• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 16
  • 12
  • 11
  • 8
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 54
  • 47
  • 39
  • 36
  • 34
  • 30
  • 28
  • 24
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Explorer et apprendre à partir de collections de textes multilingues à l'aide des modèles probabilistes latents et des réseaux profonds / Mining and learning from multilingual text collections using topic models and word embeddings

Balikas, Georgios 20 October 2017 (has links)
Le texte est l'une des sources d'informations les plus répandues et les plus persistantes. L'analyse de contenu du texte se réfère à des méthodes d'étude et de récupération d'informations à partir de documents. Aujourd'hui, avec une quantité de texte disponible en ligne toujours croissante l'analyse de contenu du texte revêt une grande importance parce qu' elle permet une variété d'applications. À cette fin, les méthodes d'apprentissage de la représentation sans supervision telles que les modèles thématiques et les word embeddings constituent des outils importants.L'objectif de cette dissertation est d'étudier et de relever des défis dans ce domaine.Dans la première partie de la thèse, nous nous concentrons sur les modèles thématiques et plus précisément sur la manière d'incorporer des informations antérieures sur la structure du texte à ces modèles.Les modèles de sujets sont basés sur le principe du sac-de-mots et, par conséquent, les mots sont échangeables. Bien que cette hypothèse profite les calculs des probabilités conditionnelles, cela entraîne une perte d'information.Pour éviter cette limitation, nous proposons deux mécanismes qui étendent les modèles de sujets en intégrant leur connaissance de la structure du texte. Nous supposons que les documents sont répartis dans des segments de texte cohérents. Le premier mécanisme attribue le même sujet aux mots d'un segment. La seconde, capitalise sur les propriétés de copulas, un outil principalement utilisé dans les domaines de l'économie et de la gestion des risques, qui sert à modéliser les distributions communes de densité de probabilité des variables aléatoires tout en n'accédant qu'à leurs marginaux.La deuxième partie de la thèse explore les modèles de sujets bilingues pour les collections comparables avec des alignements de documents explicites. En règle générale, une collection de documents pour ces modèles se présente sous la forme de paires de documents comparables. Les documents d'une paire sont écrits dans différentes langues et sont thématiquement similaires. À moins de traductions, les documents d'une paire sont semblables dans une certaine mesure seulement. Pendant ce temps, les modèles de sujets représentatifs supposent que les documents ont des distributions thématiques identiques, ce qui constitue une hypothèse forte et limitante. Pour le surmonter, nous proposons de nouveaux modèles thématiques bilingues qui intègrent la notion de similitude interlingue des documents qui constituent les paires dans leurs processus générateurs et d'inférence.La dernière partie de la thèse porte sur l'utilisation d'embeddings de mots et de réseaux de neurones pour trois applications d'exploration de texte. Tout d'abord, nous abordons la classification du document polylinguistique où nous soutenons que les traductions d'un document peuvent être utilisées pour enrichir sa représentation. À l'aide d'un codeur automatique pour obtenir ces représentations de documents robustes, nous démontrons des améliorations dans la tâche de classification de documents multi-classes. Deuxièmement, nous explorons la classification des tweets à plusieurs tâches en soutenant que, en formant conjointement des systèmes de classification utilisant des tâches corrélées, on peut améliorer la performance obtenue. À cette fin, nous montrons comment réaliser des performances de pointe sur une tâche de classification du sentiment en utilisant des réseaux neuronaux récurrents. La troisième application que nous explorons est la récupération d'informations entre langues. Compte tenu d'un document écrit dans une langue, la tâche consiste à récupérer les documents les plus similaires à partir d'un ensemble de documents écrits dans une autre langue. Dans cette ligne de recherche, nous montrons qu'en adaptant le problème du transport pour la tâche d'estimation des distances documentaires, on peut obtenir des améliorations importantes. / Text is one of the most pervasive and persistent sources of information. Content analysis of text in its broad sense refers to methods for studying and retrieving information from documents. Nowadays, with the ever increasing amounts of text becoming available online is several languages and different styles, content analysis of text is of tremendous importance as it enables a variety of applications. To this end, unsupervised representation learning methods such as topic models and word embeddings constitute prominent tools.The goal of this dissertation is to study and address challengingproblems in this area, focusing on both the design of novel text miningalgorithms and tools, as well as on studying how these tools can be applied to text collections written in a single or several languages.In the first part of the thesis we focus on topic models and more precisely on how to incorporate prior information of text structure to such models.Topic models are built on the premise of bag-of-words, and therefore words are exchangeable. While this assumption benefits the calculations of the conditional probabilities it results in loss of information.To overcome this limitation we propose two mechanisms that extend topic models by integrating knowledge of text structure to them. We assume that the documents are partitioned in thematically coherent text segments. The first mechanism assigns the same topic to the words of a segment. The second, capitalizes on the properties of copulas, a tool mainly used in the fields of economics and risk management that is used to model the joint probability density distributions of random variables while having access only to their marginals.The second part of the thesis explores bilingual topic models for comparable corpora with explicit document alignments. Typically, a document collection for such models is in the form of comparable document pairs. The documents of a pair are written in different languages and are thematically similar. Unless translations, the documents of a pair are similar to some extent only. Meanwhile, representative topic models assume that the documents have identical topic distributions, which is a strong and limiting assumption. To overcome it we propose novel bilingual topic models that incorporate the notion of cross-lingual similarity of the documents that constitute the pairs in their generative and inference processes. Calculating this cross-lingual document similarity is a task on itself, which we propose to address using cross-lingual word embeddings.The last part of the thesis concerns the use of word embeddings and neural networks for three text mining applications. First, we discuss polylingual document classification where we argue that translations of a document can be used to enrich its representation. Using an auto-encoder to obtain these robust document representations we demonstrate improvements in the task of multi-class document classification. Second, we explore multi-task sentiment classification of tweets arguing that by jointly training classification systems using correlated tasks can improve the obtained performance. To this end we show how can achieve state-of-the-art performance on a sentiment classification task using recurrent neural networks. The third application we explore is cross-lingual information retrieval. Given a document written in one language, the task consists in retrieving the most similar documents from a pool of documents written in another language. In this line of research, we show that by adapting the transportation problem for the task of estimating document distances one can achieve important improvements.
122

