• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 18
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 121
  • 44
  • 41
  • 26
  • 21
  • 20
  • 20
  • 18
  • 18
  • 16
  • 15
  • 13
  • 13
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Saccharomyces cerevisiae DNA helicases Mph1, Srs2 and Sgs1 collaborate for the reinitiation of stalled or collapsed replication forks / Die DNA-Helikasen Mph1, Srs2 and Sgs1 aus Saccharomyces cerevisiae kollaborieren im Rahmen der Reinitiation arretierter oder kollabierter Replikationsgabeln

Panico, Evandro Rocco 06 June 2006 (has links)
No description available.
102

Identification et caractérisation d'un domaine de transactivation dans l’hélicase E1 des papillomavirus humains

Morin, Geneviève 04 1900 (has links)
Les papillomavirus sont des virus à ADN qui infectent la peau et les muqueuses. Ils causent des verrues et peuvent aussi mener au développement de cancers, dont le cancer du col de l’utérus. La réplication de leur génome nécessite deux protéines virales : l’hélicase E1 et le facteur de transcription E2, qui recrute E1 à l’origine de réplication virale. Pour faciliter l’étude de la réplication du génome viral, un essai quantitatif et à haut débit basé sur l’expression de la luciférase a été développé. Parallèlement, un domaine de transactivation a été identifié dans la région régulatrice N-terminale de la protéine E1. La caractérisation de ce domaine a montré que son intégrité est importante pour la réplication de l’ADN. Cette étude suggère que le domaine de transactivation de E1 est une région protéique intrinsèquement désordonnée qui permet la régulation de la réplication du génome viral par son interaction avec diverses protéines. / Papillomaviruses are small DNA viruses that infect skin and mucosa. They cause warts and can also lead to the development of cancers, including cervical cancer. Replication of their genome requires two viral proteins: the E1 helicase and the E2 transcription factor, which recruits E1 to the viral origin of replication. To facilitate the study of viral genome replication, a quantitative and high-throughput assay based on luciferase expression has been developed. In parallel, a transactivation domain has been identified in the N-terminal regulatory region of the E1 protein. Characterization of this domain showed that its integrity is important for DNA replication. This study suggests that the E1 transactivation domain is an intrinsically unstructured protein region that allows regulation of viral genome replication by its interaction with diverse proteins.
103

Caractérisation de la fonction de la protéine cellulaire p80/UAF1 dans la réplication du génome du virus du papillome humain

