• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 12
  • 9
  • 9
  • 7
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 145
  • 22
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Condutividade de películas finas de PEDOT:PSS. / On the conductivity of PEDOT:PSS thin films.

Alexandre Mantovani Nardes 18 December 2007 (has links)
As interessantes propriedades eletrônicas, mecânicas e óticas dos materiais orgânicos conjugados fizeram emergir diversas aplicações tecnológicas e comerciais em dispositivos baseados nesses materiais, tais como sensores, memórias, células solares e diodos emissores de luz poliméricos (LEDs). Neste sentido, o tema central desta tese é o estudo das propriedades elétricas e morfológicas e os mecanismos de transporte eletrônico de cargas no PEDOT:PSS, uma blenda polimérica que consiste de um policátion condutivo, o poli(3,4- etilenodioxitiofeno) (PEDOT) e do poliânion poli(estirenosulfonado) (PSS). PEDOT:PSS é amplamente usado como material de eletrodo em aplicações na área de eletrônica plástica, como mencionado anteriormente. Apesar da condutividade elétrica dos filmes finos de PEDOT:PSS possa variar várias ordens de grandeza, dependendo do método pela qual é processado e transformado em filme fino, as razões para este comportamento é essencialmente desconhecido. Esta tese descreve um estudo detalhado do transporte eletrônico de cargas anisotrópico e sua correlação com a morfologia, as condições e as dimensões da separação de fase entre os dois materiais, PEDOT e PSS. Antes de abordar as propriedades do PEDOT:PSS, uma camada de filme fino inorgânica usada para aumentar o tempo de vida de dispositivos orgânicos é descrita no Capítulo 2. Um importante mecanismo de degradação em LEDs poliméricos é a fotooxidação da camada ativa. Assim, isolar a camada ativa da água, oxigênio e luz, torna-se crucial para o aumento do tempo de vida. Um sistema de deposição química a partir da fase de vapor estimulada por plasma (PECVD) é usado para depositar filmes finos de nitreto de carbono em baixas temperaturas, menores que 100 °C, sobre PLEDs com a intenção de aumentar o tempo de vida destes dipositivos e diminuir a fotodegradação do poli[2-metoxi-5- (2-etil-hexiloxi)-p-fenileno vinileno] (MEH-PPV) em ambiente atmosférico. O filme fino de nitreto de carbono possui as características de um material que pode bloquear a umidade e que tem espessura e flexibilidade adequados para a nova geração de PLEDs flexíveis. As características dos filmes finos de nitreto de carbono e MEH-PPV foram investigadas usando-se técnicas de espectroscopia ótica, com particular ênfase no processo de degradação do MEHPPV sob iluminação. Os resultados mostraram que o filme fino de nitreto de carbono protege o filme polimérico e diminui consideravelmente a fotooxidação. Para avaliar o efeito do encapsulamento em dispositivos reais, LEDs poliméricos foram fabricados e pelas curvas de corrente-tensão um aumento no tempo de vida é confirmado quando a camada de nitreto de carbono é presente. O tempo de vida desejado, maior que 10.000 horas, para aplicações comerciais não foi atingido, entretanto, o encapsulamento pode ser melhorado otimizando as propriedades da camada de nitreto de carbono e combinando-as com camadas de outros materiais orgânicos e inorgânicos. Os capítulos seguintes deste trabalho aborda os estudos realizados com o PEDOT:PSS, uma vez que é amplamente usado em eletrônica orgânica, mas relativamente tem recebido pouca atenção com respeito ao transporte eletrônico de cargas, bem como sua correlação com a morfologia. No Capítulo 3, experimentos com microscopia de varredura por sonda (SPM, Scanning Probe Microscopy) e medidas de condutividade macroscópica são utilizados para estudar e obter um modelo 3D morfológico completo que explica, qualitativamente, a condutividade anisotrópica observada nos filmes finos de PEDOT:PSS depositados pela técnica de spin coating. Imagens topográficas de microscopia de varredura por tunelamento (STM) e imagens da seção transversal observadas com o microscópio de forca atômica (X-AFM) revelaram que o filme fino polimérico é organizado em camadas horizontais de partículas planas ricas em PEDOT, separadas por lamelas quasi-contínuas de PSS. Na direção vertical, lamelas horizontais do isolante PSS reduzem a condutividade e impõe o transporte eletrônico a ser realizado por saltos em sítios vizinhos próximos (nn-H, nearest-neighbor hopping) nas lamellas de PSS. Na direção lateral, o transporte eletrônico via saltos 3D em sítios a