• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 30
  • 12
  • 10
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 160
  • 44
  • 39
  • 36
  • 29
  • 28
  • 24
  • 22
  • 20
  • 19
  • 17
  • 15
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Thermobaromètrie des phylloscilicates dans les séries naturelles : conditions de la diagénèse et du métamorphisme de bas degré

Bourdelle, Franck 22 June 2011 (has links) (PDF)
Les illites et les chlorites sont des minéraux ubiquistes dans la plupart des roches diagénétiques. Leurs compositions chimiques dépendent des conditions physiques subies (pression, P ; température, T) et de la composition de l'encaissant (e.g. Vidal et al., 1999 ; Parra et al., 2002a, 2002b). Ces minéraux peuvent donc potentiellement être de très bons marqueurs de l'histoire de l'enfouissement, et sont à la base de nombreuses méthodes empiriques ou thermodynamiques d'estimation des conditions P-T.Une compilation de données naturelles et la comparaison des thermobaromètres existants ont permis d'établir leurs limitations respectives. Pour s'en affranchir, un nouveau modèle ordonné de solution solide pour les chlorites a été développé, qui rend compte des forts contenus en silicium observés dans les chlorites naturelles de basses températures. La calibration de ce nouveau thermobaromètre sur des domaines géologiques variés de BT-BP a été testée sur des analyses de chlorites naturelles de la Gulf Coast (Texas) au pic de température (où les données P-T ont été mesurées in situ) et montre d'excellents résultats. Concernant les illites, le modèle thermodynamique le plus abouti (Dubacq et al., 2010) a également été testé de manière à estimer sa précision. L'étude a été complétée par la quantification de l'influence du fer ferrique. Les analyses chimiques utilisées ont été obtenues grâce à un protocole analytique à haute résolution spatiale. Alliant FIB et MET-EDS, ce protocole a permis une étude microtexturale et chimique fine des chlorites et des illites. Il en ressort que ces minéraux possèdent une diversité intracristalline dans leurs compositions et que la zonation chimique résultante apparaît comme une potentielle source d'erreurs dans la calibration des thermobaromètres, tout en permettant d'envisager la notion d'équilibre à l'échelle locale.Cette approche a été utilisée pour quantifier les trajets P-T d'unités géologiques des Alpes de Glarus. Ces résultats, comparés à ceux obtenus avec des méthodes thermobarométriques conventionnelles, donnent une bonne image des processus d'enfouissement et d'exhumation des roches de basse température. Ainsi, il apparaît que chaque composition enregistre une portion du chemin P-T rétrograde. D'une manière générale, chaque zone d'un même cristal renvoie à une partie de l'histoire de la roche.
42

Development of a method for correlating integrin beta 1 expression and surface characteristics under individual cells

Myers, Meredith A. 12 August 2011 (has links)
Osseointegration, or the direct integration of an implant into bone tissue, is necessary for implant success. Titanium is commonly used clinically in dental and orthopaedic implants because of its passivating oxide layer, which facilitates osseointegration, and its mechanical properties such as a modulus of elasticity similar to bone. Diverse studies have shown that surface microtopography, chemistry, and surface energy affect osteoblast behavior. The problem with these studies is that they access the average behavior of a culture in response to a substrate and not the behavior of individual cells. The objective of this study was to develop a method for correlating the behavior of individual cells with the characteristics of the surface underneath them. More specifically, this work developed a method to correlate integrin beta-1 (β1) expression with the surface characteristics under individual cells. Integrins are cell surface receptors that bind to specific proteins in the extracellular matrix adsorbed on the implant surface. Previous work has shown that expression of certain integrins is increased when osteoblasts on titanium substrates develop a more differentiated phenotype, and that integrin β1 is necessary for osteoblast response to roughness on titanium substrates. This study used molecular beacons specific to integrin β1 to quantify integrin β1 expression of MG63 cells cultured on titanium disks. A template was designed to coordinate the location of cells using fluorescence microscopy and scanning electron microscopy (SEM) in reference to laser etchings on the disks. After live cell imaging, cells were fixed, dried, and critical point dried for focused ion beam (FIB) milling. Transmission electron microscopy (TEM) sections of cells identified with high and low integrin β1 molecular beacon intensity were milled, and cells with high and low integrin β1 molecular beacon intensity were also serial sectioned. While our TEM results were inconclusive, SEM images from serial sectioning showed contact points between the cell body and the substrate, consistent with previous results. Cells cultured on pretreatment (PT) or sandblasted acid etched (SLA) titanium surfaces were also serial sectioned, showing that cells on SLA surfaces have more regions of contact between the cells and the substrate than cells on PT surfaces. This work is significant as it is the first study to develop a method to correlate individual cell behavior with the substrate surface characteristics under the individual cells. Previous studies have reported the average cell behavior in response to their substrates, while this work allows for the study of substrate surface characteristics that positively affect integrin β1 expression in individual cells. Further optimization of the fluorescence imaging process and FIB milling process could be done, and the method developed in this study could be used in future studies to investigate surface characteristics after using other fluorescent analyses of cell behavior, such as immunocytochemistry.
43