Estimation de la structure d’indépendance conditionnelle d’un réseau de capteurs : application à l'imagerie médicale / Estimation of conditional independence structure of a sensors network : application to biomedical imaging

Costard, Aude 10 November 2014 (has links)
Cette thèse s'inscrit dans le cadre de l'étude de réseaux de capteurs. L'objectif est de pouvoir comparer des réseaux en utilisant leurs structures d'indépendance conditionnelle. Cette structure représente les relations entre deux capteurs sachant l'information enregistrée par les autres capteurs du réseau. Nous travaillons sous l'hypothèse que les réseaux étudiés sont assimilables à des processus gaussiens multivariés. Sous cette hypothèse, estimer la structure d'indépendance conditionnelle d'un processus multivarié gaussien est équivalent à estimer son modèle graphique gaussien.Dans un premier temps, nous proposons une nouvelle méthode d'estimation de modèle graphique gaussien : elle utilise un score proportionnel à la probabilité d'un graphe de représenter la structure d'indépendance conditionnelle du processus étudié et est initialisée par Graphical lasso. Pour situer notre méthode par rapport aux méthodes existantes, nous avons développé une procédure d'évaluation des performances d'une méthode d'estimation de modèles graphiques gaussiens incluant notamment un algorithme permettant de générer des processus multivariés gaussiens dont la structure d'indépendance conditionnelle est connue.Dans un deuxième temps, nous classifions des processus à partir des estimées des structures d'indépendance conditionnelle de ces processus. Pour ce faire, nous introduisons comme métrique la divergence de Kullback-Leibler symétrisée entre les profils croisés normalisés des processus étudiés. Nous utilisons cette approche pour identifier des ensemble de régions cérébrales pertinentes pour l'étude de patients dans le coma à partir de données d'IRM fonctionnelle. / This thesis is motivated by the study of sensors networks. The goal is to compare networks using their conditional independence structures. This structure illustrates the relations between two sensors according to the information recorded by the others sensors in the network. We made the hypothesis that the studied networks are multivariate Gaussian processes. Under this assumption, estimating the conditional independence structure of a process is equivalent to estimate its Gaussian graphical model.First, we propose a new method for Gaussian graphical model estimation : it uses a score proportional to the probability of a graph to represent the conditional independence structure of the studied process and it is initialized by Graphical lasso. To compare our method to existing ones, we developed a procedure to evaluate the performances of Gaussian graphical models estimation methods. One part of this procedure is an algorithm to simulated multivariate Gaussian processes with known conditional independence structure.Then, we conduct a classification over processes thanks to their conditional independence structure estimates. To do so, we introduce a new metric : the symmetrized Kullback-Leibler divergence over normalized cross-profiles of studied processes. We use this approach to find sets of brain regions that are relevant to study comatose patients from functional MRI data.
123

