• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle fonctionnel des longs ARN non codants dans l'adaptation et la pluripotence des cellules souches en culture. / Functional roles of long non coding RNAs in pluripotency and adaptation of stem cells in culture.

Bouckenheimer, Julien 16 December 2016 (has links)
Les applications des cellules souches pluripotentes humaines (CSP) dans le domaine biomédical sont particulièrement prometteuses, aussi bien au niveau expérimental qu’au niveau clinique. Leur utilisation comme source inépuisable de cellules permettant de tester et développer de nouvelles molécules thérapeutiques (notamment par modélisation de pathologies in vitro, criblage haut-débit et tests de cytotoxicité) s’ajoute à l’important potentiel qu’elles présentent en médecine régénérative et en thérapie cellulaire. Utilisables comme matériel biologique permettant de restaurer partiellement ou totalement un organe ou un tissu défaillant, il reste essentiel de vérifier l’intégrité génétique des lignées cellulaires utilisées afin de garantir une utilisation sécurisée pour le patient. Parmi les facteurs responsables de l’apparition d’anomalies génétiques chez les CSP, les conditions cultures jouent un rôle essentiel. Des techniques de culture inadaptées peuvent facilement provoquer l’émergence d’une instabilité génomique. Toute altération doit être détectée et documentée afin de pouvoir définir des critères d’acceptation préalable à leur utilisation clinique.Les CSP sont des cellules particulièrement sensibles au stress qui peut résulter de techniques de repiquage inappropriées. La dérive génétique qui découle de ce stress peut être précoce et apparaître dès les premiers passages des lignées cultivées. Notre équipe a pu tester de nombreuses méthodes de repiquage sur différentes lignées cellulaires pluripotentes. Nous avons notamment observé que des anomalies génétiques majeures caryotypiques (trisomies) et infra-caryotypiques (SNPs) ainsi que des changements phénotypiques (survie augmentée, acquisition de mobilité) apparaissaient rapidement suite à l’utilisation de techniques de repiquage basées sur l’utilisation d’enzyme de dissociation (TryPLE). Ces altérations apparaissent dans des lignées qui s’adaptent progressivement à la dissociation en cellules uniques (dissociation « single-cell ») provoquées par ces enzymes.Notre équipe étudie les conséquences cellulaires liées à ce phénomène d’adaptation des CSP provoquée par la dissociation « single-cell ». Grâce à des techniques de séquençage dernière génération (RNA-Seq), nous avons comparé les profils transcriptomiques de CSP repiquées par des techniques standard (comme le passage mécanique) et par des techniques basées sur la dissociation « single-cell » (comme le passage enzymatique par TryPLE). Cette comparaison a montré au niveau transcriptionnel une surexpression spectaculaire d’ARNs non codants appartenant à une classe récemment décrite : les longs ARNs non codants (lncRNAs).L’objectif principal de ce travail de thèse a été d’évaluer le niveau d’implication de ces lncRNAs dans le processus d’adaptation des CSP en culture, et leur rôle fonctionnel potentiel. Nous avons ainsi dans un premier temps déterminé in silico quels lncRNAs étaient différentiellement exprimés dans les CSP adaptées, et après validation expérimentale par biologie moléculaire des candidats les plus prometteurs, nous avons utilisé des tests fonctionnels (notamment par RNA interférence (siRNA)) afin de déterminer le rôle de ces lncRNAs dans la machinerie cellulaire et la pluripotence des CSP. Autour de ce projet principal, nous avons essayé de comprendre les mécanismes régissant les changements phénotypiques et comportementaux provoquées par la dissociation « single-cell ». Nous avons notamment pu suggérer la mise en place d’un phénomène de transition épithélio-mésenchymateuse (EMT) chez des CSP dissociées. Enfin, l’attractivité que représente un sujet d’étude récent comme les lncRNAs et la disponibilité croissante de publications les concernant nous ont poussé à publier une revue approfondie ainsi qu’une méta-analyse sur l’implication des longs ARN non codants dans le développement précoce de l’embryon et dans les cellules souches