• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 9
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 90
  • 35
  • 35
  • 31
  • 23
  • 23
  • 17
  • 16
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Low cost integration of Electric Power-Assisted Steering (EPAS) with Enhanced Stability Program (ESP)

Soltani, Amirmasoud January 2014 (has links)
Vehicle Dynamics Control (VDC) systems (also known as Active Chassis systems) are mechatronic systems developed for improving vehicle comfort, handling and/or stability. Traditionally, most of these systems have been individually developed and manufactured by various suppliers and utilised by automotive manufacturers. These decentralised control systems usually improve one aspect of vehicle performance and in some cases even worsen some other features of the vehicle. Although the benefit of the stand-alone VDC systems has been proven, however, by increasing the number of the active systems in vehicles, the importance of controlling them in a coordinated and integrated manner to reduce the system complexity, eliminate the possible conflicts as well as expand the system operational envelope, has become predominant. The subject of Integrated Vehicle Dynamics Control (IVDC) for improving the overall vehicle performance in the existence of several VDC active systems has recently become the topic of many research and development activities in both academia and industries Several approaches have been proposed for integration of vehicle control systems, which range from the simple and obvious solution of networking the sensors, actuators and processors signals through different protocols like CAN or FlexRay, to some sort of complicated multi-layered, multi-variable control architectures. In fact, development of an integrated control system is a challenging multidisciplinary task and should be able to reduce the complexity, increase the flexibility and improve the overall performance of the vehicle. The aim of this thesis is to develop a low-cost control scheme for integration of Electric Power-Assisted Steering (EPAS) system with Enhanced Stability Program (ESP) system to improve driver comfort as well as vehicle safety. In this dissertation, a systematic approach toward a modular, flexible and reconfigurable control architecture for integrated vehicle dynamics control systems is proposed which can be implemented in real time environment with low computational cost. The proposed control architecture, so named “Integrated Vehicle Control System (IVCS)”, is customised for integration of EPAS and ESP control systems. IVCS architecture consists of three cascade control loops, including high-level vehicle control, low-level (steering torque and brake slip) control and smart actuator (EPAS and EHB) control systems. The controllers are designed based on Youla parameterisation (closed-loop shaping) method. A fast, adaptive and reconfigurable control allocation scheme is proposed to coordinate the control of EPAS and ESP systems. An integrated ESP & ESP HiL/RCP system including the real EPAS and Electro Hydraulic Brake (EHB) smart actuators integrated with a virtual vehicle model (using CarMaker/HiL®) with driver in the loop capability is designed and utilised as a rapid control development platform to verify and validate the developed control systems in real time environment. Integrated Vehicle Dynamic Control is one of the most promising and challenging research and development topics. A general architecture and control logic of the IVDC system based on a modular and reconfigurable control allocation scheme for redundant systems is presented in this research. The proposed fault tolerant configuration is applicable for not only integrated control of EPAS and ESP system but also for integration of other types of the vehicle active systems which could be the subject of future works.
82

Développement d’une méthode d’auto-paramétrage auto-adaptatif pour une pompe à chaleur en vue d’un fonctionnement optimisé / Development of a self-parameterization method for heat pumps

