselwirkung und auf die magnetischen Eigenschaften des ferromagnetischen Kondo-Gitter-Modells wird untersucht. Curie-Temperaturen werden für verschiedene Parameterkonstellationen berechnet. Die Auswirkungen von Ladungstransfer und von Gitter-Relaxation auf die magnetische Oberflächenstabilität werden betrachtet. Die Diskussion bezieht sich auf die Modifizierungen der Zustandsdichte und der kinetischen Energie im dimensionsreduzierten Fall, da die effektiven Austauschintegrale eng mit diesen Größen verknüpft sind. Die Bedeutung von Spinwellen für den Magnetismus dünner Filme und an der Oberfläche wird gezeigt. Die Interlagen-Austauschkopplung stellt ein besonders interessantes und wichtiges Beispiel der indirekten Wechselwirkung zwischen lokalisierten Momenten dar. Im Rahmen einer RKKY-Behandlung wird die Kopplung zwischen Monolagen in dünnen Filmen untersucht. Sie wird entscheidend durch die Art der ebenen und senkrechten Ladungsträgerdispersion bestimmt und ist jenseits eines kritischen Wertes der Fermi-Energie stark unterdrückt. Schließlich wird die temperaturabhängige magnetische Stabilität von interlagen-gekoppelten dünnen Filmen behandelt und die Bedingungen für einen temperaturgetriebenen magnetischen Reorientierungsübergang werden diskutiert. / This thesis is concerned with the ferromagnetic Kondo lattice (s-d, s-f) model for film geometry. The spin-fermion interaction of this model refers to materials in which localized spins interact with mobile charge carriers like in (dilute) magnetic semiconductors, manganites, or rare-earth compounds. The carrier-mediated, indirect interaction between the localized spins comprises the long-range, oscillatory RKKY exchange interaction in the weak-coupling case and the short-range double-exchange interaction for strong spin-fermion coupling. Both limits are recovered in this work by mapping the problem onto an effective Heisenberg model. The influence of reduced translational symmetry on the effective exchange interaction and on the magnetic properties of the ferromagnetic Kondo lattice model is investigated. Curie temperatures are obtained for different parameter constellations. The consequences of charge transfer and of lattice relaxation on the magnetic stability at the surface are considered. Since the effective exchange integrals are closely related to the electronic structure in terms of the density of states and of the kinetic energy, the discussion is based on the modifications of these quantities in the dimensionally-reduced case. The important role of spin waves for thin film and surface magnetism is demonstrated. Interlayer exchange coupling represents a particularly interesting and important manifestation of the indirect interaction among localized magnetic moments. The coupling between monatomic layers in thin films is studied in the framework of an RKKY approach. It is decisively determined by the type of in-plane and perpendicular dispersion of the charge carriers and is strongly suppressed above a critical value of the Fermi energy. Finally, the temperature-dependent magnetic stability of thin interlayer-coupled films is addressed and the conditions for a temperature-driven magnetic reorientation transition are discussed.
264