Lehoux, Michaël 01 1900 (has links)
Le virus du papillome humain (VPH) est l’agent étiologique du cancer du col utérin, ainsi que d’autre néoplasies anogénitales et des voies aérodigestives supérieures. La réplication de son génome d’ADN double brin est assurée par les protéines virales E1 et E2, de concert avec la machinerie cellulaire de réplication. E1 assure le déroulement de l’ADN en aval de la fourche de réplication, grâce à son activité hélicase, et orchestre la duplication du génome viral. Nos travaux antérieurs ont démontré que le domaine N-terminal de E1 contient un motif de liaison à la protéine cellulaire p80/UAF1 qui est hautement conservé chez tous les VPH anogénitaux. L’intégrité de ce motif est essentielle au maintien de l’épisome viral. Les travaux présentés dans cette thèse ont d’abord déterminé que le motif de liaison à UAF1 n’est pas requis pour l’assemblage du pré-réplisome viral, mais important pour la réplication subséquente de l’ADN du VPH. Nous avons constaté qu’en présence de E1 et E2, UAF1 est relocalisé dans des foyers nucléaires typiques de sites de réplication du virus et qu’en outre, UAF1 s’associe physiquement à l’origine de réplication du VPH. Nous avons aussi déterminé que l’inhibition du recrutement de UAF1 par la surexpression d’un peptide dérivé de E1 (N40) contenant le motif de liaison à UAF1 réduit la réplication de l’ADN viral. Cette observation soutient le modèle selon lequel UAF1 est relocalisé par E1 au réplisome pour promouvoir la réplication de l’ADN viral. UAF1 est une protéine à domaine WD40 n’encodant aucune activité enzymatique et présumée exploiter des interactions protéine-protéine pour accomplir sa fonction. Nous avons donc investigué les protéines associées à UAF1 dans des cellules du col utérin et avons détecté des interactions avec les enzymes de déubiquitination USP1, USP12 et USP46, ainsi qu’avec la phosphatase PHLPP1. Nous avons établi que E1 forme un complexe ternaire avec UAF1 et n’importe laquelle des USP associés : USP1, USP12 ou USP46. Ces USP sont relocalisés au noyau par E1 et s’associent à l’ADN viral. De plus, l’activité enzymatique des USP est essentielle à la réplication optimale du génome viral. Au contraire, PHLPP1 ne forme pas de complexe avec E1, puisque leurs interactions respectives avec UAF1 sont mutuellement exclusives. PHLPP1 contient un peptide de liaison à UAF1 homologue à celui de E1. Ce peptide dérivé de PHLPP1 (P1) interagit avec le complexe UAF1-USP et, similairement au peptide N40, antagonise l’interaction E1-UAF1. Incidemment, la surexpression du peptide P1 inhibe la réplication de l’ADN viral. La génération de protéines chimériques entre P1 et des variants de E1 (E1Δ) défectifs pour l’interaction avec UAF1 restaure la capacité de E1Δ à interagir avec UAF1 et USP46, ainsi qu’à relocaliser UAF1 dans les foyers nucléaires contenant E1 et E2. Ce recrutement artificiel de UAF1 et des USP promeut la réplication de l’ADN viral, un phénotype dépendant de l’activité déubiquitinase du complexe. Globalement, nos travaux suggèrent que la protéine E1 du VPH interagit avec UAF1 afin de recruter au réplisome un complexe de déubiquitination dont l’activité est importante pour la réplication de l’ADN viral. / Human papillomaviruses (HPVs) are the etiological agents of cervical cancers, as well as multiple other anogenital and oropharyngeal neoplesias. The viral proteins E1 and E2, in concert with the host DNA replication machinery, mediate the replication of the double-stranded DNA genome of HPV. E1 exploits its helicase activity to unwind DNA ahead of the replication fork and orchestrates synthesis of the viral genome. Our previous work demonstrated that E1 contains in its N-terminus a binding motif for the host protein p80/UAF1, a domain that is highly conserved amongst anogenital HPVs. The integrity of this region was essential for the maintenance of the viral episome. The research presented here first demonstrated that the UAF1-binding motif is not required for the assembly of the E1-E2-Origin pre-replisome, but important for the following viral DNA replication. We have determined that UAF1 is relocalized, in presence of E1 and E2, in nuclear foci reminiscent of viral DNA synthesis sites. UAF1 also physically interacted, through E1-binding, with the viral origin of replication. Moreover, we have shown that inhibition of E1-UAF1 interaction through the overexpression of an E1-derived and UAF1-binding peptide, N40, interferes with HPV DNA replication. This is in agreement with the model according to which E1 recruits UAF1 to the replisome to promote viral DNA replication. UAF1 is a WD40-containing protein with no enzymatic activity and presumed to function through interactions with other cellular factors. We have investigated the UAF1 interaction network in cervical cells and discovered that UAF1 associates with the deubiquitinating enzymes USP1, USP12 and USP46, as well as with the phosphatase PHLPP1. E1 was found to assemble as a ternary complex with UAF1 and any of the associated USPs: USP1, USP12 or USP46. These USPs were also relocalized by E1 to the nucleus and they associated with the viral origin in presence of E2. Moreover, their enzymatic function was essential for optimal viral genome replication. In contrast, PHLPP1 did not associate with E1, and the interactions of the latter proteins with UAF1 were shown to be mutually exclusive. PHLPP1 contains a UAF1-binding motif homologous to the one encoded within E1. This PHLPP1-derived peptide, P1, interacts with the UAF1-USP complex and, similarly to N40, competes with E1-UAF1 interaction. Accordingly, P1 overexpression leads to inhibition of HPV DNA replication. The fusion of the peptide P1 to an E1 protein (E1Δ) defective for UAF1-binding restored its capacity to interact with UAF1 and USP46, as well as to relocalize UAF1 into E1-E2-containing nuclear foci. This artificial recruitment of UAF1 and of the associated USPs increased viral DNA replication, a process that involved the enzymatic activity of the USPs. Collectively, our work suggests that HPV E1 interacts with UAF1 in order to recruit to the replisome a deubiquitinating complex whose activity is required for optimal viral DNA replication.
104