longas distâncias (3D-VRH, variable range hopping) ocorre entre as ilhas ricas em PEDOT que são separadas por barreiras muito mais finas de PSS, causando um aumento da condutividade nesta direção. Esta discussão é estendida ao Capítulo 4 com uma descrição quantitativa do transporte eletrônico de cargas predominantes. Particularmente, é demonstrado que o transporte de cargas via saltos 3D em sítios a longas distâncias ocorre entre ilhas ricas em PEDOT e não entre segmentos isolados de PEDOT ou dopantes na direção lateral, enquanto que na direção vertical o transporte de cargas via saltos em sítios vizinhos próximos ocorre dentro das lamelas do quasi-isolante PSS. Em algumas aplicações, faz-se necessário usar PEDOT:PSS com alta condutividade elétrica. Isso pode ser feito adicionando-se sorbitol à solução aquosa de PEDOT:PSS. Após um tratamento térmico, e dependendo da quantidade de sorbitol adicionado, a condutividade aumenta várias ordens de grandeza e as causas e consequências de tal comportamento foram investigadas neste trabalho. O Capítulo 5 investiga as várias propriedades tecnológicas do PEDOT:PSS altamente condutivo tratado com sorbitol, tais como a própria condutividade, os efeitos dos tratamentos térmicos e exposição à umidade. É observado que o aumento da condutividade elétrica, devido à adição de sorbitol na solução aquosa, é acompanhado por uma melhoria na estabilidade da condutividade elétrica em condições atmosféricas. Surpreendentemente, a condutividade elétrica do PEDOT:PSS, sem tratamento com sorbitol (~ 10-3 S/cm), aumenta mais de uma ordem de grandeza sob ambiente úmido de 30-35 % umidade relativa. Este efeito é atribuido a uma contribuição iônica à condutividade total. Análise Temogravimetrica (TGA), espectrometria de massa com sonda de inserção direta (DIP-MS) e análise calorimétrica diferencialmodulada (MDSC) foram usadas como técnicas adicionais para o entendimento dos estudos deste Capítulo. No Capítulo 6, microscopia de varredura por sonda-Kelvin (SKPM) foi empregada para medir o potencial de superfície dos filmes finos de PEDOT:PSS tratados com diferentes concentrações de sorbitol. Mostra-se que a mudança no potencial de superfície é consistente com uma redução de PSS na superfície do filme fino. Para estudar o transporte eletrônico nos filmes finos de PEDOT:PSS altamente condutivos tratados com sorbitol, o Capítulo 7 usa medidas de temperatura e campo elétrico em função da conduvitidade correlacionados com analises morfológicas realizadas por STM. É observado que o transporte eletrônico por saltos, na direção lateral, muda de 3D-VRH para 1D-VRH quando o PEDOT:PSS é tratado com sorbitol. Esta transição é explicada por uma auto-organização das ilhas ricas em PEDOT em agregados 1D, devido ao tratamento com sorbitol, tornando-se alinhadas em domínios micrométricos, como observado pelas imagens de STM. / Employing the unique mechanical, electronic, and optical properties of the conjugated organic and polymer materials several technological and commercial applications have been developed, such as sensors, memories, solar cells and light-emitting diodes (LEDs). In this respect, the central theme of this thesis is the electrical conductivity and mechanisms of charge transport in PEDOT:PSS, a polymer blend that consists of a conducting poly(3,4-ethylenedioxythiophene) polycation (PEDOT) and a poly(styrenesulfonate) polyanion (PSS). PEDOT:PSS is omnipresent as electrode material in plastic electronics applications mentioned above. Although the conductivity of PEDOT:PSS can vary by several orders of magnitude, depending on the method by which it is processed into a thin film, the reason for this behavior is essentially unknown. This thesis describes a detailed study of the anisotropic charge transport of PEDOT:PSS and its correlation with the morphology, the shape, and the dimension of the phase separation between the two components, PEDOT and PSS. Before addressing the properties of PEDOT:PSS, a new barrier layer is described in Chapter 2 that enhances the lifetime of organic devices. An important degradation mechanism in polymer LEDs is photo-oxidation of the active layer. Hence, isolating the active layer from water and oxygen is crucial to the lifetime. Plasma-enhanced chemical vapor deposition (PECVD) is used to deposit a thin layer of carbon nitride at low deposition temperatures, below 100 °C, on a polymer LED that uses poly[2-methoxy-5-(2´-ethylhexyloxy)-1,4- phenylene vinylene] (MEH-PPV) as active layer. A thin layer of carbon nitride