Spelling suggestions: "subject:"last charging"" "subject:"last ocharging""
21 |
Physics-Based Modelling and Simulation Framework for Multi-Objective Optimization of Lithium-Ion Cells in Electric Vehicle ApplicationsGaonkar, Ashwin 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. The development of lithium-ion batteries (LIBs) based on current practice allows an energy density increase estimated at 10% per year. However, the required power for portable electronic devices is predicted to increase at a much faster rate, namely 20% per year. Similarly, the global electric vehicle battery capacity is expected to increase from around 170 GWh per year today to 1.5 TWh per year in 2030--this is an increase of 125% per year. Without a breakthrough in battery design technology, it will be difficult to keep up with the increasing energy demand. To that end, a design methodology to accelerate the LIB development is needed. This can be achieved through the integration of electro-chemical numerical simulations and machine learning algorithms.
To help this cause, this study develops a design methodology and framework using Simcenter Battery Design Studio® (BDS) and Bayesian optimization for design and optimization of cylindrical cell type 18650. The materials of the cathode are Nickel-Cobalt-Aluminum (NCA)/Nickel-Manganese-Cobalt-Aluminum (NMCA), anode is graphite, and electrolyte is Lithium hexafluorophosphate (LiPF6). Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. The black-box functions are simulations of the cyclic performance test in Simcenter Battery Design Studio.
The physics model used for this study is based on full system model described by Fuller and Newman. It uses Butler-Volmer Equation for ion-transportation across an interface and solvent diffusion model (Ploehn Model) for Aging of Lithium-Ion Battery Cells. The BDS model considers effects of SEI, cell electrode and microstructure dimensions, and charge-discharge rates to simulate battery degradation. Two objectives are optimized: maximization of the specific energy and minimization of the capacity fade. We perform global sensitivity analysis and see that thickness and porosity of the coating of the LIB electrodes that affect the objective functions the most. As such the design variables selected for this study are thickness and porosity of the electrodes. The thickness is restricted to vary from 22microns to 240microns and the porosity varies from 0.22 to 0.54.
Two case studies are carried out using the above-mentioned objective functions and parameters. In the first study, cycling tests of 18650 NCA cathode Li-ion cells are simulated. The cells are charged and discharged using a constant 0.2C rate for 500 cycles. In the second case study a cathode active material more relevant to the electric vehicle industry, Nickel-Manganese-Cobalt-Aluminum (NMCA), is used. Here, the cells are cycled for 5 different charge-discharge scenarios to replicate charge-discharge scenario that an EVs battery module experiences. The results show that the design and optimization methodology can identify cells to satisfy the design objective that extend and improve the pareto front outside the original sampling plan for several practical charge-discharge scenarios which maximize energy density and minimize capacity fade.
|
22 |
EXTREME FAST CHARGING FOR LITHIUM ION BATTERIES: STRUCTURAL ANALYSIS OF ELECTRODES AND SOLVENT FORMULATION OF ELECTROLYTESXianyang Wu (10225322) 13 May 2022 (has links)
<p> </p>
<p>Fossil fuel has dominated the global energy market for centuries, and the world is undergoing a great energy revolution from fossil fuel energy to renewable energies, given the concerns on global warming and extreme weather caused by the emission of carbon dioxide. Lithium ion batteries (LIBs) play an irreplaceable role in this incredible energy transition from fossil energy to renewable energy, given their importance in energy storage for electricity grids and promoting the mass adoption of battery electric vehicles (BEVs). Extreme fast charging (XFC) of LIBs, aiming to shorten the charging time to 15 minutes, will significantly improve their adoption in both the EV market and grid energy storage. However, XFC has been significantly hindered by the relatively sluggish Li+ transport within LIBs.</p>
<p>Herein, effects caused by increasing charging rates (from 1C, 4C to 6C) on LiNi0.6Mn0.2Co0.2O2 (NMC622) || graphite cell were systematically probed via various characterization methods. From electrochemical test on their rate/long term cycling performance, the significant decrease in available capacity under high charging rates was verified. Structural evolutions of cycled NMC622 cathode and graphite anode were further probed via ex-situ powder diffraction, and it was found that lattice parameters <em>a</em> and <em>c</em> of NMC622 experience irreversible evolution due to loss of active Li+ within NMC622; no structural evolution was found for the graphite anode, even after 200 cycles under 6C (10 minutes) high charging rates. The aging behavior of liquid electrolyte was further analyzed via inductively coupled plasma-optical emission spectrometry (ICP-OES) and gas chromatography-mass spectrometry (GC-MS), increased Li+ concentration under higher charging rates and show-up of diethyl carbonate (DEC) and dimethyl carbonate (DMC) caused by transesterification both suggest faster aging/degradation of liquid electrolyte under higher charging rates. </p>
