Spelling suggestions: "subject:"deneral mathematics"" "subject:"deneral amathematics""
291 |
Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires.Brenner, Konstantin 08 November 2011 (has links) (PDF)
Les travaux de cette thèse portent sur des méthodes de volumes finis sur maillages quelconque pour la discrétisation de problèmes d'évolution non linéaires modélisant le transport de contaminants en milieu poreux et les écoulements diphasiques.Au Chapitre 1, nous étudions une famille de schémas numériques pour la discrétisation d'une équation parabolique dégénérée de convection-reaction-diffusion modélisant le transport de contaminants dans un milieu poreux qui peut être hétérogène et anisotrope. La discrétisation du terme de diffusion est basée sur une famille de méthodes qui regroupe les schémas de volumes finis hybrides, de différences finies mimétiques et de volumes finis mixtes. Le terme de convection est traité à l'aide d'une famille de méthodes qui s'appuient sur les inconnues hybrides associées aux interfaces du maillage. Cette famille contient à la fois les schémas centré et amont. Les schémas que nous étudions permettent une discrétisation localement conservative des termes d'ordre un et d'ordre deux sur des maillages arbitraires en dimensions d'espace deux et trois. Nous démontrons qu'il existe une solution unique du problème discret qui converge vers la solution du problème continu et nous présentons des résultats numériques en dimensions d'espace deux et trois, en nous appuyant sur des maillages adaptatifs.Au Chapitre 2, nous proposons un schéma de volumes finis hybrides pour la discrétisation d'un problème d'écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d'une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d'un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l'on s'appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l'existence d'une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.Le Chapitre 3 porte sur un problème d'écoulement diphasique, dans lequel la courbe de pression capillaire admet des discontinuité spatiales. Plus précisément on suppose que l'écoulement prend place dans deux régions du sol aux propriétés très différentes, et l'on suppose que la loi de pression capillaire est discontinue en espace à la frontière entre les deux régions, si bien que la saturation de l'huile et la pression globale sont discontinues à travers cette frontière avec des conditions de raccord non linéaires à l'interface. On discrétise le problème à l'aide d'un schéma, qui coïncide avec un schéma de volumes finis standard dans chacune des deux régions, et on démontre la convergence d'une solution approchée vers une solution faible du problème continu. Les test numériques présentés à la fin du chapitre montrent que le schéma permet de reproduire le phénomène de piégeage de la phase huile.
|
292 |
Calcul des invariants de groupes de permutations par transformee de fourier.Borie, Nicolas 07 December 2011 (has links) (PDF)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage.
|
293 |
Compactifications géométriques dans les groupes, les espaces symétriques et les immeublesHaettel, Thomas 09 December 2011 (has links) (PDF)
Dans cette thèse, nous nous intéressons à des compactifications géométriques variées. Nous décrivons l'espace des sous-groupes fermés du groupe RxZ. Nous étudions la compactification de Chabauty des espaces symétriques de type non compact. Nous définissons et étudions la compactification de Chabauty de l'espace des plats maximaux des espaces symétriques de SL3(R) et de SL4(R). Nous étudions les limites géométriques de plats maximaux de l'espace symétrique ou de l'immeuble de Bruhat-Tits associé à SL3 sur un corps local. Nous définissons et étudions une compactification à la Thurston des espaces de classes d'isométrie de réseaux marqués. Nous définissons une compactification à la Thurston de l'espace de Torelli d'une surface et nous décrivons la stratification naturelle d'une partie de son bord.
|
294 |
Origamis et groupes de permutation.Zmiaikou, David 08 September 2011 (has links) (PDF)
Un origami est un revêtement du tore T2, éventuellement ramifié au-dessus de l'origine.Cet objet a été introduit par William P. Thurston et William A. Veech dans les années 1970.Un origami peut être vu comme un ensemble fini de copies du carreau unitaire qui sont collées par translations. Ainsi, un origami est un cas particulier d'une surface de translation,un élément de l'espace des modules de surfaces de Riemann munies d'une 1-forme holomorphe.Un origami O avec n carreaux correspond à une paire de permutations (σ, τ ) Є 2 Sn X Sn définie à conjugaison près. Le groupe Mon(O) engendré par une telle paire s'appelle le groupe de monodromie de O. On dit qu'un origami est primitif si son groupe de monodromie est un groupe de permutation primitif. Il y a une action naturelle du groupeGL2(Z) sur les origamis, le stabilisateur de O pour cette action est le groupe de Veechdésigné par GL(O). Le groupe de monodromie est un invariant des GL2(Z)-orbites.Dans le chapitre 3 de la thèse, nous montrons que le groupe de monodromie de tout origami primitif à n carreaux dans la strate H(2k) est An ou Sn si n ≥ 3k + 2, et noustrouvons la borne exacte quand 2k + 1 est premier. La même proposition est vraie pourla strate H(1; 1) si n =/= 6. Dans le chapitre 4, nous considérons les origamis réguliers,i.e. ceux pour lesquels le nombre de carreaux est égal à l'ordre du groupe de monodromie.Nous construisons de nouvelles familles d'origamis intéressantes et cherchons leurs strates et groupes de Veech. Nous estimons également le nombre de GL2(Z)-orbites et strates distinctes des origamis réguliers ayant un groupe de monodromie donné. Afin de trouver une borne inférieure pour les origamis alternés, nous prouvons que chaque permutation dans An quifixe peu de points est le commutateur d'une paire engendrant An. Dans le chapitre 6, nous étudions une propriété de sous-groupes de PSL2(Z) qui est liée à la propriété d'être le groupe de Veech d'un origami.