pluripotentes. / The actual and future applications of human pluripotent stem cells (PSC) in the biomedical field are highly promising. Their use for the discovery of new therapeutic drugs through the development of high-throughput screening tests, cytotoxicity tests and in vitro disease modeling has been added to their tremendous interests in regenerative medicine and cellular therapy. As a source of biological material that can be used to restore partially or totally the lost functions of a damaged organ or tissue, or as a source of normal cells to study human development or test putative new drugs, their genomic integrity has to be thoroughly assessed. Therefore, an effective optimization of their culture conditions has to be considered, in order to control the absence of genomic instability and prevent their potential emergence. Any genetic or epigenetic alteration resulting from cell culturing must be detected in order to define and characterize acceptance criteria for scientific and medical purposes.PSC are particularly sensitive to stress resulting from unappropriated passaging techniques, which cause rapid genetic drift. Indeed, our team observed that many genomic abnormalities arise from aggressive single cell, enzymatic based, passaging methods, and that substantial phenotypical changes such as increased survival after cell dissociation and variation in cell shape can then occur.In order to understand the mechanisms governing the emergence of those adverse alterations, the team focused on the consequences resulting from the adaptation of PSC to single-cell dissociation. By using new generation sequencing techniques as RNA-Seq, we compared transcriptomics of PSC passaged by standard techniques (such as mechanical passaging) versus single-cell enzymatic dissociation (such as TRyPLE-based single-cell passaging). This comparison showed that the most striking difference in the gene expression pattern between adapted and non adapted cells concerned the dramatic overexpression of RNAs from a recently discovered class: long non-coding RNAs (lncRNAs).The aim of this thesis work was to determine to which extent some of these lncRNAs were functionally linked to adaptation of PSC. In order to address this matter, we first investigated in silico which lncRNAs were upregulated by single-cell dissociation, and after experimental validation of lncRNA candidates by molecular biology, we performed functional in vitro analysis (notably by siRNA-mediated loss of function) and sought their cellular localization in order to decipher their role in the cellular machinery and their level of implication. Beside this main project, other auxiliary projects were grafted. The observation of major changes in cell phenotype and behavior led to the investigation of the global mechanisms governing these modifications, underlining the potential role of epithelial-to-mesenchymal transition provoked by single-cell dissociation. Finally, the global attractiveness of lncRNAs and the emergence of exponential documentation concerning non-coding RNAs prompted the writing of an extensive review and meta-analysis concerning the implications of lncRNAs during embryo development and in pluripotent stem cells.
12

Micro-ARN cellulaires et plasmatiques : acteurs et biomarqueurs de la leucémogenèse associée à HTLV-1 / Cellular and plasma miRNA : actors and biomarkers of leukemogenesis associated with HTLV-1

Vernin, Céline 16 May 2013 (has links)
Le rétrovirus HTLV-1 (Human T-cell Leukemia virus type 1) est l'agent étiologique de la leucémie T de l'adulte (ATLL) et de maladies inflammatoires. Il infecte principalement les lymphocytes T-CD4+ et T-CD8+, et se réplique essentiellement via l'expansion clonale de sa cellule hôte selon deux mécanismes distincts : HTLV-1 induit une résistance à l'apoptose des cellules T-CD8+ alors qu'il favorise la prolifération des cellules T-CD4+. Au stade chronique de l'infection, en comparaison à leur contreparties T-CD8+, les cellules T-CD4+ infectées non transformées présentent des caractéristiques pré-leucémiques telles que des anormalités génomiques et des défauts d'activation de la télomérase, ce qui explique vraisemblablement pourquoi les cellules d'ATLL sont régulièrement de