• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 76
  • 46
  • 15
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 302
  • 131
  • 113
  • 87
  • 67
  • 59
  • 44
  • 36
  • 36
  • 28
  • 23
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Clonagem e expressão da proteína E2 no vírus da hepatite C Humana : estudo da interação molecular E2-rLDL in vitro /

Néo, Thalita Athiê. January 2010 (has links)
Orientador: Paulo Inácio da Costa / Banca: Márcia Aparecida Silva Graminha / Banca: Fernanda de Freitas Aníbal / Resumo: O vírus da Hepatite C (VHC) é o principal agente etiológico das hepatites não-A e não-B, infectando aproximadamente 170 milhões de pessoas no mundo (3% da população mundial). O vírus da hepatite C (HCV; hepatitis C-virus) é envelopado tem de 50 a 70nm de diâmetro, possui uma única fita positiva de RNA e pertence ao gênero do Hepacivirus e à família Flaviridae. Seu genoma é constituído por cerca de 9.500 nucleotídeos com regiões curtas não codificadoras e hiperconservadas nas extremidades 5' e 3'UTR, flanqueando uma única ORF. A região estrutural do vírus é constituída por 3 genes: core, E1 e E2. As proteínas do envelope, E1 e E2 do VHC, são altamente glicosiladas e apresentam 30 e 70 kDa, respectivamente. Estudos demonstram que ambas apresentam funções específicas em diferentes etapas do ciclo de replicação do vírus, atuando de forma essencial para entrada, ligação ao receptor e fusão com a membrana da célula hospedeira. A glicoproteína E2 do VHC liga-se com alta afinidade a uma alça do receptor CD81, também denominado de TAPA-1, uma tetraespanina encontrada na superfície de muitas células, incluindo hepatócitos. No entanto, o CD81 isoladamente não é suficiente para mediar a entrada celular do vírus, e vários outros co-fatores podem atuar nessa interação. Os receptores de lipoproteína de baixa densidade (LDL-r) e receptor scavenger tipo B classe I apresentam grande importância nessa relação com o VHC. Estudos sobre as glicoproteínas E1 e E2 têm mostrado que estas se associam com os LDL-r, sugerindo que o VHC use estes receptores para invadir a célula hospedeira. Além disso, estudos anteriores relatam o fato de que, as lipoproteínas poderiam proporcionar acréscimos da infectividade ao VHC. Desta forma, neste trabalho foram desenvolvidas estratégias de clonagem e expressão heteróloga da proteína E2, e avaliou-se sua imunogenicidade... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Hepatitis C is currently recognized as the primary cause of hepatitis " non A - non B " associated to the blood transfusion. The hepatitis C virus (HCV) is enveloped in about 50 to 70nm in diameter, presenting a positive single strand RNA and belongs to the genus Hepacivirus and the family Flaviridae. Its genome consists of 9,500 nucleotides with short non-coding regions and hiperconservadas ends 5' and 3'UTR flanking a single ORF. The virus structural region is based on three core genes, E1 and E2. HCV E1 and E2 are highly glycosylated and have 30 and 70 kDa, respectively. Studies show that both have key role in different stages of the cycle of virus replication, acting as essential for entry, receptor binding and fusion with host cell membrane. Glycoprotein E2 of HCV binds with high affinity to a loop of CD81, a tetraspanin, also named TAPA-1, found on the surface of many cells, including hepatocytes. However, the CD81 alone is not sufficient to mediate the cellular entry of the virus, and several other co-factors may be operating in this interaction. Recipients of low density lipoprotein (LDL-r) and scavenger receptor class B type I (SR-BI) would present great importance in relation to HCV. The LDL-r plays an important role in infection for virus of the hepatitis C. Studies on the glycoproteins E1 and E2 have shown that these are associated with the LDL-r suggesting that HCV uses the LDL-r to invade the host cell. Besides, previous studies showed that lipoprotein could improve HCV infectivity. Thus, in this work the capacity of recognition of the antibodies present anti-HCV was evaluated in the positive human serum for HCV of recognizing the protein E2 recombinant produced in bacteria of the lineage Rosetta and also the capacity of connection of the protein E2 of HCV in bind LDL-r present in the surface of human cells with characteristics endoteliais (ECV 304), and such capacity was... (Complete abstract click electronic access below) / Mestre
82