Caracterização da estrutura da serino-protease NS3 em pacientes infectados com o vírus da hepatite C do genótipo 3 /

Provazzi, Paola Jocelan Scarin. January 2008 (has links)
Orientador: Paula Rahal / Banca: Hamilton Cabral / Banca: Nelson José Freitas da Silveira / Banca: Maria Tercília Vilela de Azeredo Oliveira / Banca: José Osmar Gaspar / Resumo: A proteína NS3 apresenta dois domínios e é bifuncional. Apresenta três funções enzimáticas que são; 1) atividade de protease; 2) NTPase e 3) helicase. A função protease relaciona-se a tradução da proteína precursora e as funções NTPase e helicase tem grande participação na replicação do material genético viral. Trata-se de uma molécula essencial para o processamento da poliproteína precursora e também para a replicação viral e portanto, um dos principais alvos para o desenvolvimento de drogas antivirais. No domínio Protease foram evidenciadas substituições na tríade catalítica e na região de ligação ao íon zinco nos pacientes avaliados. Estas substituições, quando somadas podem explicar a resposta ao tratamento. Também foram visualizadas alterações na porção Helicase da NS3. As substituições ocorreram nos sítios de ligação ao ATP e ao RNA. Outros resíduos da Helicase relevantes para o desenvolvimento de inibidores, como R2133 e F258 e F264 não apresentaram substituições, evidenciando tratarem-se de aminoácidos conservados nessa região. Os resultados obtidos nesse trabalho fornecem informações sobre o perfil genético do vírus HCV do genótipo 3 especificamente da região codificadora da proteína NS3, permitindo o conhecimento do genoma viral e a identificação de regiões para ligação de possíveis inibidores. Este projeto certifica que a modelagem é uma ferramenta útil para a biologia estrutural e funcional, e que os modelos obtidos aqui contribuem para o desenho de novas drogas anti-virais específicas para o genótipo 3 do vírus HCV / Abstract: The NS3 protein has two domains and is bifuntional. It presents three functions: 1) protease activity, 2) NTPase and 3) helicase. The protease function is related to the translation of the poliprotein precursor and functions NTPase and helicase has great participation in the replication of the viral genetic material. So. The NS3 is considered the major target for the development of antiviral drugs. In the Protease portion substitutions were evidenced in catalytic triad and the zinc ion binding sites, in the patients evaluated. These substitutions, when added up can explain the response to treatment. Also were observed changes in Helicase portion of NS3. The substitutions took place on ATP and RNA binding sites. Other residues of Helicase relevant to the development of inhibitors, as R2133 and F258 and F264, showed no substitutions, highlighting the great conservation of amino acids in this region. The results obtained in this work provide information on the genetic profile of the HCV virus genotype 3, specifically the region of NS3 protein, allowing the knowledge of the viral genome and the identification of regions for possible connection of inhibitors. This project certifies that the modeling is a useful tool for structural biology and functional, and that the models obtained here contribute to the design of new anti-viral drugs specific to the genotype 3 of HCV virus / Doutor
105