Modèles graphiques pour la classification et les séries temporelles / Graphical models for classification and time series

Jebreen, Kamel 28 September 2017 (has links)
Dans cette thèse nous nous intéressons aux méthodes de classifications supervisées utilisant les réseaux bayésiens. L'avantage majeur de ces méthodes est qu'elles peuvent prendre en compte les interactions entre les variables explicatives. Dans une première partie nous proposons une procédure de discrétisation spécifique et une procédure de sélection de variables qui permettent d'améliorer considérablement les classifieurs basés sur des réseaux bayésiens. Cette procédure a montré de très bonnes performances empiriques sur un grand choix de jeux de données connus de l’entrepôt d'apprentissage automatique (UCI Machine Learning repository). Une application pour la prévision de type d’épilepsie à partir de de caractéristiques des patients extraites des images de Tomographie par émission de positrons (TEP) confirme l’efficacité de notre approche comparé à des approches communes de classifications supervisées. Dans la deuxième partie de cette thèse nous nous intéressons à la modélisation des interactions entre des variables dans le contexte de séries chronologiques en grande dimension. Nous avons proposé deux nouvelles approches. La première, similaire à la technique "neighborhood Lasso" remplace la technique Lasso par des machines à vecteurs de supports. La deuxième approche est un réseau bayésien restreint: les variables observées à chaque instant et à l’instant précédent sont utilisées dans un réseau dont la structure est restreinte. Nous montrons l’efficacité de ces approches par des simulations utilisant des donnés simulées issues de modèles linéaires, non-linéaires et un mélange des deux. / First, in this dissertation, we will show that Bayesian networks classifiers are very accurate models when compared to other classical machine learning methods. Discretising input variables often increase the performance of Bayesian networks classifiers, as does a feature selection procedure. Different types of Bayesian networks may be used for supervised classification. We combine such approaches together with feature selection and discretisation to show that such a combination gives rise to powerful classifiers. A large choice of data sets from the UCI machine learning repository are used in our experiments, and the application to Epilepsy type prediction based on PET scan data confirms the efficiency of our approach. Second, in this dissertation we also consider modelling interaction between a set of variables in the context of time series and high dimension. We suggest two approaches; the first is similar to the neighbourhood lasso where the lasso model is replaced by Support Vector Machines (SVMs); the second is a restricted Bayesian network for time series. We demonstrate the efficiency of our approaches simulations using linear and nonlinear data set and a mixture of both.
124