Characterization of Liver Damage Mechanisms Induced by Hepatitis C Virus

Soare, Catalina P. January 2011 (has links)
Hepatitis C Virus (HCV) is one of the most important causes of chronic liver disease, affecting more than 170 million people worldwide. The mechanisms of hepatitis C pathogenesis are unknown. Viral cytotoxicity and immune mediated mechanisms might play an important role in its pathogenesis. HCV infection and alcohol abuse frequently coexist and together lead to more rapid progression of liver disease, increasing the incidence and prevalence of cirrhosis and hepatocellular carcinoma. The cytopathic effect of HCV proteins, especially the core, E1 and E2 structural proteins, which induce liver steatosis, oxidative stress and cell transformation may be amplified by alcohol abuse. The purpose of this study was to characterize the liver damage mechanisms induced by HCV structural proteins and alcohol and to determine the potential molecular mechanism(s) that may promote chronic, progressive liver damage. A transgenic mouse model expressing HCV core, E1 and E2 was used to investigate whether alcohol increased HCV RNA expression. Real-time RT-PCR analysis of genes involved in lipid metabolism and transport confirmed their abnormal expression in the alcohol-fed transgenic mice. In addition, light and electron microscopy analysis were performed on liver tissues of transgenic mice on an alcoholic diet versus those on a normal diet, in order to identify histological changes. The severe hepatopathy in HCV transgenic mice was exacerbated by alcohol. Mitochondria and endoplasmic reticulum had severe abnormalities in the electron microscopy analysis. The second part of this study focused on adaptive immune responses, which may also play an important role in HCV pathogenesis. I focused my analysis on dendritic cells (DC), which have been the main suspects to explain immune impairment in HCV infection. Their powerful antigen-presenting function allows them to stimulate the antiviral response of CD4+ and CD8+ T cells, the effector cells of the immune system. This unique function of the DC makes them possible targets for immune evasion by the Hepatitis C virus. In this study, DCs were generated from mouse bone marrow cells. I investigated their maturation capacity in the presence of structural proteins of HCV. The impact of HCV core/E1/E2 polyprotein on DCs cytokine expression and ability to activate T-cell lymphocytes was also analyzed. A dysfunctional CD4 T cell response was observed after exposure of DCs to core/E1/E2 polyprotein, indicating inefficient CD4 priming, which might lead to chronic HCV infection in humans. The presence of the core/E1/E2 polyprotein reduced the DC maturation capacity and the expression of certain cytokines (IL-12, IFNg, IL-6, MCP-1) important for stimulation and chemotaxis of T cells and other immune cells. My studies contribute to the understanding of HCV pathogenesis and may have implications to the development of better therapies for HCV infection.
83

Measurement of Stigma and Relationships Between Stigma, Depression, and Attachment Style Among People with HIV and People with Hepatitis C

Cabrera, Christine M. January 2014 (has links)
This dissertation is composed of three studies that examined illness-related stigma, depressive symptoms and attachment style among patients living with HIV and Hepatitis C (HCV). The first study examined the psychometric properties of a brief HIV Stigma Scale (B-HSS) in a sample of adult patients living with HIV (PHA) (n=94). The second study developed and explored the psychometric properties of the HCV Stigma Scale in a sample of adult patients living with HCV (PHC) (n =92). Psychometric properties were evaluated with classical test theory and item response theory methodology. The third study explored whether illness-related stigma mediated the relationship between insecure attachment styles (anxious attachment or avoidant attachment) and depressive symptoms among PHA (n =72) and PHC (n=83). From June to December 2008, patients were recruited to participate in a questionnaire study at the outpatient clinics in The Ottawa Hospital. Findings indicated that the 9-item B-HSS is a reliable and valid measure of HIV stigma with items that are highly discriminatory, which indicates that items are highly effective at discriminating patients with different levels of stigma. The 9-item HCV Stigma Scale was also found to be reliable and valid with highly discriminatory items that effectively differentiate PHC. Construct validity for both scales was supported by relationships with theoretically related constructs: depression and quality of life. Among PHA, when HIV stigma was controlled the relationship between anxious attachment style and depression was not significant. However, the relationship between avoidant attachment style and depressive symptoms decreased but remained significant. Among PHC when HCV stigma was controlled the relationship between insecure attachment styles and depressive symptoms was not significant. Dissertation results emphasize the importance of identifying patients experiencing illness-related stigma and the relevance of addressing stigma and attachment style when treating depressive symptoms among PHA and PHC.
84

Expressão gênica da proteína não estrutural 3 do vírus da hepatite C empregando pseudopartículas virais. / Gene expression of the nonstructural protein 3 of hepatitis C virus using viral pseudoparticles.