HOST RESTRICTION FACTORS IN THE REPLICATION OF TOMBUSVIRUSES: FROM RNA HELICASES TO NUCLEOCYTOPLASMIC SHUTTLING

Wu, Cheng-Yu 01 January 2019 (has links)
Positive-stranded (+)RNA viruses replicate inside cells and depend on many cellular factors to complete their infection cycle. In the meanwhile, (+)RNA viruses face the host innate immunity, such as cell-intrinsic restriction factors that could block virus replication. Firstly, I have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. This study demonstrates that RH30 blocks the assembly of viral replicase complex, the activation of RNA-dependent RNA polymerase function of p92pol and viral RNA template recruitment. In addition, the features rendering the abundant plant DEAD-box helicases either antiviral or pro-viral functions in tombusvirus replication are intriguing. I found the reversion of the antiviral function of DDX17-like RH30 DEAD-box helicase and the coopted pro-viral DDX3-like RH20 helicase due to deletion of unique N-terminal domains. The discovery of the sequence plasticity of DEAD-box helicases that can alter recognition of different cis-acting elements in the viral genome illustrates the evolutionary potential of RNA helicases in the arms race between viruses and their hosts. Moreover, I discovered that Xpo1 possesses an anti-viral function and exports previously characterized cell-intrinsic restriction factors (CIRFs) from the nucleus to the replication compartment of tombusviruses. Altogether, in my PhD studies, I found plant RH30 DEAD-box helicase is a potent host restriction factor inhibiting multiple steps of the tombusvirus replication. In addition, I provided the evidence supporting that the Nterminal domain determines the functions of antiviral DDX17-like RH30 DEAD-box helicase and pro-viral DDX3-like RH20 DEAD-box helicase in tombusvirus replication. Moreover, I discovered the emerging significance of the Xpo1-dependent nuclear export pathway in tombusvirus replication.
106

The role of 1D diffusion for directional long-range communication on DNA

Schwarz, Friedrich 18 April 2013 (has links) (PDF)
Many genetic processes require enzymes or enzyme complexes that interact simultaneously with distant sites along the genome. Such long-range DNA-enzyme interactions are important for example in gene regulation, DNA replication, repair and recombination. In addition many restriction enzymes depend on interactions between two recognition sites and form therefore a model system for studying long-range communications on DNA. Topic of the present work are Type III restriction enzymes. For these enzymes the communication mechanism between their distant target sites has not been resolved and conflicting models including 3D diffusion, 1D translocation and 1D diffusion have been proposed. Also the role of ATP hydrolysis by their superfamily 2 helicase domains which catalyse functions of many enzyme systems is still poorly understood. To cleave DNA, Type III restriction enzymes sense the relative orientation of their distant target sites and cleave DNA only if at least two of them are situated in an inverted repeat. This process strictly depends on ATP hydrolysis. The aim of this PhD thesis was to elucidate this long-range communication. For this a new single molecule assay was developed using a setup combining magnetic tweezers and objective-type total internal reflection fluorescence microscopy. In addition of being able to mechanically manipulate individual DNA molecules, this assay allows to directly visualize the binding and movement of fluorescently labelled enzymes along DNA. Applying this assay to quantum dot labelled Type III restriction enzymes, a 1D diffusion of the enzymes after binding at their target sites could be demonstrated. Furthermore, it was found that the diffusion depends on the nucleotide that is bound to the ATPase domains of these enzymes. This suggested that ATP hydrolysis acts as a switch to license diffusion from the target site which leads to cleavage. In addition to the direct visualization of the enzyme-DNA interaction, the cleavage site selection, the DNA end influence (open or blocked) and the DNA binding kinetics were measured in bulk solution assays (not part of this thesis). The experimental results were compared to Monte Carlo simulations of a diffusion-collision-model which is proposed as long-range communication in this thesis.
107

Strukturelle Charakterisierung der C-terminalen Domäne des spleißosomalen DExD/H-Box Proteins hPrp22 / Strutural characterization of the C-terminal domain of the spliceosomal DExD/H-Box protein hPrp22

Kudlinzki, Denis 22 January 2008 (has links)
No description available.
108

Identification et caractérisation d'un domaine de transactivation dans l’hélicase E1 des papillomavirus humains