|
295 |
Class invariants for tame Galois algebrasSiviero, Andrea 26 June 2013 (has links) (PDF)
Let K be a number field with ring of integers O_K and let G be a finite group.By a result of E. Noether, the ring of integers of a tame Galois extension of K with Galois group G is a locally free O_K[G]-module of rank 1.Thus, to any tame Galois extension L/K with Galois group G we can associate a class [O_L] in the locally free class group Cl(O_K[G]). The set of all classes in Cl(O_K[G]) which can be obtained in this way is called the set of realizable classes and is denoted by R(O_K[G]).In this dissertation we study different problems related to R(O_K[G]).The first part focuses on the following question: is R(O_K[G]) a subgroup of Cl(O_K[G])? When the group G is abelian, L. McCulloh proved that R(O_K[G]) coincides with the so-called Stickelberger subgroup St(O_K[G]) of Cl(O_K[G]). In Chapter 2, we give a detailed presentation of unpublished work by L. McCulloh that extends the definition of St(O_K[G]) to the non-abelian case and shows that R(O_K[G]) is contained in St(O_K[G]) (the opposite inclusion is still not known in the non-abelian case).Then, just using its definition and Stickelberger's classical theorem, we prove in Chapter 3 that St(O_K[G]) is trivial if K=Q and G is either cyclic of order p or dihedral of order 2p, where p is an odd prime number. This, together with McCulloh's results, allows us to have a new proof of the triviality of R(O_K[G]) in the cases just considered.The main original results are contained in the second part of this thesis. In Chapter 4, we prove that St(O_K[G]) has good functorial behavior under restriction of the base field. This has the interesting consequence that, if N/L is a tame Galois extension with Galois group G, and St(O_K[G]) is known to be trivial for some subfield K of L, then O_N is stably free as an O_K[G]-module.In the last chapter, we prove an equidistribution result for Galois module classes amongst tame Galois extensions of K with Galois group G in which a given prime p of K is totally split.
|
296 |
Modélisation mathématique structurée en taille du zooplanctonRault, Jonathan 11 December 2012 (has links) (PDF)
L'objet de cette thèse est la formulation et l'étude de modèles proie-prédateur avec une structure en taille du prédateur, afin de décrire les populations de phytoplancton et zooplancton. Cette étude a été motivée par les données collectées par le Laboratoire d'Océanographie de Villefranche-Sur-Mer dont l'évolution depuis 1966 du spectre de taille du zooplancton dans la baie de Villefranche. Dans une première partie nous présentons les diverses données collectées et proposons différents modèles dans un cadre assez général, ayant soit une structure continue donnant lieu à une équation aux dérivées partielles couplée avec une équation différentielle ordinaire, ou soit une structure discrète, pouvant correspondre à des stades de développement et donnant lieu à un système d'équations différentielles ordinaires. Ensuite une étude mathématique de ces modèles est faite pour certains cas particuliers (stabilité des équilibres, stabilisation d'un équilibre par un contrôle positif). Le cannibalisme étant présent au sein du zooplancton, nous mettons l'accent sur son étude, notamment sur un modèle comprenant deux classes de taille de prédateurs. Nous montrons que le cannibalisme peut stabiliser la dynamique ou encore être une stratégie évolutionnairement stable. Finalement nous tentons de confronter numériquement ces modèles aux données : les simulations donnent des résultats qualitativement proches des observations.