phénotype T-CD4+. L'infection par HTLV-1 s'accompagne de reprogrammations drastiques du transcriptome cellulaire. Parmi elles, les modifications d'expression de micro-ARN (miARN). Les miARN sont de petits ARN non-codants qui contrôlent négativement la traduction des ARNm, et qui ont été récemment mis en évidence dans les cellules transformées par le virus, et semblent participer au maintien du phénotype tumoral. Ces données posent la question de l'origine de ces perturbations et de leurs implications dans les processus d'expansion clonale et d'initiation de la transformation des cellules infectées. Pour adresser cette question, nous avons réalisé une étude intégrée de l'expression des miARN et des ARNm de cellules T, issues de patients infectés sans malignité / Human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia / lymphoma (ATLL) hat regularly occurs after a prolonged period of viral latency. In vivo, HTLV-1 replication relies on the clonal expansion of its host CD4+ and CD8+ T-cells, yet the virus causes adult T-cell leukemia / lymphoma (ATLL) that is regularly of the CD4+ phenotype. Infected cells express Tax and HBZ viral oncoproteins. Tax is mainly expressed in untransformed cells, where it promotes cell proliferation, genetic instability, and miRNA dysregulation, whereas HBZ is expressed in both untransformed and malignant T-cells where it contributes to promote cell proliferation and to silence virus expression. Here, we show that an HBZ / miRNA axis promotes cell proliferation and genetic instability. MicroRNAs (miRNAs) are evolutionarily conserved, small (~21 nucleotides), noncoding RNAs that are encoded within the genomes of almost all eukaryotes from plants to mammals. In general, miRNAs, especially in animals, post-transcriptionally regulate protein synthesis by base pairing to partially complementary sequences in the 3’ untranslated regions (UTRs) of target mRNAs. Furthermore, whereas human lymphocyte subsets are known to possess specific miRNA signatures involved in T-cell differentiation and activation, little is known about the role of miRNA dysregulation in the clonal expansion of untransformed, infected CD4+ and CD8+ T-cells in vivo, including its role, if any, in viral persistence, inflammation, genetic instability, and early leukemogenesis. To our knowledge, no study to date has assessed the effects of HBZ on the biogenesis and activity of miRNAs. In order to assess the effect of HTLV-1 infection on the miRNA expression profiles of host cells in vivo, we performed an integrated analysis of miRNA- and mRNA-expression profiles of cloned CD4+ and CD8+ T-cells derived from infected individuals without malignancy
13

Obtenção de marcadores moleculares para prognóstico e diagnóstico de melanoma cutâneo maligno. / Obtaining molecular markers for prognostic and diagnosis of cutaneous malignant melanoma.

Losanges de Fátima Lozano 01 April 2009 (has links)
Incidência de melanoma cutâneo maligno (MM) está aumentando em torno de 2,5 a 4% por ano no mundo. Os principais fatores de risco são história familiar de MM, múltiplos nevos benignos ou atípicos, e fatores adicionais como a imunossupressão, sensibilidade solar e exposição à radiação ultravioleta (UV). A instabilidade genômica é responsável pelo acúmulo de mutações que frequentemente estão envolvidas na transformação maligna. Podemos estudar a instabilidade genômica através de duas formas: microssatélites e RAPD (Random Amplified Polymorphic DNA). Na instabilidade genética o DNA repetitivo pode sofrer alterações. Através da Instabilidade de microssatélites (MSI) e da perda da heterozigosidade (LOH) podemos diferenciar tecidos normais de tumorais. A técnica de RAPD (baseada na PCR) produz fingerprints utilizados para detectar instabilidade genômica, polimorfismos, mutações e translocações quando comparados à fingerprints de amostras normais. No estudo de nove microssatélites encontramos um aumento de MSI (p=0.0132). D9S50 apresentou o maior número de alterações (28,5%) em nevos e MMs. D6S252, D9S52 e D9S180 são candidatos à marcador de prognóstico de MM porque apresentaram alterações (MSI + LOH) apenas em MMs. Na análise de 15 primers de RAPD em 12 amostras de MMs obtivemos 100 % de alteração com