<p>Given the structural evolution of NMC622 caused by irreversible Li+ loss after long term cycling, the structural evolution of both NMC622 cathode and lithiated graphite anode were further studied via operando neutron diffraction on customized LiNi0.6Mn0.2Co0.2O2 (NMC622) || graphite cell. Via a quantitative analysis of collected Bragg peaks for NMC622 and lithiated graphite anode, we found the rate independent structural evolution of NMC622: its lattice parameters <em>a</em> and <em>c</em> are mainly determined by Li+ contents within it (<em>x</em> within Li<em>x</em>Ni0.6Mn0.2Co0.2O2) and follow the same evolution during the deintercalation process, from slowest 0.27 C charging to the fastest 4.4 C charging. For graphite intercalated compounds (GICs) formed during Li+ intercalating into graphite, the sequential phase transition from pure graphite → stage III (LiC30) → stage II (LiC12) → stage I (LiC6) phase under 0.27 C charging is consistent with previous studies. This sequential phase transition is generally maintained under increasing charging rates, and the co-existence of LiC12 phase and LiC6 was found for lithiated graphite under 4.4 C charging, mainly due to the large inhomogeneity under these high charging rates. Meanwhile, for the stage II (LiC12) → stage I (LiC6) transition, which contributes half the specific capacity for the graphite anode, quantitative analysis via Johnson-Mehl-Avrami-Kolmogorov (JMAK) model suggests it to be a diffusion-controlled, one-dimensional transition, with decreasing nucleation kinetics under increasing charging rates. </p>
<p>Based on the LiC12 → LiC6 transition process, strategies to improve the Li+ transport properties were further utilized. Various cosolvents with smaller viscosity, from dimethyl carbonate (DMC), ethyl acetate (EA), methyl acetate (MA) to ethyl formate (EF), were further tested by replacing 20% (weight percent) ethyl methyl carbonate (EMC) of typical 1.2 M LiPF6 salt solvated in ethylene carbonate (EC)/EMC solvents (with a weight ratio of 30:70). From the measurement of their ion conductivity, the introduction of these cosolvents indeed enhanced the Li+ transport properties. This was further verified by improved rate performance from 2C, 3C to 4C charging for liquid electrolytes using these cosolvents. Both X-ray absorption spectroscopy (XAS) and X-ray powder diffraction (XRD) indicated the increase of Ni valence state and structural evolution of NMC622, all resulting from the irreversible loss of active Li+ within the NMC622 cathode. From long term cycling performance and further analysis of interfaces formed between electrode and anode, the best performance of electrolyte using DMC cosolvent was attributed to the most stable solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) formed during the cycling. </p>
|
23 |
Optimization analysis of secondlifebatteries integration in fastchargersfor electric vehicles inSpainde Maio, Pasquale January 2017 (has links)
This project investigates the viability of using reconditioned batteries, which have lost part of their original capacity while powering electric vehicles (EVs), to minimize the expenses of fast-charging infrastructures under the three charging scenarios where fast-charging mode is likely to be needed the most. The analysis is conducted for the Spanish scenario and considers the retail electricity tariff that best suits the requirements of a FCS. The economic analysis is performed on an annual basis and is tackled with an optimization algorithm, formulated as a mixed-integer linear programming problem and run on MATLAB. The expected lifetime of the ESS, being made of reused automotive cells, is estimated with a semi-empirical approach, using an iterative process and implemented in MATLAB. A sensitivity analysis is conducted on three input parameters that were identified to have a considerable impact on the system design and performance. Overall, results show that with current figures energy storage integration in FCSs is viable as it effectively reduces the infrastructure expenses in all scenarios. Peak-shaving is identified as the main source of cost savings while demand shifting is not effective at all. The latter is further discussed in the sensitivity analysis and some considerations are elaborated. The most profitable scenario for storage integration is the case of a fast-charger located in a urban environment while, surprisingly, the lowest cost savings are obtained in the highway case. The sensitivity analysis illustrates the impact and effects that electricity prices and specific cost of both the power converter and the second-life batteries produce on the optimal system design. Moreover, charging demand profiles are deeply analyzed and their main implications highlighted.
|
24 |
Impact of Charge Profile on Battery Fast Charging Aging and Dual State Estimation Strategy for Traction ApplicationsDa Silva Duque, Josimar January 2021 (has links)
The fast-growing electric vehicles (EVs) market demands huge efforts from car manufacturers to develop and improve their current products’ systems. A fast charge of the battery pack is one of the challenges encountered due to the battery limitations regarding behaviour and additional degradation when exposed to such a rough situation. In addition, the outcome of a study performed on a battery does not apply to others, especially if their chemistries are different. Hence, extensive testing is required to understand the influence of design decisions on the particular energy storage device to be implemented. Due to batteries’ nonlinear behaviour that is highly dependent on external variables such as temperature, the dynamic load and aging, another defying task is the widely studied state of charge (SOC) estimation, commonly considered one of the most significant functions in a battery management system (BMS).