acts as barrier for humidity, but is still sufficiently bendable to be used in flexible polymer LEDs. The characteristics of carbon nitride and MEH-PPV films have been investigated using optical spectroscopy, with particular emphasis on the degradation process of MEH-PPV under illumination. The measurements show that the carbon nitride coating indeed protects the polymer film and diminishes the photo-oxidation considerably. To study the effect of the encapsulation in real devices, polymer LEDs were made and their current-voltage characteristics confirm the enhanced lifetime in the presence of a carbon nitride barrier layer. However, the target, a lifetime of more than 10,000 hours for commercial applications, was not achieved. The remaining chapters of this thesis describe the investigations of PEDOT:PSS. PEDOT:PSS is widely used in organic electronics. So far, relatively little attention has, been paid to the mechanisms of charge transport in this material and the correlation of those properties to the morphology. In Chapter 3, scanning probe microscopy (SPM) and macroscopic conductivity measurements are used to obtain a full 3D morphological model that explains, qualitatively, the observed anisotropic conductivity of spin coated PEDOT:PSS thin films. Topographic scanning probe microscopy (STM) and cross-sectional atomic force microscopy images (X-AFM) reveal that the thin film is organized in horizontal layers of flattened PEDOT-rich particles that are separated by quasi-continuous PSS lamella. In the vertical direction, the horizontal PSS insulator lamellas lead to a reduced conductivity and impose nearest-neighbor hopping (nn-H) transport. In the lateral direction, 3D variable-range hopping (3D-VRH) transport takes place between PEDOT-rich clusters which are separated by much thinner barriers, leading to an enhanced conductivity in this direction. This discussion is extended in Chapter 4, where a quantitative description of the length scales of the predominant transport is obtained. Particularly, it is demonstrated that the hopping process takes place between PEDOT-rich islands and not between single PEDOT segments or dopants in the lateral direction, whilst in the vertical direction the current limiting hopping transport occurs between dilute states inside the quasi-insulating PSS lamellas. By a post-treatment it is possible to modify PEDOT:PSS to raise its conductivity, by orders of magnitude. Typically, the addition of sorbitol to the aqueous dispersion of PEDOT:PSS that is used to deposit thin films via spin coating leads to an enhancement of the conductivity after thermal annealing. The causes and consequences of such behavior were investigated in detail. Chapter 5 describes the various properties of the highly conductive sorbitol-treated PEDOT:PSS, such as the conductivity itself, and the effects of thermal annealing and exposure to moisture. It is found that the conductivity enhancement upon addition of sorbitol is accompanied by a better environmental stability. Surprisingly, the electrical conductivity of PEDOT:PSS thin films without sorbitol treatment is increased by more than one order of magnitude in an environment with more than 30-35 % relative humidity. This effect is attributed to an ionic contribution to the overall conductivity. Thermal gravimetric analysis (TGA), direct insert probe-mass spectrometry (DIP-MS) and modulation differential scanning calorimetry (MDSC) were used as additional tools to demonstrate that, after thermal treatment, the concentration of sorbitol in the final PEDOT:PSS layer is negligibly small. In Chapter 6, scanning Kelvin probe microscopy (SKPM) is employed to measure the surface potential and work function of this PEDOT:PSS films that were deposited from water with different sorbitol concentrations. It is shown that work function of PEDOT:PSS is reduced with increasing sorbitol concentration. This shift can be explained by and is in agreement with- a reduction in the surface enrichment with PSS of the film. To study the charge transport properties of the highly conductive sorbitoltreated PEDOT:PSS films, temperature dependent and electric field dependent measurements are correlated with morphological analysis by STM in Chapter 7. It is found that by sorbitol treatment the hopping transport changes from 3DVRH to 1D-VRH. This transition is explained by a sorbitol-induced selforganization of the PEDOT-rich grains into 1D aggregates that are aligned within micrometer sized domains, as observed in STM images.
142