Tejeda de la cruz, Alberto 28 September 2016 (has links)
Lors de l’installation d’une pompe à chaleur (PAC) double service (chauffage et eau chaude sanitaire (ECS)) dans le secteur résidentiel, la phase de mise en service est délicate : les paramètres à renseigner sont nombreux et non triviaux. Or, le bon fonctionnement de la PAC est très sensible à la qualité de cette étape. Quelques mauvais réglages peuvent entraîner un fonctionnement non optimal, voire un dysfonctionnement important (confort mal assuré). L’objectif de la thèse est de mettre au point une méthode de paramétrage auto-adaptatif modifiant les valeurs de « sortie d’usine » des paramètres pour les adapter au réseau d'émetteurs, à la réponse thermique du bâtiment et aux habitudes chauffage et de consommation d'ECS des occupants. Les paramètres doivent être adaptés à partir des capteurs déjà en place sur la PAC.Le travail de thèse porte d'abord sur l’identification des paramètres clés de la PAC, ceux qui influencent le plus la consommation. On en déduit quelques fonctions à optimiser : ajustement de la loi d'eau, méthode de choix des meilleures séquences de production d'ECS, anticipation de la relance du chauffage. L'objectif est de maximiser le coefficient de performance et de minimiser le recours aux appoints électriques tout en garantissant le confort. Ces objectifs sont atteints en développant des algorithmes de contrôle optimisé. Des modèles neuronaux de prévision de la réponse thermique du bâtiment, du stock d’ECS et des performances de la PAC ont été développés pour ce contrôle optimisé. Les modèles et algorithmes développés ont été validés numériquement et les performances de la PAC comparées à celles avec contrôle classique sans auto-paramétrage. Les solutions proposées ont été appliquées et testées durant une saison sur une PAC réelle sur un banc d'essai semi-virtuel (climat réel et bâtiment virtuel). / Setting control parameters of residential double service heat pumps at the time of installation and commissioning is a delicate matter. Indeed, some parameters are not trivial, there are many to be adjusted and the heat pump operations are quite sensitive to the parameters' values. Poor parameterization can lead to suboptimal heat pump operation or even to important dysfunction (harming thermal comfort).Hence, this thesis aims to develop a method for the heat pump to self-adapt the value of its control parameters. The heat pump should modify if required the "default" settings in order to adapt them to the heat emitters, to the building thermal response and to the occupancy (in terms of thermal comfort and DHW needs). For industrial reasons, this method should use on-board sensors.First, the thesis focuses on identifying the key parameters of the heat pump control, i.e. those with greatest influence on the consumption. This leads to the functions which have to be optimized: heating curve adjustment, time of DHW generation, heating setback anticipation. The objective is to maximize the coefficient of performance and minimize the use of electrical back-ups while ensuring comfort. This is achieved by developing optimized control algorithms. Thanks to forecasts models, based on neural networks, we are able to predict on a short term horizon the building thermal response, the DHW availability and the heat pump performances. The developed models and algorithms have been validated through numerical simulations, and we have evaluated the heat pump performances in comparison to a classic control. The proposed solutions were applied and tested during a heating season on a real heat pump installed in a semi-virtual test bench (real weather and virtual building).
83

Etude d’un convertisseur DC-DC pour les réseaux haute tension à courant continu (HVDC) : modélisation et contrôle du convertisseur DC-DC modulaire multiniveaux (M2DC) / A DC-DC power converter study for High Voltage Direct Current (HVDC) grid : Model and control of the DC-DC Modular Multilevel Converter (M2DC)

Li, Yafang 11 July 2019 (has links)
Les travaux présentés dans ce mémoire portent sur les convertisseurs continu-continu (DC/DC) pour les réseaux de transport à Courant Continu (HVDC) dans un contexte de réseau maillé de type Multi Terminaux DC (MTDC). Dans ce genre de réseau, les convertisseurs DC/DC sont nécessaires pour interconnecter ces réseaux. L’objectif de ce travail est donc d’étudier un convertisseur DC/DC pour des applications à haute tension et forte puissance. De nombreux convertisseurs DC/DC classiques existent, mais ne sont pas adaptés à ces niveaux de tension et puissance. Le volume et coût sont les points clés de l’étude pour l’industrialisation des structures dédiées aux réseaux HVDC. Parmi les structures identifiées, le convertisseur DC-DC Modulaire Multiniveaux (M2DC), récent et compact, a été finalement choisi. Le travail proposé développe l’étude du M2DC en régime établi et une modélisation en modèle moyen de ce convertisseur. Ensuite, des lois de contrôle sont proposées pour valider les analyses précédentes sur la base du principe de l’inversion du modèle. Le travail vise enfin à valider les analyses et le contrôle à l’aide de la maquette du Convertisseur Modulaire Multiniveaux (MMC) du L2EP. Pour cela, un dimensionnement du M2DC basé sur le MMC existant est proposé. Enfin, des simulations HIL (Hardware-In-the-Loop) valident les analyses et montrent la faisabilité du prototypage du M2DC / This work is based on Multi Terminal Direct Current (MTDC) grids. In the MTDC grid, DC/DC converter stations are needed to connect different HVDC grids. A lot of DC/DC converters have been studied and developed, but are not suitable for high voltage and great power constraints. Therefore, the objective of this work is the study of a DC/DC converter for high voltage and great power applications. For the potentially HVDC applications, the volume and costs are major criteria. According to this, a high voltage and great power potential DC/DC converter is selected, which is the DC-DC Modular Multilevel Converter (M2DC). Focusing on the M2DC, the work proposes analyses in steady state and builds an average model for the converter. Based on the average model, the basic control algorithm for the converter is developed to validate the previous analysis. Since the thesis aims to use the existing L2EP Modular Multilevel Converter (MMC) to test the M2DC model and control, a design of the M2DC based on MMC is proposed. Finally, the M2DC HIL (Hardware In-the-Loop) simulations results are presented confirming previous analyses and allowing to go on to prototyping the M2DC on the base of the existing MMC
84