This thesis presents an extensive battery fast charging aging test study equipped with promising current charging profiles from published literature to minimize aging. Four charging protocols are carefully designed to charge the cell from 10 to 80% SOC within fifteen minutes and have their performances discussed. A dual state estimation algorithm is modelled to estimate the SOC with the assistance of a capacity state of health (SOHcap) estimation. Finally, the dual state estimation model is validated with the fast charging aging test data. / Thesis / Master of Science in Mechanical Engineering (MSME)
|
25 |
Operando Degradation Diagnostics and Fast Charging Analytics in Lithium-Ion BatteriesAmy M Bohinsky (10710579) 06 May 2021 (has links)
<p>Fast charging is crucial to the proliferation of electric vehicles.
Fast charging is limited by lithium plating, which is the deposition of lithium
metal on the anode surface instead of intercalation of lithium into the anode. Lithium
plating causes capacity fade, increases cell resistance, and presents safety
issues. A fast charging strategy was implemented using a battery management
system (BMS) that avoided lithium plating by predicting the anode impedance. Commercial
pouch cells modified with a reference electrode were cycled with and without
the BMS. Cells cycled with the BMS avoided lithium plating but experienced
significant degradation at the cathode. Cells cycled without the BMS underwent
extensive lithium plating at the anode. Capacity loss was differentiated into
irreversible and irretrievable capacity to understand electrode-based
degradation mechanisms. Post-mortem analysis on harvested electrodes showed
that the BMS cycled cells exhibited minimal anode degradation and had a
two-times higher capacity loss on the cathode. The cells cycled without the BMS
had extensive anode degradation caused by lithium plating and a seven-times
higher capacity loss on the anode. </p>
<p> </p>
<p>Understanding and preventing the aging mechanisms of lithium-ion
batteries is necessary to prolong battery life. Traditional full cell measurements
are limited because they cannot differentiate between degradation processes
that occur separately on anode and cathode. A reference electrode was inserted
into commercial cylindrical lithium-ion cells to deconvolute the anode and
cathode performance from the overall cell performance. Two configurations of
the reference electrode placement inside the cell were tested to find a
location that was stable and had minimal interference on the full cell
performance. The reference electrode inside the mandrel of the cylindrical cell
had stable potential measurements for 80 cycles and at different C-rates and
had minimal impact on the full cell performance.<b></b></p>
|
26 |
Fast charging of electrical vehicles with help from battery energy storage systems : A study of how batteries can lower the power peaks for fast charging of electrical vehicles in Stockholm / Snabbladdning av elfordon med hjälp av ett batterienergilagringssystem : En studie om hur batterier kan sänka effekttopparna för snabbladdning av elfordon i StockholmWikström, Erik January 2023 (has links)
To enable fast charging of electric vehicles in Stockholm or sites where the electrical energy is limited and the number of chargeable vehicles increases, there is a need to investigate new solutions to comply with the future demand. The goal of this project is to investigate what the conditions are in Stockholm today and investigate what is needed to enable fast chargers in Stockholm city. Both what electrical equipment is necessary and develop a model to simulate the flow for the available energy and the demanded energy from a charging location. The result shows that battery energy storage systems can help the chargers, but to what degree depends on demand and availability. What is shown is, if the total maximum power demand is greater than the available power from the grid, a battery could be beneficial. In the scenarios, it has been enough to have a 150 kWh battery to increase the total charged energy over the day by more than two times what the grid could supply. / För att möjliggöra snabbladdning av elfordon i Stockholm eller platser där elenergin är begränsad och andelen laddbara fordon ökar måste nya lösningar undersökas för att möta framtidens behov. Målet med detta arbete är att undersöka vad det finns för förutsättningar för laddning i Stockholm i dagsläget och undersöka vad som krävs för att införa snabbladdare i Stockholms stad; vilken elektrisk utrustning som krävs samt ta fram en modell för att simulera ett flöde av tillgänglig energi och efterfråga för en laddplats. Resultatet av studien är att batterienergilagringsystem kan hjälpa laddarna, men de bidrar olika mycket beroende på efterfrågan och energitillgång direkt från nätet. Om det totala maxeffektbehovet från laddgatan är högre än vad elnätet kan leverera kan det vara lönsamt att ha installerade batterier. I dessa scenarion har det räckt med ett batteri på 150 kWh för att kunna öka den energimängd som laddas över till elfordon under ett dygn med mer än dubbla nätets kapacitet.