relação ao número ou posição das bandas. Os primers OPA-2 e OPA-14 são capazes de detectar alterações genéticas nos MMs. Dos padrões obtidos foram encontradas bandas que estavam ausentes nos tumores e estas foram clonadas e seqüenciadas. Estes procedimentos evidenciaram alterações em 9q33 e 12q15. O RAPD propicia o estudo do genoma humano sem a definição prévia de um lócus. Assim, podemos detectar alterações até então desconhecidas aumentando o conhecimento sobre a genômica tumoral. / The incidence of malignant skin melanoma (MM) increases around 2,5 a 4% each year in the world. The main risk factors are family history of MM, multiple benign or atypical nevi, and additional factors such as immunossuppression, sun sensibility and UV exposure. Genomic instability is responsible for a collection of mutations that are frequently involved in malignant transformation, and it can cause alterations in repetitive DNA sequences. There are two ways of studying genomic instability: microsatellites and RAPD (Random Amplified Polymorphic DNA). Through microsatellite instability (MSI) and loss of heterozygosis (LOH) we can separate normal from tumoral tissues. RAPD technique (which is based on PCR) generates fingerprints used for detection of genomic instability, polymorphisms, mutations and translocations that can be compared with fingerprint generated from normal tissue. Studying nine microsatellite, we found an increased MSI (p=0.0132). D9S50 showed the greater number of alterations (28,5%) in nevi and MM. D6S252, D9S52 e D9S180 are candidates for MM prognostic marker for showing alterations (MSI+LOH) in melanomas only. The analysis of 15 RAPD primers in 12 MM samples showed 100% of alteration related to the number or location of the bands. OPA-2 and OPA-14 primers are capable of detecting genetic alterations in MM. In the patterns obtained, two bands which were absent in tumors were found, and they were cloned and submitted to sequencing. These procedures highlighted alterations in loci 9q33 e 12q15. RAPD makes it possible to study the genome without a previous definition of a locus. So we are able to detect alterations so far unknown, increasing our knowledge on tumor genetics.
14

Vers la reprogrammation métabolique de la cyanobactérie modèle Synechocystis pour la production durable de biocarburants : structuration des flux du carbone par CP12 et implications sur l’équilibre bioénergétique, l’hydrogénase et l’intégrité génomique / Towards the metabolic reprogramming of the cyanobacterium Synechocystis for sustainable biofuels production : Structuration of carbon fluxes by CP12 and implications on the bioenergetic balance, hydrogenase and genomic integrity

Veaudor, Théo 11 September 2017 (has links)
Les biotechnologies sont un outil puissant permettant d’emprunter les circuits biologiques pour produire des composés aux applications multiples (médecine, alimentation, industries…). Les cyanobactéries possèdent des propriétés génétiques et trophiques précieuses pour réduire les coûts et l’empreinte environnementale de ces procédés (photosynthèse, fixation du CO₂, sources d’azote assimilables...). Elles produisent aussi naturellement certaines molécules énergétiques comme le H₂ dont pourraient émerger de nouvelles filières propres de biocarburants. Cependant, une compréhension globale et approfondie de leur physiologie est nécessaire pour concevoir un châssis biologique performant à partir de ces organismes. Elles sont aisément manipulables génétiquement mais présentent une versatilité favorisant la fixation de mutations bénéfiques mais aussi délétères pour leur exploitation à grande échelle. Au cours de ma thèse, j’ai construit et étudié des mutants d’un régulateur de l’assimilation du CO₂ dont l’activation est liée à la photosynthèse. J’ai montré que l’activité du cycle de Calvin synchronise les flux du carbone et le statut rédox de Synechocystis et que sa dérégulation se répercute de manière pléiotropique sur son métabolisme. Plus spécifiquement, je me suis intéressé au déséquilibre carbone/azote dans cette espèce et à son métabolisme de l’urée qui présente un intérêt biotechnologique considérable. J’ai démontré que ce dernier était en compétition avec l’hydrogénase pour l’insertion