Strominduziertes Schalten der Magnetisierung

Sandschneider, Niko 26 November 2009 (has links)
Die vorliegende Arbeit beschäftigt sich mit der mikroskopischen Modellierung von strominduziertem Schalten der Magnetisierung in magnetischen Tunnelstrukturen. Die Tunnelstruktur besteht aus zwei durch einen nichtmagnetischen Isolator voneinander getrennten Ferromagneten und einem Paramagneten, der als Elektronenreservoir dient. Die Ferromagnete werden beide durch das Hubbard-Modell beschrieben. Durch Anlegen einer Spannung verschieben sich die chemischen Potentiale auf beiden Seiten des Isolators, wodurch ein endlicher Tunnelstrom entsteht. Dieser wird im Rahmen des Modells durch eine Hybridisierung zwischen benachbarten Schichten simuliert. Das Modell muss im Nichtgleichgewicht gelöst werden, da aufgrund der unterschiedlichen chemischen Potentiale thermodynamisches Gleichgewicht nicht angenommen werden darf. Daher wird zur analytischen Auswertung der Keldysh-Formalismus verwendet, der eine Erweiterung der Viel-Teilchen-Theorie ins Nichtgleichgewicht darstellt. Da es sich beim Hubbard-Modell um ein nicht exakt lösbares Viel-Teilchen-Modell handelt, wurde in der Arbeit eine approximative Lösung, der sogenannte Nichtgleichgewichtsspektraldichteansatz, entwickelt. Dieser beruht auf einer Hochenergieentwicklung der retardierten Greenfunktion mit Hilfe der exakt berechenbaren Spektralmomente. Die numerischen Resultate stimmen qualitativ mit dem Experiment überein. Insbesondere gelingt es, das Hystereseverhalten der Magnetisierung des freien Ferromagneten in Abhängigkeit der angelegten Spannung korrekt zu reproduzieren. Es kann somit allein durch Anlegen einer Spannung kontrolliert zwischen paralleler und antiparalleler Ausrichtung der Magnetisierungen geschaltet werden. Dieses Phänomen ist anhand der entsprechenden Quasiteilchenzustandsdichten erklärbar. Weiterhin wird das Verhalten der kritischen Spannung systematisch in Form von Phasendiagrammen dargestellt und diskutiert. / This thesis is concerned with the microscopic modelling of current-induced switching of magnetization in magnetic tunnel junctions. The tunnel junction consists of two ferromagnets which are divided by a nonmagnetic insulator and a paramagnet, which acts as an electron reservoir. The ferromagnets are both described by the Hubbard model. By applying a voltage the chemical potentials on both sides of the insulator are shifted which results in a finite tunneling current. Within the model the current is simulated by a hybridization between neighbouring regions. The model has to be solved in non-equilibrium since thermal equilibrium requires a constant chemical potential for the whole system, which is not the case due to the voltage. Thus the Keldysh formalism will be used for evaluating the model. Since the Hubbard model is not exactly solvable one needs approximations. In this work a non-equilbrium spectral density approach is developed. It is based on a high-energy expansion of the retarded Green''s function and takes interactions beyond the mean field level into account. The numerical results of the theory are in qualitative agreement with experiments. It will be shown that it is possible to correctly get the hysterisis behaviour of the magnetization of the free ferromagnet in dependence on the applied voltage. Thus the relative alignment of the two magnetizations can be switched just by applying an electric field. This can be explained with the corresponding quasiparticle densities of state. Furthermore the behaviour of the critical voltage will be discussed systematically by calculating phase diagrams of the tunnel junction.
265

Atomistic simulations of competing influences on electron transport across metal nanocontacts

Dednam, Wynand 14 June 2019 (has links)
In our pursuit of ever smaller transistors, with greater computational throughput, many questions arise about how material properties change with size, and how these properties may be modelled more accurately. Metallic nanocontacts, especially those for which magnetic properties are important, are of great interest due to their potential spintronic applications. Yet, serious challenges remain from the standpoint of theoretical and computational modelling, particularly with respect to the coupling of the spin and lattice degrees of freedom in ferromagnetic nanocontacts in emerging spintronic technologies. In this thesis, an extended method is developed, and applied for the first time, to model the interplay between magnetism and atomic structure in transition metal nanocontacts. The dynamic evolution of the model contacts emulates the experimental approaches used in scanning tunnelling microscopy and mechanically controllable break junctions, and is realised in this work by classical molecular dynamics and, for the first time, spin-lattice dynamics. The electronic structure of the model contacts is calculated via plane-wave and local-atomic orbital density functional theory, at the scalar- and vector-relativistic level of sophistication. The effects of scalar-relativistic and/or spin-orbit coupling on a number of emergent properties exhibited by transition metal nanocontacts, in experimental measurements of conductance, are elucidated by non-equilibrium Green’s Function quantum transport calculations. The impact of relativistic effects during contact formation in non-magnetic gold is quantified, and it is found that scalar-relativistic effects enhance the force of attraction between gold atoms much more than between between atoms which do not have significant relativistic effects, such as silver atoms. The role of non-collinear magnetism in the electronic transport of iron and nickel nanocontacts is clarified, and it is found that the most-likely conductance values reported for these metals, at first- and lastcontact, are determined by geometrical factors, such as the degree of covalent bonding in iron, and the preference of a certain crystallographic orientation in nickel. / Physics / Ph. D. (Physics)
266

Simulation des matériaux magnétiques à base Cobalt par Dynamique Moléculaire Magnétique / Simulation of Cobalt base materials using Magnetic Molecular Dynamics