|
27 |
Optimal design of an EV fast charging station coupled with storage in StockholmLongo, Luca January 2017 (has links)
Is battery energy storage a feasible solution for lowering the operational costs of electric vehicle fast charging and reducing its impact on local grids? The thesis project aims at answering this question for the Swedish scenario. The proposed solution (fast charging station coupled with storage) is modelled in MATLAB, and its performance is tested in the framework provided by Swedish regulation and electricity tariff structure. The analysis is centred on the economic performance of the system. Its cost-effectiveness is assessed by means of an optimisation algorithm, designed for delivering the optimal control strategy and the required equipment sizing. A mixed-integer linear programming (MILP) formulation is utilised. The configuration and operative costs of conventional fast charging stations are used as a benchmark for the output of the optimisation. Sensitivity analysis is conducted on most relevant parameters: charging load, battery price and tariff structure. The modelling of the charging demand is based on statistics from currently implemented 50 kW DC chargers in Sweden. Overall, results show that with current figures the system may be an economically viable solution for both reducing costs and lowering the impact on the local distribution grid, at least during peak-period pricing. However, sensitivity analysis illustrates how system design and performance are highly dependent on input parameters. Among these, electricity tariff was identified as the most important. Consequently, detailed discussion on the influence of this parameter is conducted. Finally, the study shows how the system is in line with most recent directives proposed by the European Commission.
|
28 |
PHYSICS BASED DEGRADATION ANALYTICS IN ENERGY STORAGEVenkatesh Kabra (10531817) 04 December 2023 (has links)
<p dir="ltr">Li-ion batteries are ubiquitous in today’s world with portable electronics, EVs making inroads into daily lives, and electric aircraft at the cusp of becoming reality. These and many more applications revolutionize the world with improvements in batteries at scales from materials, manufacturing, electrode architectures, cell design, and protocols. The various challenges associated with the current generation of batteries include the fast-charging capabilities, economic return of the longevity of the battery, and thermal safety characteristics. The aging and degradation of LIBs appears to be a key pain point particularly when exposed to harsh operating temperature and fast charging conditions. LIBs undergo aging due to numerous chemical and physical degradation processes throughout their lifetime owing to their operation. These challenges are exacerbated by the presence of stringent operating conditions including extreme fast charging, and sub-zero temperature resulting in severe degradation and short cycle life. The LIBs also face challenges in their thermal stability characteristics, failing catastrophically when exposed to high temperature or mechanical abuse conditions. The onset and intensity of these thermal runaway behaviors are further modified when batteries undergo varied aging leading to increased heat and gas generation potentially causing fire or explosions. Overall, a comprehensive characterization to delineate the interconnected role and implications of operating extremes and electrode design on electrochemical performance, cell aging, and thermal runaway behavior is critical for better batteries. </p><p dir="ltr">To this end, the role of electrode microstructure in mitigating lithium plating behavior under various operating conditions, including extreme fast charging has been examined. Further, these multi-length scale characteristics of the electrode microstructure are explored via data-driven approaches to study the complex interaction of transport and kinetic limitations on the microstructure designs. A third study is undertaken for in-operando characterization of the LIB degradation, probing the multi-length scale degradation using pulse voltammetry. Here an accurate degradation descriptors dataset is identified and accurately parametrized, throughout its cycling lifespan. These aging behaviors are translated to physio-chemical degradation mechanisms via a reduced-order coupled electrochemical-thermal-aging interactions model. Lastly, the implication of aging behavior on thermal-safety interactions is delineated. Overall the dissertation is focused on developing a fundamental understanding of the LIB performance, degradation, and safety interactions.</p>
|
29 |
Optimal aging-aware battery management using MPC / Optimal åldringsmedveten batterihantering med MPCTurquetil, Raphaël January 2022 (has links)