|
297 |
Étude explicite de quelques n-champs géométriquesBenzeghli, Brahim 03 June 2013 (has links) (PDF)
Dans [PRID], Pridham a montré que tout n-champs d'Artin M admet une présentation en tant que schéma simplicial X. → M, telle que le schéma simplicial X satisfait à certaines propriétés notées par G.Pn,k de [GROTH]. Dans la présentation (...→ X2 → X1 → X0 → M), le schéma X1 représente une carte pour X0 x MX0. Donc, la lissité de X0 → M est équivalente à la lissité des deux projections ә0,ә1 : X1 → X0. Ce sont les deux premières parties de la condition de Grothendieck-Pridham, notées G.P1,0 et G.P1,1. Dans [BENZ12] nous avons introduit un n-champ d'Artin M des éléments de Maurer-Cartan d'une dg-catégorie. On a construit une carte, et on a déjà fait la preuve des premières conditions de lissité explicitement. Pour tout n et tout 0 ≤ k ≤ n Pridham considère un schéma noté MatchΛkn(X) avec un morphisme Xn → MatchΛkn(X). On construira explicitement le schéma simplicial de Grothendieck-Pridham X, on montrera la lissité formelle de cette carte précédente, ainsi que M est un n-champ géométrique.
|
298 |
Estimation non paramétrique pour les processus markoviens déterministes par morceauxAzaïs, Romain 01 July 2013 (has links) (PDF)
M.H.A. Davis a introduit les processus markoviens déterministes par morceaux (PDMP) comme une classe générale de modèles stochastiques non diffusifs, donnant lieu à des trajectoires déterministes ponctuées, à des instants aléatoires, par des sauts aléatoires. Dans cette thèse, nous présentons et analysons des estimateurs non paramétriques des lois conditionnelles des deux aléas intervenant dans la dynamique de tels processus. Plus précisément, dans le cadre d'une observation en temps long de la trajectoire d'un PDMP, nous présentons des estimateurs de la densité conditionnelle des temps inter-sauts et du noyau de Markov qui gouverne la loi des sauts. Nous établissons des résultats de convergence pour nos estimateurs. Des simulations numériques pour différentes applications illustrent nos résultats. Nous proposons également un estimateur du taux de saut pour des processus de renouvellement, ainsi qu'une méthode d'approximation numérique pour un modèle de régression semi-paramétrique.
|
299 |
Contribution à l'étude de la valorisation des rejets thermiques : étude et optimisation de moteurs StirlingBert, Juliette 26 November 2012 (has links) (PDF)
Plusieurs machines actuellement utilisées, moteurs à combustion interne en automobile ou centrales thermiques dans l'énergie, rejettent de grandes quantités de chaleur. Généralement cette chaleur est dissipée dans l'atmosphère et son énergie perdue. Nous nous sommes donc intéressés aux moteurs à apport de chaleur externe dont l'énergie primaire est de l'énergie thermique, et plus particulièrement aux moteurs Stirling. L'une de ses principales caractéristiques est d'utiliser de la chaleur produite extérieurement comme source d'énergie. Ceci lui permet d'être multi-carburant et même d'utiliser de l'énergie thermique naturelle.L'étude menée comporte deux parties. Tout d'abord un modèle numérique zéro dimension, trois zones en temps fini a été développé. Il prend en compte les échanges thermiques aux parois et les pertes de charge, mais ne préjuge ni des dimensions moteur, ni des conditions de fonctionnement. Ceci lui permet de rester flexible pour s'adapter à l'architecture spécifique du moteur à simuler. Ensuite nous avons réalisé des mesures expérimentales sur deux moteurs de taille et puissance différentes (quelques watts et 1 kW). Ces résultats ont permis de valider le modèle. Au final nous avons obtenu un modèle numérique traduisant l'influence de paramètres dimensionnels et fonctionnels sur la puissance du moteur Stirling.Un outil d'aide à la conception de moteur Stirling a été développé en ajoutant au modèle un algorithme d'optimisation. Il permet une ébauche des caractéristiques d'un moteur Stirling. En fonction de l'application souhaitée et des contraintes s'y appliquant, il agit sur les caractéristiques choisies par l'utilisateur pour maximiser les performances.
|
300 |
Intégration des données de sismique 4D dans les modèles de réservoir : recalage d'images fondé sur l'élasticité non linéraireDerfoul, Ratiba 04 October 2013 (has links) (PDF)
Dans une première partie, nous proposons une méthodologie innovante pour la comparaison d'images en ingénierie de réservoir. L'objectif est de pouvoir comparer des cubes sismiques obtenus par simulation avec ceux observés sur un champ pétrolier, dans le but de construire un modèle représentatif de la réalité. Nous développons une formulation fondée sur du filtrage, de la classification statistique et de la segmentation d'images. Ses performances sont mises en avant sur des cas réalistes. Dans une seconde partie, nous nous intéressons aux méthodes de recalage d'images utilisées en imagerie médicale pour mettre en correspondance des images. Nous introduisons deux nouveaux modèles de recalage fondés sur l'élasticité non linéaire, où les formes sont appréhendées comme des matériaux de type Saint Venant-Kirchhoff et Ciarlet-Geymonat. Nous justifions théoriquement l'existence de solutions ainsi que la résolution numérique. Le potentiel de ces méthodes est illustré sur des images médicales.
|
Page generated in 0.0984 seconds