An Approach on Learning Multivariate Regression Chain Graphs from Data

Moghadasin, Babak January 2013 (has links)
The necessity of modeling is vital for the purpose of reasoning and diagnosing in complex systems, since the human mind might sometimes have a limited capacity and an inability to be objective. The chain graph (CG) class is a powerful and robust tool for modeling real-world applications. It is a type of probabilistic graphical models (PGM) and has multiple interpretations. Each of these interpretations has a distinct Markov property. This thesis deals with the multivariate regression chain graph (MVR-CG) interpretation. The main goal of this thesis is to implement and evaluate the results of the MVR-PC-algorithm proposed by Sonntag and Peña in 2012. This algorithm uses a constraint based approach used in order to learn a MVR-CG from data.In this study the MRV-PC-algorithm is implemented and tested to see whether the implementation is correct. For this purpose, it is run on several different independence models that can be perfectly represented by MVR-CGs. The learned CG and the independence model of the given probability distribution are then compared to ensure that they are in the same Markov equivalence class. Additionally, for the purpose of checking how accurate the algorithm is, in learning a MVR-CG from data, a large number of samples are passed to the algorithm. The results are analyzed based on number of nodes and average number of adjacents per node. The accuracy of the algorithm is measured by the precision and recall of independencies and dependencies.In general, the higher the number of samples given to the algorithm, the more accurate the learned MVR-CGs become. In addition, when the graph is sparse, the result becomes significantly more accurate. The number of nodes can affect the results slightly. When the number of nodes increases it can lead to better results, if the average number of adjacents is fixed. On the other hand, if the number of nodes is fixed and the average number of adjacents increases, the effect is more considerable and the accuracy of the results dramatically declines. Moreover the type of the random variables can affect the results. Given the samples with discrete variables, the recall of independencies measure would be higher and the precision of independencies measure would be lower. Conversely, given the samples with continuous variables, the recall of independencies would be less but the precision of independencies would be higher.
125

Modèles probabilistes de consommateurs en ligne : personnalisation et recommandation / Online consumers probabilistic modeling : personnalisation and recommandation

Rochd, El Mehdi 03 December 2015 (has links)
Les systèmes de recherche ont facilité l’accès à l’information disponible sur le web à l’aide de mécanismes de collecte, d’indexation et de stockage de contenus hétérogènes.Ils génèrent des traces résultant de l’activité des internautes. Il s’agit ensuite d’analyser ces données à l’aide d’outils de data mining afin d’améliorer la qualité de réponse de ces systèmes ou de la personnaliser en fonction des profils des utilisateurs. Certains acteurs, comme la société Marketshot, se positionnent comme intermédiaires entre les consommateurs et les professionnels. Ils mettent en relation les acheteurs potentiels avec les grandes marques et leurs réseaux de distribution à travers leurs sites Internet d’aide à l’achat. Pour cela, ces intermédiaires ont développé des portails efficaces et stockent de gros volumes de données liées à l’activité des internautes sur leurs sites. Ces gisements de données sont exploités pour répondre favorablement aux besoins des internautes, ainsi qu’à ceux des professionnels qui cherchent à comprendre le comportement de leurs clients et anticiper leurs actes d’achats. C’est dans ce contexte, où on cherche à fouiller les données collectées du web, que se placent mes travaux de recherche. L’idée est de construire des modèles qui permettent d’expliciter une corrélation entre les activités des internautes sur les sites d’aide à l’achat et les tendances de ventes de produits dans la « vraie vie ». En effet, ma thèse se place dans le cadre de l’apprentissage probabiliste et plus particulièrement des modèles graphiques « Topic Models ». Elle consiste à modéliser les comportements des internautes à partir des données d’usages de sites web. / Research systems have facilitated access to information available on the web using mechanisms for collecting, indexing and storage of heterogeneous content. They generate data resulting from the activity of users on Internet (queries, logfile). The next step is to analyze the data using data mining tools in order to improve the response’s quality of these systems, or to customize the response based on users’ profiles. Some actors, such as the company Marketshot, are positioned as intermediaries between consumers and professionals. Indeed, they link potential buyers with the leading brands and distribution networks through their websites. For such purposes, these intermediaries have developed effective portals, and have stored large volumes of data related to the activity of users on their websites. These data repositories are exploited to respond positively to the needs of users as well as those of professionals who seek to understand the behavior of their customers and anticipate their purchasing actions. My thesis comes within the framework of searching through the data collected from the web. The idea is to build models that explain the correlation between the activities of users on websites of aid for the purchase, and sales trends of products in « real life ». In fact, my research concerns probabilistic learning, in particular Topic Models. It involves modeling the users’ behavior from uses of trader websites.
126

Quelques contributions à l'estimation de grandes matrices de précision / Some contributions to large precision matrix estimation