Crack Analysis in Silicon Solar Cells

Echeverria Molina, Maria Ines 01 January 2012 (has links)
Solar cell business has been very critical and challenging since more efficient and low costs materials are required to decrease the costs and to increase the production yield for the amount of electrical energy converted from the Sun's energy. The silicon-based solar cell has proven to be the most efficient and cost-effective photovoltaic industrial device. However, the production cost of the solar cell increases due to the presence of cracks (internal as well as external) in the silicon wafer. The cracks of the wafer are monitored while fabricating the solar cell but the present monitoring techniques are not sufficient when trying to improve the manufacturing process of the solar cells. Attempts are made to understand the location of the cracks in single crystal and polycrystalline silicon solar cells, and analyze the impact of such cracks in the performance of the cell through Scanning Acoustic Microscopy (SAM) and Photoluminescence (PL) based techniques. The features of the solar cell based on single crystal and polycrystalline silicon through PL and SAM were investigated with focused ion beam (FIB) cross section and scanning electron microscopy (SEM). The results revealed that SAM could be a reliable method for visualization and understanding of cracks in the solar cells. The efficiency of a solar cell was calculated using the current (I) - voltage (V) characteristics before and after cracking of the cell. The efficiency reduction ranging from 3.69% to 14.73% for single crystal, and polycrystalline samples highlighted the importance of the use of crack monitoring techniques as well as imaging techniques. The aims of the research are to improve the manufacturing process of solar cells by locating and understanding the crack in single crystal and polycrystalline silicon based devices.
44

Focused ion beam milled magnetic cantilevers

Fraser, Alastair Unknown Date
No description available.
45

Metal Impurity Redistribution in Crystalline Silicon for Photovoltaic Application

Falkenberg, Marie Aylin 25 September 2014 (has links)
No description available.
46

Focused ion beam milled magnetic cantilevers

Fraser, Alastair 06 1900 (has links)
The procedure for milling micrometre scale cantilevers of lutetium iron garnet using a focused ion beam microscope was developed. The infrastructure to study these cantilevers using rotational hysteresis loops and ferromagnetic resonance experiments was set up. The cantilevers were shown to remain magnetic after milling, and the origin of their hysteresis loops investigated with a variant of the Stoner-Wohlfarth model. Ferromagnetic resonance in the cantilevers was demonstrated as the first step towards studying magnetomechanical coupling.
47

Contact deformation of carbon coatings: mechanisms and coating design.