Marcos Alexandre Nobre Lemos 09 September 2014 (has links)
A hepatite viral causada pelo vírus da hepatite C (HCV) é um problema à saúde mundial e afeta cerca de 170 milhões de pessoas. O caso crônico da doença resulta em cirrose hepática e a maioria dos pacientes tratados não desenvolve uma resposta imune satisfatória. A proteína não estrutural 3 (NS3) pode estimular uma resposta celular que auxilia a resposta nos infectados. Nosso trabalho desenvolveu duas pseudopartículas virais que carregam um material genético para a protease da NS3 do HCV. Um dos sistemas, a HCVpp é constituída por proteínas do vírus da leucemia murina e outras do HCV. E o outro sistema, a partícula viral é baseada no Semliki Forest Virus (SFV). As células HEK293T e BHK-21 foram transfectadas para a formação das pseudopartículas HCVpp-NS3p1a e SFV-NS3p1a, respectivamente. Essas partículas foram quantificadas pela presença do material genético da NS3 por qRT-PCR, atingindo uma produção aproximada de 4x105 partículas HCVpp-NS3p1a/mL e 2,5x107 partículas SFV-NS3p1a/mL. Essas partículas foram utilizadas para infecção de células HuH-7.0 e BHK-21. / Viral hepatitis caused by the hepatitis C virus (HCV) is a global health problem, affecting about 170 million people. The chronic case of the disease results in liver cirrhosis and most patients do not develop a satisfactory immune response. The nonstructural protein 3 (NS3) can stimulate a cellular response that helps answer the infected. Our work has developed two viral pseudoparticles who carry a genetic material for the HCV NS3 protease. One of the systems is constituted by the HCVpp proteins of murine leukemia virus and other HCV. The other system, the viral particle is based on the Semliki Forest Virus (SFV). The HEK293T and BHK-21 cells were transfected for forming the pseudoparticles HCVpp-NS3p1a and SFV-NS3p1a, respectively. These particles were quantified by the presence of genetic material of NS3 by qRT-PCR, reaching a production of about 4x105 HCVpp-NS3p1a particles/mL and 2,5 x107 SFV-NS3p1a particles /mL. These particles were used for infection of Huh-7.0 cells and BHK-21.
85

Evaluation of direct-acting antivirals and antiretroviral therapy for HIV-HCV coinfected patients in the United States

Rivera, Josef Kyle Concepcion 27 February 2021 (has links)
The human immunodeficiency virus (HIV)-hepatitis C virus (HCV) coinfection is one of the most common coinfections across the globe. There are over 2 million people living with both HIV and HCV worldwide. In the United States, HIV-HCV coinfections present a huge public health issue. There are several risk factors associated with developing this coinfection. One of the greatest risk factors is injection drug use and the practice of sharing needles. With the advent of the opioid epidemic, the number of people contracting both infections have skyrocketed. Despite the large prevalence rate, people with HIV-HCV coinfections can be treated for both infections. Medical professionals have begun successfully controlling HIV infections through antiretroviral therapies and treatments. These HIV regimens have worked well to increase the cluster of differentiation 4 (CD4) cell counts to manageable levels in many patients. Clinicians have used several different HIV medications that are easily categorized into five separate categories: nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, integrase strand transfer inhibitors, protease inhibitors, and C-C chemokine receptor type 5 (CCR5) antagonists. Of these medications, nucleoside reverse transcriptase inhibitors and protease inhibitors have been commonly used with direct-acting antivirals. Like antiretroviral treatments, these direct-acting antivirals (or HCV regimens) have been largely successful in reducing HCV ribonucleic acid (RNA) levels and effectively “curing” the HCV infection. However, some serious complications occurred in several cases because of drug-drug interactions between antiretroviral and direct-acting antiviral medications. This study was dedicated (1) to exploring the many benefits that these medications have for coinfected patients and (2) to analyzing the significant consequences of these drug-drug interactions. To achieve both goals, a review of various research studies, websites, and textbooks was instigated through PubMed, Google Scholar, and the Boston University library system. The resulting research studies spanned a period from the 1980s to the 2010s. The implications from these sources suggest that more extensive testing of medications, regimens, and drug combinations is needed to allow for a more individualized and simplified HIV-HCV treatment plan for each patient. Additional testing may also lead to more generalizable findings that could be applied to a large swath of the population in the United States.
86