Beaujouan, David 07 November 2012 (has links)
Les propriétés magnétiques des matériaux sont fortement connectées à leur structure cristallographique. Nous proposons un modèle atomique de la dynamique d'aimantation capable de rendre compte de cette magnétoélasticité. Bien que ce travail s'inscrive dans une thématique générale de l'étude des matériaux magnétiques en température, nous la particularisons à un seul élément, le Cobalt. Dans ce modèle effectif, les atomes sont décrits par 3 vecteurs classiques qui sont position, impulsion et spin. Ils interagissent entre eux via un potentiel magnéto-mécanique ad hoc. On s'intéresse tout d'abord à la dynamique de spin atomique. Cette méthode permet d'aborder simplement l'écriture des équations d'évolution d'un système atomique de spins dans lequel la position et l'impulsion des atomes sont gelées. Il est toutefois possible de définir une température de spin permettant de développer naturellement une connexion avec un bain thermique. Montrant les limites d'une approche stochastique, nous développons une nouvelle formulation déterministe du contrôle de la température d'un système à spins.Dans un second temps, nous développons et analysons les intégrateurs géométriques nécessaires au couplage temporel de la dynamique moléculaire avec cette dynamique de spin atomique. La liaison des spins avec le réseau est assurée par un potentiel magnétique dépendant des positions des atomes. La nouveauté de ce potentiel réside dans la manière de paramétrer l'anisotropie magnétique qui est la manifestation d'un couplage spin-orbite. L'écriture d'un modèle de paires étendu de l'anisotropie permet de restituer les constantes de magnétostriction expérimentales du hcp-Co. En considérant un système canonique, où pression et température sont contrôlées, nous avons mis en évidence la transition de retournement de spin si particulière au Co vers 695K.Nous finissons par l'étude des retournements d'aimantation super-paramagnétiques de nanoplots de Co permettant de comparer ce couplage spin-réseau aux mesures récentes. / The magnetic properties of materials are strongly connected to their crystallographic structure. An atomistic model of the magnetization dynamics is developed which takes into account magneto-elasticity. Although this study is valid for all magnetic materials under temperatures, this study focuses only on Cobalt. In our effective model, atoms are described by three classical vectors as position, momentum and spin, which interact via an ad hoc magneto-mechanical potential.The atomistic spin dynamics is first considered. This method allows us to write the evolution equations of an atomic system of spins in which positions and impulsions are first frozen. However, a spin temperature is introduced to develop a natural connection with a thermal bath. Showing the limits of the stochastic approach, a genuine deterministic approach is followed to control the canonical temperature in this spin system.In a second step, several geometrical integrators are developed and analyzed to couple together both the molecular dynamics and atomic spin dynamics schemes. The connection between the spins and the lattice is provided by the atomic positions dependence of the magnetic potential. The novelty of this potential lies in the parameterization of the magnetic anisotropy which originates in the spin-orbit coupling. Using a dedicated pair model of anisotropy, the magnetostrictive constants of hcp-Co are restored. In a canonical system where pressure and temperature are controlled simultaneously, the transition of rotational magnetization of Co is found.Finally the magnetization reversals of super-paramagnetic Co nanodots is studied to quantify the impact of spin-lattice coupling respectively to recent measurements.
267

Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties

Ramesha, K 07 1900 (has links)
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
268