Balmand, Samuel 27 June 2016 (has links)
Sous l'hypothèse gaussienne, la relation entre indépendance conditionnelle et parcimonie permet de justifier la construction d'estimateurs de l'inverse de la matrice de covariance -- également appelée matrice de précision -- à partir d'approches régularisées. Cette thèse, motivée à l'origine par la problématique de classification d'images, vise à développer une méthode d'estimation de la matrice de précision en grande dimension, lorsque le nombre $n$ d'observations est petit devant la dimension $p$ du modèle. Notre approche repose essentiellement sur les liens qu'entretiennent la matrice de précision et le modèle de régression linéaire. Elle consiste à estimer la matrice de précision en deux temps. Les éléments non diagonaux sont tout d'abord estimés en considérant $p$ problèmes de minimisation du type racine carrée des moindres carrés pénalisés par la norme $ell_1$.Les éléments diagonaux sont ensuite obtenus à partir du résultat de l'étape précédente, par analyse résiduelle ou maximum de vraisemblance. Nous comparons ces différents estimateurs des termes diagonaux en fonction de leur risque d'estimation. De plus, nous proposons un nouvel estimateur, conçu de sorte à tenir compte de la possible contamination des données par des {em outliers}, grâce à l'ajout d'un terme de régularisation en norme mixte $ell_2/ell_1$. L'analyse non-asymptotique de la convergence de notre estimateur souligne la pertinence de notre méthode / Under the Gaussian assumption, the relationship between conditional independence and sparsity allows to justify the construction of estimators of the inverse of the covariance matrix -- also called precision matrix -- from regularized approaches. This thesis, originally motivated by the problem of image classification, aims at developing a method to estimate the precision matrix in high dimension, that is when the sample size $n$ is small compared to the dimension $p$ of the model. Our approach relies basically on the connection of the precision matrix to the linear regression model. It consists of estimating the precision matrix in two steps. The off-diagonal elements are first estimated by solving $p$ minimization problems of the type $ell_1$-penalized square-root of least-squares. The diagonal entries are then obtained from the result of the previous step, by residual analysis of likelihood maximization. This various estimators of the diagonal entries are compared in terms of estimation risk. Moreover, we propose a new estimator, designed to consider the possible contamination of data by outliers, thanks to the addition of a $ell_2/ell_1$ mixed norm regularization term. The nonasymptotic analysis of the consistency of our estimator points out the relevance of our method
127

Learning structured models on weighted graphs, with applications to spatial data analysis / Apprentissage de modèles structurés sur graphes pondérés et application à l’analyse de données spatiales

Landrieu, Loïc 26 June 2016 (has links)
La modélisation de processus complexes peut impliquer un grand nombre de variables ayant entre elles une structure de corrélation compliquée. Par exemple, les phénomènes spatiaux possèdent souvent une forte régularité spatiale, se traduisant par une corrélation entre variables d’autant plus forte que les régions correspondantes sont proches. Le formalisme des graphes pondérés permet de capturer de manière compacte ces relations entre variables, autorisant la formalisation mathématique de nombreux problèmes d’analyse de données spatiales. La première partie du manuscrit se concentre sur la résolution efficace de problèmes de régularisation spatiale, mettant en jeu des pénalités telle que la variation totale ou la longueur totale des contours. Nous présentons une stratégie de préconditionnement pour l’algorithme generalized forward-backward, spécifiquement adaptée à la résolution de problèmes structurés par des graphes pondérés présentant une grande variabilité de configurations et de poids. Nous présentons ensuite un nouvel algorithme appelé cut pursuit, qui exploite les relations entre les algorithmes de flots et la variation totale au travers d’une stratégie de working set. Ces algorithmes présentent des performances supérieures à l’état de l’art pour des tâches d’agrégations de données geostatistiques. La seconde partie de ce document se concentre sur le développement d’un nouveau modèle qui étend les chaînes de Markov à temps continu au cas des graphes pondérés non orientés généraux. Ce modèle autorise la prise en compte plus fine des interactions entre noeuds voisins pour la prédiction structurée, comme illustré pour la classification supervisée de tissus urbains. / Modeling complex processes often involve a high number of variables with anintricate correlation structure. For example, many spatially-localized processes display spatial regularity, as variables corresponding to neighboring regions are more correlated than distant ones. The formalism of weighted graphs allows us to capture relationships between interacting variables in a compact manner, permitting the mathematical formulation of many spatial analysis tasks. The first part of this manuscript focuses on optimization problems with graph-structure dregularizers, such as the total variation or the total boundary size. We first present the convex formulation and its resolution with proximal splitting algorithms. We introduce a new preconditioning scheme for the existing generalized forward-backward proximal splitting algorithm, specifically designed for graphs with high variability in neighbourhood configurations and edge weights. We then introduce a new algorithm, cut pursuit, which used the links between graph cuts and total variation in a working set scheme. We also present a variation of this algorithm which solved the problem regularized by the non convex total boundary length penalty. We show that our proposed approaches reach or outperform state-of-the-art for geostatistical aggregation as well as image recovery problems. The second part focuses on the development of a new model, expanding continuous-time Markov chain models to general undirected weighted graphs. This allows us to take into account the interactions between neighbouring nodes in structured classification, as demonstrated for a supervised land-use classification task from cadastral data.
128