Singh, Rajnish Kumar, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
This thesis presents the results of a study focussed on the elucidation of the mechanisms responsible for determining the structural integrity of carbon coatings on ductile substrates. Through elucidation of these mechanisms, two different coating systems are designed; a multilayered coating and a functionally graded coating. While concentrating upon carbon coatings, the findings of this study are applicable to a broad range of hard coatings on ductile substrates. The thesis concludes with a chapter outlining a brief study of the effects of gold coatings on silicon under contact load at moderate temperatures to complement the major part of the thesis. Carbon coatings with differing mechanical properties were deposited using plasma enhanced chemical vapour deposition (PECVD), filtered assisted deposition (FAD) and magnetron sputtering deposition methods. Combinations of these techniques plus variation of deposition parameters enabled composite multilayered and functionally-graded coatings to also be deposited. Substrates were ductile metals; stainless steel and aluminium. Characterisation of the coating mechanical properties was undertaken using nanoindentation and nano-scratch tests. The same techniques were used to induce fracture within the coatings to allow subsequent analysis of the fracture mechanism. These were ascertained with the assistance of cross-sectional imaging of indents prepared using a focussed ion beam (FIB) mill and transmission electron microscopy (TEM) using specimen preparation techniques also utilising the focussed ion beam mill. A two dimensional axisymmetric finite element model (FEM) was built of the coating systems using the commercial software package, ANSYS. Substrate elastic-plastic properties were ascertained by calibrating load-displacement curves on substrate materials with the finite element model results. Utilising the simulation of spherical indentation, the distribution of stresses and the locations for fracture initiation were ascertained using finite element models. This enabled determination of the influence such factors as substrate mechanical properties, residual stresses in the coatings and importantly the variation of elastic properties of the different coating materials. Based upon the studies of monolithic coatings, simulations were undertaken on multilayer and functionally-graded coatings to optimise design of these coating types. Based on the results of the modelling, multilayered and functionally graded coatings were then deposited and mechanical testing undertaken to confirm the models. Three major crack types were observed to occur as the result of the spherical nanoindentation on the coatings; ring, radial and lateral cracks. Ring cracks were found to initiate from the top surface of the film, usually at some distance from the edge of the spherical contact. Radial cracks usually initiated from the interface between the coating and the substrate directly under the symmetry axis of indentation and propagated outwards in a non symmetrical star-like fashion. Lateral cracks formed either between layers in the multilayer coatings or at the interface with substrate. Ring and radial cracks were found to form upon loading whereas lateral cracks formed upon both loading and unloading depending upon the crack driving mechanism. Pop-in events in the load displacement indentation curve were found to be indicative of the formation of ring cracks, while the formation of the other types of cracks was not signified by pop-ins but rather by variations in the slope of the curve. The substrate yield strength was found to influence the initiation of all crack systems while compressive stresses in the coating were seen to only influence the formation of ring and radial cracks. However, it was also noted that the initiation of one form of crack tended to then hinder the subsequent formation of others. In multilayer coatings, the lateral cracks were suppressed, as opposed to the monolayer coating system, but a ring crack was observed. This drawback in the multilayer system was successfully addressed by the design of a graded coating having the highest Young??s modulus at the middle of the film thickness. In this coating, due to the graded nature of the elastic modulus, the stresses at the deleterious locations (top surface and interface) were guided toward the middle of coating and hence increased the load bearing capabilities. The effect of substrate roughness upon the subsequent surface roughness of the coating and also upon the fracture process of the coating during indentation was also investigated. For the coatings deposited on rough substrates, the radial cracks were observed to form initially and this eventfully delayed the initiation of ring cracks. Also the number of radial cracks observed at the interface was found to be proportional to the distribution of the interfacial asperities. In summary, the study elucidated the fracture mechanisms of monolayer, multilayer and graded carbon coatings on ductile substrates under uniaxial and sliding contact loading. The effects of the yield strength, surface roughness of the substrate, along with the residual stress and elastic modulus of the coatings on the fracture of coatings were investigated. The study utilised finite element modelling to explain the experiments observations and to design coating systems.
48

Development of 3D-EBSD and its application to the study of various deformation and annealing phenomena