du nickel dans leurs centres catalytiques respectifs. L’insuffisance de ce métal a permis de sélectionner des mutants de l’uréase tolérant une exposition prolongée à l’urée et conservant une forte capacité de production de H₂ en présence de ce substrat azoté. L’ensemble de ces résultats montre que le métabolisme de Synechocystis peut être détourné au profit de certains processus cellulaires. Les approches « omiques » permettent d’identifier globalement les réponses physiologiques induites ainsi que les leviers biologiques de compensation. Ces travaux sont discutés au regard des implications biotechnologiques de l’instabilité génétique et de la nécessité de renforcer notre compréhension de la plasticité métabolique et génomique des cyanobactéries. / Biotechnology is a powerful tool allowing exploitation of biological circuits to produce compounds with multiple uses (medicine, nutrition, industrial…). Cyanobacteria have valuable genetic and trophic properties which could reduce the costs and the environmental footprint of these processes (photosynthesis, CO₂ fixation, assimilation of diverse nitrogen sources…). They also naturally produce energetic molecules such as H₂ from which new and sustainable biofuels sectors may rise. However, a global and fine understanding of their physiology is required in order to design an efficient biological chassis with these organisms. They are genetically manipulable but also exhibit a strong versatility favoring fixation of mutations that can be either beneficial or harmful to their large-scale cultivation. Over the course of my PhD, I constructed and studied mutants of a CO₂ fixation regulator whose activation is linked to photosynthesis. I showed that the Calvin cycle activity synchronizes carbon fluxes and redox status in Synechocystis and that its deregulation affects the metabolism in a pleiotropic manner. I was specifically interested into the carbon/nitrogen balance in this species and its urea metabolism which is of prime interest in biotechnology. I demonstrated that the latter was in competition with the hydrogenase for the insertion of nickel into their respective catalytic centers. Scarcity of this metal leads to selection of mutants thriving upon prolonged exposure to urea that retained a high capacity of H₂ production in presence of this nitrogenic substrate. This work shows that the metabolism of Synechocystis can be altered in favor of other cellular processes. Omics approaches allow global identification of the physiological responses induced as well as the biological compensation mechanisms. These observations are discussed with regards to biotechnological implications of genetic instability and the need to strengthen our understanding of metabolic and genetic plasticity in cyanobacteria.
15

Identification et caractérisation des mécanismes d'action des molécules appats, les SiDNA, dans l'inhibition des voies de réparation des cassures simple-brin / Identification and characterization of bait molecules mechanisms of action, the SIDNA, in the inhibition of single strand break repair pathway

Croset, Amélie 06 May 2013 (has links)
La plupart des traitements anticancéreux, comme la chimiothérapie ou la radiothérapie, sont cytotoxiques et causent des dommages à l'ADN dans le but d’induire la mort des cellules tumorales. Cependant, l’efficacité d’activité de réparation de l'ADN des tumeurs entraine des résistances intrinsèques et acquises aux traitements. L'une des étapes précoces de la réparation de l’ADN est le recrutement de protéines au niveau du site de dommage. Ce recrutement est coordonné par une cascade de modifications et est contrôlé par des protéines senseurs telles que la protéine kinase ADN dépendante (DNA-PK) et / ou la poly (ADP- ribose) polymérase (PARP). Dans ce manuscrit, nous avons identifié et caractérisé le mécanisme d'action de petites molécules d'ADN (les siDNA), mimant des cassures double brin (appelé Dbait) ou simple brin (appelé Pbait), dans l’inhibition des voies de réparation des cassures simple brin (SSBR/BER). Nous démontrons que les molécules Dbait recrutent et activent à la fois PARP et DNA-PK, contrairement aux molécules Pbait qui ne recrutent que la PARP. L'étude comparative de ces