Autonomous Probabilistic Hardware for Unconventional Computing

Rafatul Faria (8771336) 29 April 2020 (has links)
In this thesis, we have proposed a new computing platform called probabilistic spin logic (PSL) based on probabilistic bits (p-bit) using low barrier nanomagnets (LBM) whose thermal barrier is of the order of a kT unlike conventional memory and spin logic devices that rely on high thermal barrier magnets (40-60 kT) to retain stability. p-bits are tunable random number generators (TRNG) analogous to the concept of binary stochastic neurons (BSN) in artificial neural network (ANN) whose output fluctuates between a +1 and -1 states with 50-50 probability at zero input bias and the stochastic output can be tuned by an applied input producing a sigmoidal characteristic response. p-bits can be interconnected by a synapse or weight matrix [J] to build p-circuits for solving a wide variety of complex unconventional problems such as inference, invertible Boolean logic, sampling and optimization. It is important to update the p-bits sequentially for proper operation where each p-bit update is informed of the states of other p-bits that it is connected to and this requires the use of sequencers in digital clocked hardware. But the unique feature of our probabilistic hardware is that they are autonomous that runs without any clocks or sequencers.<br>To ensure the necessary sequential informed update in our autonomous hardware it is important that the synapse delay is much smaller than the neuron fluctuation time.<br>We have demonstrated the notion of this autonomous hardware by SPICE simulation of different designs of low barrier nanomagnet based p-circuits for both symmetrically connected Boltzmann networks and directed acyclic Bayesian networks. It is interesting to note that for Bayesian networks a specific parent to child update order is important and requires specific design rule in the autonomous probabilistic hardware to naturally ensure the specific update order without any clocks. To address the issue of scalability of these autonomous hardware we have also proposed and benchmarked compact models for two different hardware designs against SPICE simulation and have shown that the compact models faithfully mimic the dynamics of the real hardware.<br>
129

Exact Bayesian Inference in Graphical Models : Tree-structured Network Inference and Segmentation / Inférence bayésienne exacte dans les modèles graphiques : inférence de réseaux à structure arborescente et segmentation