HCV-Infected Hepatocytes Drive CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> Regulatory T-cell Development Through the Tim-3/Gal-9 Pathway

Ji, Xiao J., Ma, Cheng J., Wang, Jia M., Wu, Xiao Y., Niki, Toshiro, Hirashima, Mitsumi, Moorman, Jonathan P., Yao, Zhi Q. 01 February 2013 (has links)
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T-cell Ig and mucin domain protein-3 (Tim-3) and galectin-9 (Gal-9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim-3/Gal-9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim-3/Gal-9 interactions regulate HCV-mediated Treg-cell development, here we provide pilot data showing that HCV-infected human hepatocytes express higher levels of Gal-9 and TGF-β, and upregulate Tim-3 expression and regulatory cytokines TGF-β/IL-10 in co-cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal-9 protein can transform TCR-activated CD4+ T cells into Foxp3+ Treg cells in a dose-dependent manner. Importantly, blocking Tim-3/Gal-9 ligations abrogates HCV-mediated Treg-cell induction by HCV-infected hepatocytes, suggesting that Tim-3/Gal-9 interactions may regulate human Foxp3+ Treg-cell development and function during HCV infection.
87

HCV-Infected Hepatocytes Drive CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> Regulatory T-cell Development Through the Tim-3/Gal-9 Pathway

Ji, Xiao J., Ma, Cheng J., Wang, Jia M., Wu, Xiao Y., Niki, Toshiro, Hirashima, Mitsumi, Moorman, Jonathan P., Yao, Zhi Q. 01 February 2013 (has links)
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T-cell Ig and mucin domain protein-3 (Tim-3) and galectin-9 (Gal-9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim-3/Gal-9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim-3/Gal-9 interactions regulate HCV-mediated Treg-cell development, here we provide pilot data showing that HCV-infected human hepatocytes express higher levels of Gal-9 and TGF-β, and upregulate Tim-3 expression and regulatory cytokines TGF-β/IL-10 in co-cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal-9 protein can transform TCR-activated CD4+ T cells into Foxp3+ Treg cells in a dose-dependent manner. Importantly, blocking Tim-3/Gal-9 ligations abrogates HCV-mediated Treg-cell induction by HCV-infected hepatocytes, suggesting that Tim-3/Gal-9 interactions may regulate human Foxp3+ Treg-cell development and function during HCV infection.
88

Demographic Trends of Hepatitis C and Other Chronic Liver Diseases in National Ambulatory Care Visits between 2011 and 2016

Costa, Lucas Scharf da 29 October 2020 (has links)
No description available.
89

Barriers to HIV and HCV Screening in the TRUST Buprenorphine Clinic

Ramakrishnan, Rithika January 2021 (has links)
As the opioid epidemic continues in Philadelphia, buprenorphine clinics are becoming a necessary mainstay in treatment of these patients. HIV and HCV rates are rising throughout the city due to injection drug use, and buprenorphine clinics could be a bridge to therapy for these conditions as well. This thesis explores the current data about HIV and HCV rates, their connection to injection drug use, and how these overlapping epidemics might be addressed in a comprehensive manner. Historical data, current trends, and first person reflections from clinicians in the TRUST buprenorphine clinic are used to inform our understanding of barriers to integrated screening and treatment. The thesis concludes with a discussion of a better integrated model of care.
90

Γενετική ποικιλομορφία του γονιδίου core του ιού της ηπατίτιδας C και μεταγραφική ρύθμιση