Detekce síťových útoků pomocí nástroje Tshark / Detection of Network Attacks Using Tshark

Dudek, Jindřich January 2018 (has links)
This diploma thesis deals with the design and implementation of a tool for network attack detection from a captured network communication. It utilises the tshark packet analyser, the meaning of which is to convert the input file with the captured communications to the PDML format. The objective of this conversion being, increasing the flexibility of input data processing. When designing the tool, emphasis has been placed on the ability to expand it to detect new network attacks and on integrating these additions with ease. For this reason, the thesis also includes the design of a complex declarative descriptions for network attacks in the YAML serialization format. This allows us to specify the key properties of the network attacks and the conditions for their detection. The resulting tool acts as an interpreter of proposed declarative descriptions allowing it to be expanded with new types of attacks.
143

Recombination dynamics of optically generated small polarons and self-trapped excitons in lithium niobate

Messerschmidt, Simon 02 July 2019 (has links)
Quasi-particles formed in lithium niobate after pulse exposure were investigated by transient absorption and photoluminescence spectroscopy as well as numerical simulations. This includes the formation process, the transport through the crystal, interim pinning on defects during the relaxation process, and the final recombination with deep centers. It was shown that the charge-transport through the crystal can be described by a hopping transport including different types of hops between regular or defective lattice sites, i.e., the transport includes a mixture of free and bound small polarons. Furthermore, the different types of hops connected with varying activation energies and their distribution are responsible for an altered temporal decay curve when changing the crystal composition or temperature. Additionally, it was shown that the hitherto accepted recombination model is insufficient to describe all transient absorption and luminescence effects in lithium niobate under certain experimental conditions, i.e., long-living absorption dynamics in the blue/UV spectral range do not follow the typical polaron dynamics and cannot be described under the assumption of charge compensation. However, similar decay characteristics between self-trapped excitons known from photoluminescence spectroscopy and the unexpected behavior of the transient absorption were found leading to a revised model. This includes, besides the known polaron relaxation and recombination branch, a significant role of self-trapped excitons and their pinning on defects (pinned STEs). Since the consideration of further absorption centers in the relaxation path after pulse exposure might result in misinterpretations of previously determined polaron absorption cross-sections and shapes, the necessity to perform a review became apparent. Therefore, a supercontinuum pump-probe experiment was designed and all measurements applied under the same experimental conditions (temperature, polarization) so that one can extract the absorption amplitudes of the single quasi-particles in a spectral range of 0.7-3.0eV. The detailed knowledge might be used to deconvolve the absorption spectra and transform them to number densities of the involved centers which enables one to obtain an easier insight into recombination and decay dynamics of small polarons and self-trapped excitons. As the hopping transport of quasi-particles and the concept of pinned STEs might be fundamental processes, a thorough understanding opens up the possibility of their exploitation in various materials. In particular, results presented herein are not only limited to lithium niobate and its applications; an extension to a wide range of further strongly polar crystals in both their microscopic processes and their use in industry can be considered.
144

Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen Halbleitern

Widmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
145

Charge transport and energy levels in organic semiconductors

Widmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers

Page generated in 0.06 seconds