Schwaller, Loïc 09 September 2016 (has links)
Cette thèse porte sur l'inférence de réseaux. Le cadre statistique naturel à ce genre de problèmes est celui des modèles graphiques, dans lesquels les relations de dépendance et d'indépendance conditionnelles vérifiées par une distribution multivariée sont représentées à l'aide d'un graphe. Il s'agit alors d'apprendre la structure du modèle à partir d'observations portant sur les sommets. Nous considérons le problème d'un point de vue bayésien. Nous avons également décidé de nous concentrer sur un sous-ensemble de graphes permettant d'effectuer l'inférence de manière exacte et efficace, à savoir celui des arbres couvrants. Il est en effet possible d'intégrer une fonction définie sur les arbres couvrants en un temps cubique par rapport au nombre de variables à la condition que cette fonction factorise selon les arêtes, et ce malgré le cardinal super-exponentiel de cet ensemble. En choisissant les distributions a priori sur la structure et les paramètres du modèle de manière appropriée, il est possible de tirer parti de ce résultat pour l'inférence de modèles graphiques arborescents. Nous proposons un cadre formel complet pour cette approche.Nous nous intéressons également au cas où les observations sont organisées en série temporelle. En faisant l'hypothèse que la structure du modèle graphique latent subit un certain nombre de brusques changements, le but est alors de retrouver le nombre et la position de ces points de rupture. Il s'agit donc d'un problème de segmentation. Sous certaines hypothèses de factorisation, l'exploration exhaustive de l'ensemble des segmentations est permise et, combinée aux résultats sur les arbres couvrants, permet d'obtenir, entre autres, la distribution a posteriori des points de ruptures en un temps polynomial à la fois par rapport au nombre de variables et à la longueur de la série. / In this dissertation we investigate the problem of network inference. The statistical frame- work tailored to this task is that of graphical models, in which the (in)dependence relation- ships satis ed by a multivariate distribution are represented through a graph. We consider the problem from a Bayesian perspective and focus on a subset of graphs making structure inference possible in an exact and e cient manner, namely spanning trees. Indeed, the integration of a function de ned on spanning trees can be performed with cubic complexity with respect to number of variables under some factorisation assumption on the edges, in spite of the super-exponential cardinality of this set. A careful choice of prior distributions on both graphs and distribution parameters allows to use this result for network inference in tree-structured graphical models, for which we provide a complete and formal framework.We also consider the situation in which observations are organised in a multivariate time- series. We assume that the underlying graph describing the dependence structure of the distribution is a ected by an unknown number of abrupt changes throughout time. Our goal is then to retrieve the number and locations of these change-points, therefore dealing with a segmentation problem. Using spanning trees and assuming that segments are inde- pendent from one another, we show that this can be achieved with polynomial complexity with respect to both the number of variables and the length of the series.
130

Recalage déformable à base de graphes : mise en correspondance coupe-vers-volume et méthodes contextuelles / Graph-based deformable registration : slice-to-volume mapping and context specific methods