The freight transport plays an important role in the development of the economy. However, this comes with an important contribution to greenhouse gas emission. Recently a shift toward heavy-duty electric vehicles has been made, but some issues still need to be tackled. One of them is to develop ways to quickly recharge the vehicle’s batteries without damaging them. In this thesis, we highlight that not only the current but also the battery temperature need to be carefully managed in order to prevent damages during a charging session. To show that, an electrical, thermal and aging model of Li-ion battery is developed. A charging strategy based on a Model Predictive Control algorithm is proposed. The algorithm controls both the battery current and cooling system in order to achieve the optimal balance between the charging speed and the preservation of the battery. The resulting algorithm is tested, in simulation, against a conventional constant current charging in different charging scenarios. The results show an important increase in performance and highlight the role of the battery cooling system in the preservation of the battery. / Godstransporterna spelar en viktig roll för ekonomins utveckling. Detta innebär dock ett betydande bidrag till utsläppen av växthusgaser. På senare tid har en övergång till tunga elfordon skett, men vissa frågor måste fortfarande lösas. En av dem är att utveckla metoder för att snabbt ladda fordonsbatterierna utan att skada dem. I den här avhandlingen lyfter vi fram att inte bara strömmen utan även batteritemperaturen måste hanteras noggrant för att förhindra skador under en laddning. För att visa detta utvecklas en elektrisk, termisk och åldrande modell för Li-ion-batterier. En laddningsstrategi baserad på en algoritm för modellförutsägbar styrning föreslås. Algoritmen styr både batteriströmmen och kylsystemet för att uppnå en optimal balans mellan laddningshastighet och bevarande av batteriet. Den resulterande algoritmen testas i simulering mot en konventionell konstantström laddning i olika laddningsscenarier. Resultaten visar en betydande ökning av prestanda och belyser batterikylsystemets betydelse för bevarandet av batteriet.
|
30 |
Optimal Control of An Energy Storage System Providing Fast Charging and Ancillary Services / Optimal styrning av ett energilager som tillhandahåller snabbladdning och systemtjänsterVölcker, Max, Rolff, Hugo January 2023 (has links)
In this thesis, we explore the potential of financing a fast charging system with energy storage by delivering ancillary services from the energy storage in an optimal way. Specifically, a system delivering frequency regulation services FCR-D Up and FCR-D Down in combination with energy arbitrage trading is considered. An optimization model is developed that could be implemented operationally and then used in a Monte-Carlo simulation to estimate the net present value of the system for four identified cases at three different energy market price scenarios. The main modeling approach is to formulate the system as a state-space model serving as the foundation for model predictive control, with the delay between decision and delivery of the frequency regulation services incorporated as a part of the system state. The optimization of the system is implemented using a dynamic programming approach with a time horizon of 48h, where the choice of admissible controls is optimized for computational efficiency. The result shows that the system could profitable under optimal operation, but it is heavily dependent on the size of the grid connection, future price levels for ancillary services, and the nature of fast-charging demand. As such, the business case and profitability should be evaluated with a specific use case in mind. The developed model showed relatively good computational efficiency for operational implementations with a run time for one iteration of the optimization problem of 15 seconds. The model could therefore be used as the foundation for future research within the specific field and for similar control problems considering delayed controls and stochastic demand. Several proposed improvements and suggested areas of future research are proposed. / I den här uppsatsen utforskar vi huruvida det är finansiellt lönsamt att leverera snabbladdning från ett energilager samtidigt som energilagret används för att leverera systemtjänster på ett optimalt sätt. Mer specifikt undersöks ett potentiellt system som levererar frekvensregleringstjänsterna FCR-D Up och FCR-D Down samt energiarbitragehandel. Vi utvecklar en optimeringsmodell som kan implementeras i ett fysiskt system och använder sedan modellen i en Monte-Carlo-simulering för att estimera nuvärdet av fyra olika systemkonfigurationer för tre olika prisscenarion. Den huvudsakliga modelleringsmetoden är att formulera systemet som en tillstånds-rum modell, som sedan används som grund för modellprediktiv styrning, där fördröjningen mellan beslut och leverans av frekvensregleringstjänster inkluderas som en del av systemets tillstånd. Optimeringen av systemet implementeras med en dynamisk programmeringsmetodik med en tidsram på 48 timmar, där valet av tillåtna kontroller optimeras för beräkningseffektivitet. Resultatet visar att systemet kan vara lönsamt under optimal drift, men det är starkt beroende av storleken på nätanslutningen, framtida prisnivåer för systemtjänster och typen av snabbladdningsbehovet. Därför bör lönsamheten utvärderas för varje specifikt fall. Den utvecklade modellen visade relativt god beräkningseffektivitet för praktiskt implementation med en körtid för en enskilt iteration på 15 sekunder. Modellen kan därför användas som grund för framtida forskning inom området och för liknande problem inom optimal styrteori som involverar fördröjda kontroller och stokastisk efterfrågan. Flera föreslagna förbättringar och områden för framtida forskning föreslås.
|
Page generated in 0.0955 seconds