Mateescu, Nora-Maria, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
The ability to generate three dimensional (3D) microstructures in solids is of great importance in understanding their true nature, as it eliminates speculation about the spatial distribution of features associated with conventional two dimensional (2D) imaging techniques. There are several recently-developed 3D techniques for determining the spatial distribution of microstructural features, each with a given resolution. There is considerable interest in the development of a specific serial sectioning methodology, termed 3D electron backscatter diffraction (3D-EBSD), which combines a focused ion beam (FIB) with EBSD interfaced to a field emission gun scanning electron microscope. Here, FIB is used as a serial sectioning device for cutting parallel slices of single- and multi-phase materials with a site-specific accuracy of up to 50 nm. Each consecutive slice is mapped by EBSD and the complete dataset combined using advanced computer algorithms to generate a volume of a material whereby the true crystallographic features can be analyzed at submicron resolution. The aims of the thesis was to develop 3D-EBSD into a powerful materials analysis tool and use it to resolve several issues concerning the nature of the deformed state and the nucleation and the growth behaviour of recrystallizing grains. The study commenced with an investigation into the effect of material type (restricted to face centred cubic AI, Cu and Au metallic crystals), FIB milling conditions and EBSD software variables on the quality of EBSD patterns generated on ion-milled surfaces of these materials. The effect of material type on EBSD pattern quality following FIB milling was found to be significant with relatively poor quality EBSD patterns obtained for metals of low atomic number. It was demonstrated, particularly for the high atomic number metals, that moderate FIB milling currents (~1-5nA) generated good quality EBSD maps from a given ion-milled surface. This preliminary work was necessary for balancing the time required for serial sectioning during 3D-EBSD and the generation of sufficient quality EBSD maps from each ion-milled surface. The outcomes of this investigation were applied to two major 3D-EBSD investigations on the microstructural and crystallographic characteristics of: (i) deformation features generated in a cold rolled interstitial free (IF) steel, with particular emphasis on the formation of microbands; and (ii) recrystallization of a cold rolled nickel alloy containing coarse (>1 ??m) silica particles, with particular attention given to the generation of particle deformation zones and their influence on nucleation and growth of recrystallizing grains including particle stimulated nucleation (PSN), twin formation during PSN and the growth behaviour of various types of grain boundary into the deformation microstructure. The foregoing 3D-EBSD studies were significant as they revealed various microstructural and crystallographic features not usually clearly evident in conventional 2D micrographs obtained by either EBSD or optical metallography. For example, the technique demonstrated that microbands in cold rolled IF steel consist of irregular curved surfaces that reconcile findings that microbands straight and aligned parallel to slip planes when viewed in normal direction-rolling direction sections but are wavy in transverse direction-rolling direction sections. Three slip planes were found within the angular range of the curved surface of the microband, which indicates that multiple slip planes are operative during deformation. The work also showed the influence of particle diameter on the misorientations generated within particle deformation zones and clearly showed that particle stimulated nucleation (PSN) occurred at particles greater than 1.5-2 ??m. It was observed that PSN in the nickel sample also generates contiguous grains separated by both coherent and incoherent twin boundaries and, on further growth of these grains into the matrix, the coherent boundary dominates and remains parallel to the primary growth direction of the grains.
49

Rétention d'eau et microstructure fine de l'argilite de Bure / Water retention and fine microstructure of Bure argillite