Morin, Geneviève 04 1900 (has links)
Les papillomavirus sont des virus à ADN qui infectent la peau et les muqueuses. Ils causent des verrues et peuvent aussi mener au développement de cancers, dont le cancer du col de l’utérus. La réplication de leur génome nécessite deux protéines virales : l’hélicase E1 et le facteur de transcription E2, qui recrute E1 à l’origine de réplication virale. Pour faciliter l’étude de la réplication du génome viral, un essai quantitatif et à haut débit basé sur l’expression de la luciférase a été développé. Parallèlement, un domaine de transactivation a été identifié dans la région régulatrice N-terminale de la protéine E1. La caractérisation de ce domaine a montré que son intégrité est importante pour la réplication de l’ADN. Cette étude suggère que le domaine de transactivation de E1 est une région protéique intrinsèquement désordonnée qui permet la régulation de la réplication du génome viral par son interaction avec diverses protéines. / Papillomaviruses are small DNA viruses that infect skin and mucosa. They cause warts and can also lead to the development of cancers, including cervical cancer. Replication of their genome requires two viral proteins: the E1 helicase and the E2 transcription factor, which recruits E1 to the viral origin of replication. To facilitate the study of viral genome replication, a quantitative and high-throughput assay based on luciferase expression has been developed. In parallel, a transactivation domain has been identified in the N-terminal regulatory region of the E1 protein. Characterization of this domain showed that its integrity is important for DNA replication. This study suggests that the E1 transactivation domain is an intrinsically unstructured protein region that allows regulation of viral genome replication by its interaction with diverse proteins.
109

Role of Mycobacterium Tuberculosis RecG Helicase in DNA Repair, Recombination and in Remodelling of Stalled Replication Forks