deux molécules permet d'analyser les rôles respectifs des deux voies de signalisation: les deux molécules recrutent les protéines impliquées dans la voie de réparation des cassures simple brin (comme PARP, PCNA et XRCC1) et empêchent leurs recrutements aux niveaux des lésions chromosomiques. Les molécules Dbait inhibent par ailleurs le recrutement des protéines impliquées dans la voie de réparation des cassures double brin (NHEJ et HR). Pbait et Dbait désorganisent la réparation de l’ADN et sensibilisent les cellules tumorales aux traitements. L’inhibition de la réparation des cassures simple brin semble dépendre d’un piégeage des protéines directement sur les siDNA ou indirectement sur les polymères PAR. L’inhibition des voies de réparation des cassures double brin (DSB) semble par contre se faire de façon indirecte ; cette inhibition résulterait plutôt de la phosphorylation des protéines de réparation des DSB de part l’activation de DNA-PK. Les molécules Dbait et Pbait induisent un effet de létalité synthétique des cellules tumorales BRCA mutées. Cependant, la mutation BRCA semble être suffisante mais non nécessaire pour induire la sensibilité des cellules tumorales aux traitements Dbait. En effet, nous avons démontré que les molécules Dbait peuvent aussi sensibiliser les cellules ne présentant pas de mutation BRCA mais ayant toutefois une forte instabilité génétique. Nous avons trouvé une corrélation entre le niveau basal de protéines de réparation de l'ADN (ɣH2AX, PARP et PAR), le taux basal de cassures à l’ADN, la présence de micronoyaux (MN) et la sensibilité des cellules tumorales au traitement Dbait. Nous avons émis l’hypothèse que cette instabilité génétique, déterminé par la quantification de MN dans des biopsies tumorales, pourrait être un biomarqueur prédictif de l’effet du Dbait, non seulement dans les cancers du sein, mais aussi dans les glioblastomes, les mélanomes, les mélanomes uvéaux et les cancers du côlon. / Most conventional cancer treatments, such as chemotherapy or radiotherapy, are cytotoxic and cause DNA damages in the tumoral treated cells, which ultimately lead to their death. However, several intrinsic and acquired resistances of tumors to these treatments are due to the tumor efficient DNA repair activities. One of the major early steps of DNA repair is the recruitment of repair proteins at the damage site and this is coordinated by a cascade of modifications controlled by sensor proteins such as DNA-dependent protein kinase (DNA-PK) and/or poly (ADP-ribose) polymerase (PARP). In this manuscript, we identify and characterize the mechanism of action of short interfering DNA molecules (siDNA), mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) in Single Strand Break Repair pathway (SSBR/BER) inhibition. We demonstrate that Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. The comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both molecules recruit proteins involved in single-strand break repair (such as PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break (DSB) repair. By these ways, Pbait and Dbait disorganized DNA repair, thereby sensitizing cells to treatments. SSB repair inhibition depends upon a direct trapping of the main proteins on both molecules and an indirect trapping in PAR polymers. DSB repair inhibition may be indirect, resulting from the phosphorylation of DSB repair proteins by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations tumoral cell lines. However, BRCA mutation could be sufficient but not necessary to induce breast cancer cell lines and tumors sensitivity to Dbait treatment. In fact, we demonstrate that Dbait molecules could also have a stand-alone effect in BRCA wild type cells with a high genetic instability. We found a correlation between DNA repair proteins basal level (ɣH2AX, PARP and PAR), DNA break basal level, presence of micronucleus (MN) and tumoral cell lines sensitivity to Dbait treatment. We hypothesis that this genetic instability, determined by MN in tumor biopsies, could be a predictive biomarker of Dbait stand-alone effect, not only in breast cancer treatment, but also in glioblastoma, melanoma, uveal melanoma and colon cancer treatment.

Page generated in 0.2032 seconds