Song, Yang 24 June 2014 (has links)
Dans le contexte du stockage profond des déchets radioactifs, il est important d'identifier l’hystérésis de saturation de la roche hôte, l'argilite du Callovo-Oxfordien, et sa capacité de scellement (en particulier, la porosité et la distribution de taille des pores). Tout d'abord, six cycles différents d'humidité relative sont destinés à évaluer l’hystérésis de saturation, qui n'est pas observée dans les cycles de faible amplitude. D'autre part, une nouvelle méthode est proposée pour la mesure de la porosité, qui utilise l'injection d'un gaz pour évaluer le volume des pores. Par rapport à la porosité par adsorption d'eau, l’injection de gaz fournit des porosités supérieures d’environ 5%. L'injection de gaz est également utilisée pour quantifier les isothermes de sorption-désorption, qui sont sensiblement différentes de celles obtenues par la méthode gravimétrique, avec un volume poreux accessible au gaz plus élevé pour une humidité relative <43%. Enfin, par Microscopie Electronique à Balayage couplée à un Faisceau Ionique Focalisé (FIB/MEB), on reconstruit le réseau poreux 3D de l'argilite à partir de séries d'images 2D espacées de 10nm : la porosité et la distribution de taille des pores sont quantifiés jusqu’à 20nm, ainsi que l’orientation et l'anisotropie. Avec une résolution plus élevée (jusqu’à moins de 1nm), la Microscopie Electronique à Transmission (MET) montre une grande quantité de pores de l’ordre de quelques nm, situés entre les agrégats d'argile. / In the context of deep underground storage of radioactive nuclear waste, it is important to identify the saturation hysteresis of the host rock, i.e. of Callovo-Oxfordian (COx) claystone, and its porosity and pore size distribution. Firstly, six different cycles of relative humidity are applied for saturation hysteresis, which is not observed in the cycles with low magnitude. Secondly, a new method is proposed for measuring porosity, which uses injection of gas to evaluate the pore volume. In contrast to porosity given by water adsorption, the gas injection method provides larger porosity values of around 5%. The gas injection method is also used to quantify the sorption-desorption isotherms of COx claystone, which are significantly different from those obtained by the gravimetric method, with a bigger pore volume accessible to gas in relative humidities < 43%. Finally, by Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM), we obtain 2D image stacks and 3D reconstructed pore volumes, by which porosity and pore size distribution are quantified down to 20nm, as well as pore orientation and anisotropy. At a higher resolution (below 1nm), Transmission Electron Microscopy (TEM) imaging reveals significant amounts of smaller pores (of a few nm) between clay aggregates.
50

[en] DUAL BEAM MICROSCOPY AS A MODIFICATION AND CHARACTERIZATION TOOL OF ORGANIC SEMICONDUCTOR THIN FILMS AND FOR DEVICE FABRICATION / [pt] MICROSCOPIA DE FEIXE DUPLO COMO FERRAMENTA PARA MODIFICAÇÃO E CARACTERIZAÇÃO DE FILMES FINOS DE SEMICONDUTORES ORGÂNICOS E FABRICAÇÃO DE DISPOSITIVOS

CRISTOL DE PAIVA GOUVEA 07 April 2017 (has links)
[pt] Nesta tese de doutoramento apresentamos a técnica de microscopia de feixe duplo (MEV e FIB) como uma ferramenta modificadora das propriedades físico-química dos semicondutores orgânicos, a qual pode ser eficaz para alterar e controlar a mobilidade dos portadores de carga nestes materiais semicondutores. Neste caso, filmes finos e dispositivos orgânicos, principalmente à base de tiofeno, foram bombardeados com diferentes doses de íons de Ga com objetivo de induzir modificações na estrutura polimérica a partir das diversas interações entre o íon e o polímero. As propriedades dos filmes finos e dos dispositivos bombardeados foram caracterizadas através das técnicas de UV-Vis, Espectroscopia Raman e CELIV, as quais indicaram a existência de dois regimes de comportamentos governados pela dose de íons empregada. Técnicas avançadas de microscopia eletrônica indicaram a formação de uma estrutura tipo grafítica, em torno de 50 nm da superfície do bombardeamento, decorrente da interação entre os íons de gálio e a camada polimérica. A possibilidade de construir dispositivos orgânicos intercalados com camadas grafíticas pode ser explorada de forma a construir arquiteturas mais eficientes, explorando a alta resolução espacial que a técnica FIB proporciona. / [en] In this doctoral thesis we presented the dual-beam microscopy (SEM and FIB) technique as a modifier tool of physicochemical properties of the organic semiconductors, which it can be effective to change and control the charge carrier mobility into these semiconductor materials. In this case, organic devices and thin films, especially at thiophene base, were bombarded with different Ga ion doses in order to induce modification in the polymeric structure from the various interactions between the ion and the polymer. The bombarded thin films and devices properties were characterized by UV-Vis, Raman spectroscopy and CELIV techniques, which indicated the existence of two behavior regimes governed by the ion dose employed. Advanced electron microscopy techniques indicated the formation of a graphitic structure, around 50 nm from the surface bombardment, resulting of the interaction between the gallium ions and the polymer layer. The possibility to fabricate organic devices interspersed with graphitic layers can be exploited in order to construct more efficient architectures, using the high spatial resolution of the FIB technique.

Page generated in 0.0302 seconds