Ferroelectric Perovskite Superlattices By Pulsed Laser Ablation

Sarkar, Asis 06 1900 (has links)
Fabrication of artificially structured superlattices, when controlled on a nanoscale level, can exhibit enhanced dielectric properties over a wide temperature range. Possible fabrication of new functional devices based on the parametric values of dielectric constants of these heterostructures was the major motivation behind the work. Chapter 1 gives a brief overview of ferroelectrics; their defining features and their commercial importance to electronic industry. An introduction to ferroelectric superlattices, their technological application and fundamental physics that influence the behavior of superlattices are provided. Chapter 2 deals with the various experimental studies carried out in this research work. It gives the details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. A brief explanation of material fabrication, structural, micro structural and physical property measurements is discussed. Chapter 3 involves fabrication of two-component ferroelectric superlattices consisting of Barium Titanate (BTO), and Strontium Titanate (STO) with nanoscale control of superlattice periodicities by high-pressure multi target pulsed laser deposition on Pt (111)/Ti/SiO2/Si (100) substrate. Superlattices with varying periodicities were fabricated and their compositional variation across the thin film and the interface width were studied using Secondary Ion Mass Spectrometry (SIMS). Fabrications of superlattice structure were supported by observation of satellite peaks in XRD corresponding to the coherent heterostructures. The microstructural analysis was carried out using cross-sectional scanning electron microscopy (SEM), and contact mode-AFM was used to image surface morphology and root-mean-square (rms) roughness of the thin film heterostructure. Chapter 4 deals with ferroelectric studies of BTO/STO superlattices. The size dependent polarization behaviors of the superlattices are shown. The experimental realization of the dimensional range in which, the long-range coupling interaction dominates the overall polarization behavior of the system was studied. The dependence of average spontaneous polarization on the individual layer thickness, temperature and the dimensional range of interaction are discussed. The enhanced non-linear behaviors of the films were measured in terms of tunability. The dielectric phase transition behavior of superlattice structures of different periodicities was studied. Chapter 5 focuses on fabrication of three-component ferroelectric superlattices consisting of Barium Titanate (BTO), Calcium Titanate (CTO) and Strontium Titanate (STO). The fabrications of superlattice structures were confirmed by the presence of satellite reflections in XRD analysis and a periodic concentration of Sr, Ba and Ca throughout the film in Depth profile of SIMS analysis. The microstructural analysis was carried out using cross-sectional scanning electron microscopy (SEM), and contact mode-AFM was used to image surface morphology and root-mean-square (rms) roughness of the thin film heterostructure. The dielectric characteristic and polarization properties of the system are discussed. Large variations of lattice distortion in the consisting layers were achieved by varying the stacking sequence and superlattice periodicity. The influence of interfacial strain on enhancement of ferroelectric polarization was studied. The size dependence and the role of interfaces in the observed enhancements of the dielectric behaviors were highlighted. The tunability of about 55% was achieved in these systems and was higher than any of the single polycrystalline thin film of the constituent materials reported till date. The enhanced dielectric properties were thus discussed in terms of the interfacial strain driven polar region due to high lattice mismatch and electrostatic coupling due to polarization mismatch between individual layers. Chapter 6 deals with the dielectric response, impedance spectroscopy and the DC leakage characteristics of the superlattice structures. All the heterostructures fabricated, exhibited low frequency dispersion, similar to that of the Jonscher’s universal type of relaxation behavior. The anomalous dispersion was observed in the imaginary dielectric constant at high frequencies. A Debye type relaxation behavior was observed in the impedance analysis at low temperatures, whereas, a departure from ideal ‘Debye’ type was noticed as the temperature was increased. The leakage currents of all the heterostructures were found to be a few orders less than the homogeneous single layer thin films. A space charge limited conduction was observed in al the superlattice structures fabricated. Chapter 7 summarizes the present study and discusses about the future work that could give more insight into the understanding of the ferroelectric perovskite heterostructures.
269

Kationen-Ordnung in ferri/ferromagnetischen perowskitischen Dünnfilmen / Cation ordering in ferri/ferromagnetic perovskite thin films

Hühn, Sebastian 27 May 2015 (has links)
Ein großes Hindernis für die Anwendbarkeit von oxidischen Perowskiten in elektrotechnischen oder spintronischen Applikationen, ist die Größe der spezifischen Temperaturen, bei der die physikalischen Phänomene, wie Ferromagnetismus oder Hochtemperatur-Supraleitung, beobachtet werden können. Die physikalischen Eigenschaften der Perowskite zeigen eine Abhängigkeit von der Ordnung der verschiedenartigen Metallionen in mehrkomponentigen Systemen. Die Abhängigkeit ergibt sich durch den Einfluss der Metallionen auf die Elektronenkonfiguration und elastischen Verspannung innerhalb des Materials. Man spricht in diesem Zusammenhang auch von der Kontrolle der Füllung und der Bandbreite der elektronischen Bänder im Material durch die Wahl der Metallionen. Die Zielsetzung dieser Arbeit ist die Präparation und Charakterisierung von künstlich A-Platz geordneten schmal- und breitbandigen Manganat Dünnfilmen als auch von natürlich B-Platz geordneten ferro-/ferrimagnetischen doppelperowskitischen Dünnfilmen. Für die Präparation der dünnen Schichten wurde die unkonventionelle Metallorganischen Aerosol Deposition (MAD) verwendet. Es konnte gezeigt werden, dass diverse künstlich oder natürlich Kationengeordnete Perowskite mit der MAD Technologie präpariert werden können. Die lagenweise A-Platz Ordnung in Manganaten führt, über die Modulation der Gitterverspannung und der Elektronenbesetzung im eg-Band der Manganionen, zu modifizierten elektronischen und magnetischen Eigenschaften. In schmalbandigen CMR Manganaten wurde die PS und somit der CMR über die Ordnung beeinflusst, während in breitbandigen CMR Manganaten ein Weg aufgezeigt werden konnte, der zu Übergangstemperaturen TC > 370K führen kann. In geordneten, ferromagnetischen Doppelperowskiten wurde der Einfluss und die Anwesenheit von Antiphasen-Grenzen dargelegt. Über die Einführung einer aktiven Valenz-Kontrolle, konnte die Präparation von halbmetallischen, ferrimagnetischen Doppelperowskiten mit der MAD Technologie ermöglicht werden.
270