Ferrante, Enzo 03 May 2016 (has links)
Les méthodes de recalage d’images, qui ont pour but l’alignement de deux ou plusieurs images dans un même système de coordonnées, sont parmi les algorithmes les plus anciens et les plus utilisés en vision par ordinateur. Les méthodes de recalage servent à établir des correspondances entre des images (prises à des moments différents, par différents senseurs ou avec différentes perspectives), lesquelles ne sont pas évidentes pour l’œil humain. Un type particulier d’algorithme de recalage, connu comme « les méthodes de recalage déformables à l’aide de modèles graphiques » est devenu de plus en plus populaire ces dernières années, grâce à sa robustesse, sa scalabilité, son efficacité et sa simplicité théorique. La gamme des problèmes auxquels ce type d’algorithme peut être adapté est particulièrement vaste. Dans ce travail de thèse, nous proposons plusieurs extensions à la théorie de recalage déformable à l’aide de modèles graphiques, en explorant de nouvelles applications et en développant des contributions méthodologiques originales.Notre première contribution est une extension du cadre du recalage à l’aide de graphes, en abordant le problème très complexe du recalage d’une tranche avec un volume. Le recalage d’une tranche avec un volume est le recalage 2D dans un volume 3D, comme par exemple le mapping d’une tranche tomographique dans un système de coordonnées 3D d’un volume en particulier. Nos avons proposé une formulation scalable, modulaire et flexible pour accommoder des termes d'ordre élevé et de rang bas, qui peut sélectionner le plan et estimer la déformation dans le plan de manière simultanée par une seule approche d'optimisation. Le cadre proposé est instancié en différentes variantes, basés sur différentes topologies du graph, définitions de l'espace des étiquettes et constructions de l'énergie. Le potentiel de notre méthode a été démontré sur des données réelles ainsi que des données simulées dans le cadre d’une résonance magnétique d’ultrason (où le cadre d’installation et les stratégies d’optimisation ont été considérés).Les deux autres contributions inclues dans ce travail de thèse, sont liées au problème de l’intégration de l’information sémantique dans la procédure de recalage (indépendamment de la dimensionnalité des images). Actuellement, la plupart des méthodes comprennent une seule fonction métrique pour expliquer la similarité entre l’image source et l’image cible. Nous soutenons que l'intégration des informations sémantiques pour guider la procédure de recalage pourra encore améliorer la précision des résultats, en particulier en présence d'étiquettes sémantiques faisant du recalage un problème spécifique adapté à chaque domaine.Nous considérons un premier scénario en proposant un classificateur pour inférer des cartes de probabilité pour les différentes structures anatomiques dans les images d'entrée. Notre méthode vise à recaler et segmenter un ensemble d'images d'entrée simultanément, en intégrant cette information dans la formulation de l'énergie. L'idée principale est d'utiliser ces cartes estimées des étiquettes sémantiques (fournie par un classificateur arbitraire) comme un substitut pour les données non-étiquettées, et les combiner avec le recalage déformable pour améliorer l'alignement ainsi que la segmentation.Notre dernière contribution vise également à intégrer l'information sémantique pour la procédure de recalage, mais dans un scénario différent. Dans ce cas, au lieu de supposer que nous avons des classificateurs arbitraires pré-entraînés à notre disposition, nous considérons un ensemble d’annotations précis (vérité terrain) pour une variété de structures anatomiques. Nous présentons une contribution méthodologique qui vise à l'apprentissage des critères correspondants au contexte spécifique comme une agrégation des mesures de similarité standard à partir des données annotées, en utilisant une adaptation de l’algorithme « Latent Structured Support Vector Machine ». / Image registration methods, which aim at aligning two or more images into one coordinate system, are among the oldest and most widely used algorithms in computer vision. Registration methods serve to establish correspondence relationships among images (captured at different times, from different sensors or from different viewpoints) which are not obvious for the human eye. A particular type of registration algorithm, known as graph-based deformable registration methods, has become popular during the last decade given its robustness, scalability, efficiency and theoretical simplicity. The range of problems to which it can be adapted is particularly broad. In this thesis, we propose several extensions to the graph-based deformable registration theory, by exploring new application scenarios and developing novel methodological contributions.Our first contribution is an extension of the graph-based deformable registration framework, dealing with the challenging slice-to-volume registration problem. Slice-to-volume registration aims at registering a 2D image within a 3D volume, i.e. we seek a mapping function which optimally maps a tomographic slice to the 3D coordinate space of a given volume. We introduce a scalable, modular and flexible formulation accommodating low-rank and high order terms, which simultaneously selects the plane and estimates the in-plane deformation through a single shot optimization approach. The proposed framework is instantiated into different variants based on different graph topology, label space definition and energy construction. Simulated and real-data in the context of ultrasound and magnetic resonance registration (where both framework instantiations as well as different optimization strategies are considered) demonstrate the potentials of our method.The other two contributions included in this thesis are related to how semantic information can be encompassed within the registration process (independently of the dimensionality of the images). Currently, most of the methods rely on a single metric function explaining the similarity between the source and target images. We argue that incorporating semantic information to guide the registration process will further improve the accuracy of the results, particularly in the presence of semantic labels making the registration a domain specific problem.We consider a first scenario where we are given a classifier inferring probability maps for different anatomical structures in the input images. Our method seeks to simultaneously register and segment a set of input images, incorporating this information within the energy formulation. The main idea is to use these estimated maps of semantic labels (provided by an arbitrary classifier) as a surrogate for unlabeled data, and combine them with population deformable registration to improve both alignment and segmentation.Our last contribution also aims at incorporating semantic information to the registration process, but in a different scenario. In this case, instead of supposing that we have pre-trained arbitrary classifiers at our disposal, we are given a set of accurate ground truth annotations for a variety of anatomical structures. We present a methodological contribution that aims at learning context specific matching criteria as an aggregation of standard similarity measures from the aforementioned annotated data, using an adapted version of the latent structured support vector machine (LSSVM) framework.

Page generated in 0.0596 seconds