Research, Design, and Implementation of Virtual and Experimental Environment for CAV System Design, Calibration, Validation and Verification

Goel, Shlok January 2020 (has links)
No description available.
85

Injector Waveform Monitoring of a Diesel Engine in Real-Time on a Hardware in the Loop Bench

Farooqi, Quazi Mohammed Rushaed 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis presents the development, experimentation and validation of a reliable and robust system to monitor the injector pulse generated by an Engine Control Module (ECM) and send the corresponding fueling quantity to the real-time computer in a closed loop Hardware In the Loop (HIL) bench. The system can be easily calibrated for different engine platforms as well. The fueling quantity that is being injected by the injectors is a crucial variable to run closed loop HIL simulation to carry out the performance testing of engine, aftertreatment and other components of the vehicle. This research utilized Field Programmable Gate Arrays (FPGA) and Direct Memory Access (DMA) transfer capability offered by National Instruments (NI) Compact Reconfigurable Input-Output (cRIO) to achieve high speed data acquisition and delivery. The research was conducted in three stages. The first stage was to develop the HIL bench for the research. The second stage was to determine the performance of the system with different threshold methods and different sampling speeds necessary to satisfy the required accuracy of the fueling quantity being monitored. The third stage was to study the error and its variability involved in the injected fueling quantity from pulse to pulse, from injector to injector, between real injector stators and cheaper inductor load cells emulating the injectors, over different operating conditions with full factorial design of experimentation and mixed model Analysis Of Variance (ANOVA). Different thresholds were experimented to find out the best thresholds, the Start of Injection (SOI) threshold and the End of Injection (EOI) threshold that captured the injector “ontime” with best reliability and accuracy. Experimentation has been carried out at various data acquisition rates to find out the optimum speed of data sampling rate, trading off the accuracy of fueling quantity. The experimentation found out the expected error with a system with cheaper solution as well, so that, if a test application is not sensitive to error in fueling quantity, a cheaper solution with lower sampling rate and inductors as load cells can be used. The statistical analysis was carried out at highest available sampling rate on both injectors and inductors with the best threshold method found in previous studies. The result clearly shows the factors that affect the error and the variability in the standard deviations in error; it also shows the relation with the fixed and random factors. The real-time application developed for the HIL bench is capable of monitoring the injector waveform, using any fueling ontime table corresponding to the platform being tested, and delivering the fueling quantity in real-time. The test bench made for this research is also capable of studying injectors of different types with the automated test sequence, without occupying the resource of fully capable closed loop test benches for testing the ECM unctionality.
86

Development of a Heavy Truck Vehicle Dynamics Model using Trucksim and Model Based Design of ABS and ESC Controllers in Simulink

Rao, Shreesha Yogish 11 July 2013 (has links)
No description available.
87

Hardware in the Loop Simulation of a Heavy Truck Braking System and Vehicle Control System Design