Estudo do mecanismo da ferroeletricidade da manganita hexagonal multiferróica LuMnO3 através de cálculos baseados na teoria do funcional da densidade

Sousa, Afrânio Manoel de 18 February 2014 (has links)
In this work we present a theoretical and computational study of the mechanism of ferroelectricity in multiferroic hexagonal manganite LuMnO3. Some structural and electronic properties are described in both paraelectric (PE) and ferroelectric (FE) phases. As theoretical and computation tool was employed the Full Potential Linear Augmented Plane Wave method, based on Density Functional Theory and embodied in WIEN2k computer code. The crystal structure of both PE and FE phases was optimized using two different types of exchange and correlation potentials. The local density approximation (LDA) and generalized gradient approximation (GGA). The lattice parameters from GGA calculation were obtained in better agreement with experimental than LDA result. Also, were analyzed two different GGA parameterizations: the so-called Perdew - Burke - Ernzerhof (PBE) and Wu - Cohen (WC). Comparing them, the result from GGA-PBE calculation is in better agreement with the experimental. After the structural optimization, the atomic positions were fully relaxed. In this step, was utilized the GGA with the PBE parameterization. The electronic properties were calculated from these optimized and relaxed structures and using the Tran and Blaha modified Becke-Johson potential. From these calculations were obtained an indirect band gap of 0,3 eV and a direct band gap of 1,6 eV in the PE and FE phases, respectively. The valence electronic density maps were obtained along the c axis of the phases PE and FE. It was observed when leave of the PE to the FE phase, the ionic character of Lu-O bonds was changed. By careful analysis of the calculated partial density of states, we showed that the loss of ionicity of the chemical bond is associated with the rehybridization of the 5dz2 - Lu with 2pz - O orbitals. This description corroborates with the model in which the mechanism of ferroelectricity of the hexagonal manganites is related with the rehybridization of the dz2 - Y or - Lu orbitals with 2pz - O s orbitals that are along the crystalline c axis. / No presente trabalho foi realizado um estudo teórico e computacional sobre o mecanismo da ferroeletricidade na manganita hexagonal multiferróica LuMnO3. Foram obtidas algumas das propriedades estruturais e eletrônicas desse composto nas fases paraelétrica (PE) e ferroelétrica (FE). Como ferramenta teórica e computacional foi utilizado o método de cálculo de estrutura eletrônica denominado de Full Potential Linearized Augmented Plane Wave que é baseado na Teoria do Funcional da Densidade e implementado no código computacional WIEN2k. Foi realizada a otimização dos parâmetros de rede usando duas diferentes aproximações para o potencial de troca e correlação. A aproximação da densidade local (LDA) e a do gradiente generalizado (GGA). Os parâmetros de rede obtidos com o cálculo GGA foram mais próximos do experimental do que aqueles obtidos usando a aproximação LDA. Para o cálculo usando a aproximação GGA foram testadas duas formas de parametrização: Perdew - Burke - Ernzerhof (PBE) e Wu - Cohen (WC). Nesse caso, o resultado obtido com a parametrização PBE é a que melhor se compara com o resultado experimental. Após a otimização dos parâmetros de rede, foram relaxadas as posições atômicas. Nessa etapa do cálculo, foi utilizada a aproximação GGA-PBE. Para o cálculo da estrutura eletrônica, foi usado o potencial modificado de troca de Becke-Johnson (mBJ). Com ele foi possível obter um band gap indireto de 0,3 eV na fase PE e um band gap direto de 1,6 eV na fase FE. Foram obtidos mapas de densidade eletrônica valência ao longo do eixo c cristalino das fases PE e FE. Observou-se, saindo da fase PE para a FE, que o caráter iônico da ligação Lu - O foi alterado. A análise da densidade de estados parciais mostrou que a perda da ionicidade da ligação química está associada à rehibridização dos orbitais 5dz2 do Lu com os orbitais 2pz do O. Esta descrição corrobora com o modelo em que o mecanismo da ferroeletricidade das manganitas hexagonais está associado à rehibridização dos orbitais dz2 do átomo R (Lu ou Y) com os orbitais 2pz dos átomos de oxigênio que estão ao longo do eixo cristalino c.

Page generated in 0.0965 seconds