Άιχερ, Στεφανή 02 May 2014 (has links)
Η πολυλειτουργική πρωτεΐνη core του ιού της ηπατίτιδας C (HCV) εμπλέκεται στην ανάπτυξη ηπατοκυτταρικού καρκινώματος (HCC) που προκαλείται από τον ιό της ηπατίτιδας C, αλλά ο μηχανισμός με τον οποίο συμβαίνει αυτό δεν είναι κατανοητός. Η ενεργοποίηση του μονοπατιού Wnt/ β-κατενίνη, παίζει ένα σημαντικό ρόλο στην ανάπτυξη ηπατοκυττταρικού καρκίνου, και τροποποιείται από την πρωτεΐνη core του ιού της ηπατίτιδας C. Ο ιός της ηπατίτιδας C χαρακτηρίζεται από εκτεταμένη γενετική ποικιλομορφία και διαφορετικά κλινικά δείγματα διαφέρουν όσον αφορά την μολυσματικότητα τους και την παθογένεια που προκαλούν. Σκοπός αυτής της μελέτης είναι να καθοριστεί ο ρόλος της γενετικής ποικιλομορφίας της πρωτεΐνης HCV core στην ενεργοποίηση του μονοπατιού Wnt/ β-κατενίνη και να μελετηθεί ο μοριακός μηχανισμός με τον οποίο η πρωτεΐνη HCV core ρυθμίζει την ενεργοποίηση αυτή. Η ενεργότητα του μονοπατιού Wnt/β-κατενίνη μελετήθηκε σε HEK 293T και Huh 7.5 κυτταρικές σειρές που εκφράζουν παροδικά τις πρωτεΐνες core των γενοτύπων 1a, 1b, 3a, 4a, 4f και από ένα μοναδικό δείγμα του γενοτύπου 1a που προέρχεται από έναν ασθενή από την Καμπότζη (1aCam). Μελέτες βασισμένες στη μέτρηση ενεργότητας της λουσιφεράσης, Western blot ανάλυση και qPCR, χρησιμοποιήθηκαν για την μέτρηση των επιπέδων έκφρασης γονιδίων και πρωτεϊνών. Βρέθηκε ότι η HCV core πρωτεΐνη ρυθμίζει θετικά την μεσολαβούμενη από τη β-κατενίνη Tcf-εξαρτώμενη ενεργότητα της λουσιφεράσης σε ένα γενοτυπο-εξαρτώμενο τρόπο. Σε συμφωνά με τα αποτελέσματα αυτά βρέθηκε ότι η πρωτεΐνη HCV core σταθεροποίει τα επίπεδα της β-κατενίνης, τόσο σε παροδικά μετασχηματισμένα κύτταρα, όσο και σε κύτταρα που μολύνονται με βακουλοϊούς που εκφράσουν τις πρωτεΐνες core των υποτύπων 4a και 4f. Τέλος, βρέθηκε ότι η πρωτεΐνη HCV core συμβάλει στην θετική ρύθμιση των γονιδίων c-myc, αξίνης και Tbx3, τα οποία είναι καθοδικά γονίδια στόχοι του μονοπατιού Wnt/β-κατενίνη και εμπλέκονται στην ανάπτυξη ηπατοκυτταρικού καρκινώματος. Συμπερασματικά, οι πρωτεΐνες HCV core διαφορετικών γενοτύπων του ιού ρυθμίζουν διαφορετικά το μονοπάτι σηματοδότησης Wnt/β-κατενίνη και η διαφορετική αυτή ρύθμιση μπορεί να σχετίζεται με ικανότητα των διαφόρων γενοτύπων του ιού της ηπατίτιδας C να επάγουν την ανάπτυξη ηπατοκυτταρικού καρκινώματος. / The multifunctional HCV core protein is implicated in the development of hepatocellular carcinoma (HCC) caused by HCV infection, but the underlying mechanism is not fully understood. Activation of the Wnt/ β-catenin pathway plays a major role in HCC and is modulated by the HCV core protein. HCV is characterized by extensive genetic diversity and different clinical isolates do vary in their infectivity and pathogenesis mainly due to variations in the structure/function relationships of individual viral proteins. The aim of this study is to determine the possible influence of genetic variability in HCV core protein in enhancing the Wnt/ β-catenin signaling activity and to elucidate the molecular mechanisms by which HCV core modulates activation of β-catenin. The Wnt/β-catenin activity was investigated in transiently transfected HEK 293T and Huh 7.5 cell lines transiently expressing HCV core proteins from HCV genotypes 1a, 1b, 4a, 4f and from a unique isolate of genotype 1a obtained from a Cambodian patient (1aCam). Luciferase-based reporter assay, Western blot, and qPCR, were used to measure gene and protein expression levels. We found that, HCV core protein upregulates β-catenin-mediated Tcf-dependent luciferase activity in a genotype specific manner. Consistent to these findings, HCV core stabilizes β-catenin levels. Finally, we showed that HCV core contributes to the upregulation of Tbx3 gene expression, a downstream target gene of Wnt/ β-catenin pathway contributing to HCC development. In conclusion, HCV core protein from different genotypes appears to differentially regulate the Wnt/β-catenin signaling pathway and this finding may contribute to different potential of HCV genotypes to induce HCC.

Page generated in 0.0395 seconds