Ashby, Ryan Michael 09 August 2013 (has links)
No description available.
88

Hardware-supported test environment analysis for CAN message communication

Akaslan, Seyhmus 08 July 2024 (has links)
Recent innovations in technology and demands for more functionality increased software size in cars up to 100 million lines of code. Explosion in software size is accompanied by an increased number of ECUs. Testing of software became more complex than ever. To be able to test the exact timing behavior of a software, it needs to be put on actual hardware. HIL test benches have become an indispensable part of ECU testing. The hard part of ECU testing is their dependency on each other. ECUs communicate to each other by passing information in the form of CAN messages. This makes testing a single ECU alone without its environment impossible. Because of their dependencies on each other they need to be integrated first to be tested. Before HIL benches those tests were done either on vehicles or in integration labs where ECUs are connected to each other in a lab environment. Advances in software science brought up an invention known as rest-bus simulation. In some sources it is also known as residual bus or rest of the bus simulation. HIL platforms simulate missing nodes and messages as if the actual hardware is there. HIL platforms blend the real world and simulated ones in real time. Device under test thinks it is present in a vehicle. Established HIL platforms solved many problems that existed in software projects. However, because of their cost, only a small number of such platforms are affordable within a company. Developers need to wait in long queues to test their ECUs. These waiting times can be even longer in agile software development methodologies due to their frequent testing needs. It is believed that front-loading tests before the HIL is the solution to this problem. The aim of this thesis is to investigate alternative small form factor HIL platforms which could be placed on every developer’s desk. To place the proposed solution at every desk, the solution must be affordable and portable. The solution will hopefully reduce queues accumulating behind established HIL platforms and shorten testing times. For this end, state-of-the-art HIL solutions will be investigated. Afterwards, a working proof-of-concept will be demonstrated in the form of residual bus simulation and gateway application. Portability of the solution is a must for the gateway application. Test engineers use gateway applications to alter some signal values either on HIL or on-vehicle. Only small and easy to carry solutions are feasible for on-vehicle testing. It will be shown that the proposed solution will reduce the testing time and testing cost. In addition to them, an increase in parallelism, testing frequency, and software quality will be observed by bringing testing equipment to every developer’s desk.
89

Eco-Driving of Connected and Automated Vehicles (CAVs)

Kavas Torris, Ozgenur 23 September 2022 (has links)
No description available.
90

Modeling, Simulation, and Injection of Camera Images/Video to Automotive Embedded ECU : Image Injection Solution for Hardware-in-the-Loop Testing

Lind, Anton January 2023 (has links)
Testing, verification and validation of sensors, components and systems is vital in the early-stage development of new cars with computer-in-the-car architecture. This can be done with the help of the existing technique, hardware-in-the-loop (HIL) testing which, in the close loop testing case, consists of four main parts: Real-Time Simulation Platform, Sensor Simulation PC, Interface Unit (IU), and unit under test which is, for instance, a Vehicle Computing Unit (VCU). The purpose of this degree project is to research and develop a proof of concept for in-house development of an image injection solution (IIS) on the IU in the HIL testing environment. A proof of concept could confirm that editing, customizing, and having full control of the IU is a possibility. This project was initiated by Volvo Cars to optimize the use of the HIL testing environment currently available, making the environment more changeable and controllable while the IIS remains a static system. The IU is an MPSoC/FPGA based design that uses primarily Xilinx hardware and software (Vivado/Vitis) to achieve the necessary requirements for image injection in the HIL testing environment. It consists of three stages in series: input, image processing, and output. The whole project was divided in three parts based on the three stages and carried out at Volvo Cars in cooperation by three students, respectively. The author of this thesis was responsible for the output stage, where the main goal was to find a solution for converting, preferably, AXI4 RAW12 image data into data on CSI2 format. This CSI2 data can then be used as input to serializers, which in turn transmit the data via fiber-optic cable on GMSL2 format to the VCU. Associated with the output stage, extensive simulations and hardware tests have been done on a preliminary solution that partially worked on the hardware, producing signals in parts of the design that could be read and analyzed. However, a final definite solution that fully functions on the hardware has not been found, because the work is at the initial phase of an advanced and very complex project. Presented in this thesis is: important theory regarding, for example, protocols CSI2, AXI4, GMSL2, etc., appropriate hardware selection for an IIS in HIL (FPGA, MPSoC, FMC, etc.), simulations of AXI4 and CSI2 signals, comparisons of those simulations with the hardware signals of an implemented design, and more. The outcome was heavily dependent on getting a certain hardware (TEF0010) to transmit the GMSL2 data. Since the wrong card was provided, this was the main problem that hindered the thesis from reaching a fully functioning implementation. However, these results provide a solid foundation for future work related to image injection in a HIL environment.

Page generated in 0.0165 seconds