Thakur, Roshan Singh January 2015 (has links) (PDF)
Tuberculosis, caused by the infection with Mycobacterium tuberculosis remained as a major global health challenge with one third of world population being infected by this pathogen. M. tuberculosis can persist for decades in infected individuals in the latent state as an asymptomatic disease and can emerge to cause active disease at a later stage. Thus, pathways and the mechanisms that are involved in the maintenance of genome integrity appear to be important for M. tuberculosis survival, persistence and pathogenesis. Helicases are ubiquitous enzymes known to play a key role in DNA replication, repair and recombination. However, role of helicases in providing selective advantage for M. tuberculosis survival and genome maintenance is obscure. Therefore, understanding the role of various helicases could provide insights into the M. tuberculosis survival, persistence and pathogenesis in humans. This information could be useful in considering helicases as a novel therapeutic target as well as developing effective vaccines. The research focus of my thesis has been to understand the role of helicases in safeguarding the M. tuberculosis genome from various genotoxic stresses. The major focus of the current study has been addressed towards understanding the role of M. tuberculosis RecG (MtRecG) helicase in recombinational repair and in remodeling stalled replication forks. This study highlights the importance of RecG helicase in the maintenance of genome integrity via DNA repair, recombination and in remodeling the stalled replication forks in M. tuberculosis. The thesis has been divided into following sections as follows: Chapter I: General introduction that describes the causes and consequences of replication stress and DNA repair pathways in M. tuberculosis The genome is susceptible to various types of damage induced by exogenous as well as endogenous DNA damaging agents. Unrepaired or misrepaired DNA lesions can lead to gross chromosomal rearrangements and ultimately cell death. Thus, organisms have evolved with efficient DNA damage response machinery to cope up with deleterious effects of genotoxic agents. Accurate transmission of genetic information requires error-free duplication of chromosomal DNA during every round of cell division. Defects associated with replication are considered as a major source of genome instability in all organisms. Normal DNA replication is hampered when the fork encounters road blocks that have the potential to stall or collapse a replication fork. The types of lesions that potentially block replication fork include lesions on the template DNA, various secondary structures, R-loops, or DNA bound proteins. To understand the DNA damage induced replication stress and the role of fork remodeling enzymes in the repair of stalled replication forks and its restart, chapter I of the thesis has been distributed into multiple sections as follows: Briefly, initial portion of the chapter describes overall replication process in prokaryotes highlighting the importance of coordinated replisome assembly and disassembly during initiation and termination. Later section discusses about various types of exogenous and endogenous DNA damages leading to replication fork stalling. Subsequent section of chapter I provide detailed description and mechanism of various repair pathways cell operates to repair such damages. Chapter I further summarizes causes of stalled replication forks majorly including template lesions, natural impediments like DNA secondary structures and DNA-protein cross links. Subsequent section discusses various pathways of replication restart that include essential role of primosomal proteins in reloading replisome machinery at stalled replication forks. Subsequent section of chapter I provide a comprehensive description of replication fork reversal (RFR) and mechanism of replication restart. RFR involves unwinding of blocked forks via simultaneous unwinding and annealing of parental and daughter strands to generate Holliday junction (HJ) intermediate. Genetic and biochemical studies highlighted the importance of RecG, RuvAB and RecA proteins in driving RFR reaction in E. coli. Hence, in the subsequent chapter, the functional role of RecG, RuvAB and RecA in replication-recombination processes has been discussed. Last section of the chapter devotes completely to M. tuberculosis, its genome dynamics and the various pathways of mycobacterial DNA repair. M. tuberculosis experiences substantial DNA damage inside host macrophages owing to the acidic environment, reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) which are sufficient enough to cause replication stress. To gain insights into the role of M. tuberculosis RecG helicase in DNA repair, recombination and in remodeling the stalled replication forks the following objectives were laid for my PhD thesis: 1 To understand the functional role of M. tuberculosis RecG (MtRecG) in DNA repair and recombination. 2 To investigate the distinct role(s) of MtRecG, MtRuvAB and MtRecA in remodeling the stalled replication forks. Chapter II: Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination In order to survive and replicate in a variety of stressful conditions during its life cycle, M. tuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. Helicases are one such ubiquitous enzyme involved in all DNA metabolic transaction pathways for maintenance of genome stability. To understand the role of M. tuberculosis RecG (MtRecG) helicase in recombination and repair, we carried out functional and biochemical studies. In our study, we show that M. tuberculosis RecG expression was induced in response to different genotoxic agents. Strikingly, expression of M. tuberculosis RecG in Escherichia coli ∆recG mutant strain provided protection against MMC, MMS and UV-induced cell death. Purified M. tuberculosis RecG exhibited higher binding affinity for the Holliday junction (HJ) as compared to a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile junction, branch migration and resolution was evident only in the case of the mobile junction. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently as compared to the mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structures, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Altogether, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as in stress conditions. Chapter III: Mycobacterium tuberculosis RecG but not RuvAB or RecA is efficient at remodeling the stalled replication forks: Implications for multiple mechanisms of replication restart in mycobacteria Aberrant DNA replication, defects in the protection and restart of stalled replication forks are a major cause of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen responds to different types of replication stress and DNA damage is unclear. In our study, we show that M. tuberculosis RecG rescues E. coli ∆recG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without leading strand ssDNA gap. Interestingly, SSB suppresses the MtRecG and MtRuvAB mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG catalyzed replication fork remodeling and restart pathways in vivo.
110

Single-molecule studies of nucleic acid folding and nucleic acid-protein interactions

Pérez González, Daniel Cibrán January 2017 (has links)
Nucleic acids and proteins, some of the building blocks of life, are not static structures but highly dynamic entities that need to interact with one another to meet cellular demands. The work presented in this thesis focuses on the application of highly sensitive fluorescence methods, both at ensemble and single-molecule level, to determine the dynamics and structure of specific biomolecular interactions with nanometer resolution and in temporal scales from nanoseconds to minutes, which includes most biologically relevant processes. The main aims of my PhD can be classified in three areas: i) exploring new fluorescent sensors with increased specificity for certain nucleic acid structures; ii) understanding how some of these nucleic acids sense the presence of small molecules in the cellular environment and trigger gene regulation by altering their structure; and iii) understanding how certain molecular machines, such as helicase proteins, are able to unwind the DNA double helix by using chemical energy in the form of ATP hydrolysis.

Page generated in 0.0301 seconds