Spelling suggestions: "subject:"commune evasion"" "subject:"commune dévasion""
51 |
Cellules dendritiques plasmacytoïdes et immunosurveillance ou échappement immunitaire dans le cancer du sein : impact des signaux activateurs versus inhibiteurs du microenvironnement tumoral / Plasmacytoid dendritic cells and immunosurveillance or immune escape in breast cancer : impact of activators versus inhibitors signals in tumoral microenvironmentVey, Nelly 20 November 2014 (has links)
Le cancer du sein est une maladie impactant le système immunitaire dont le rôle évolue au cours de la tumorigénèse, allant de la détection et l'élimination des cellules transformées (immunosurveillance) à la promotion du développement tumoral (immunosubversion). Les efforts déployés pour définir de nouvelles stratégies thérapeutiques ont révélé que rétablir l'immunité anti-tumorale chez les patientes permettrait d'améliorer leur pronostic. Durant ma thèse, nous avons mis en évidence l'existence de signaux activateurs et inhibateurs des pDC dans les cancers du sein, qui confèrent aux pDC un rôle dans l'immunosurveillance et dans l'échappement immunitaire du cancer du sein respectivement. Nous avons ainsi montré que le TGF-beta et le TNF-alpha sont impliqués dans l'inhibition fonctionnelle des TApDC en réprimant l'expression et l'activation d'IRF-7. Dans un second temps, nous avons montré i) la présence de complexes [ADN-LL37] produits par les neutrophiles dans les tumeurs et capables d'induire la production d'IFN-alpha par les pDC, ii) l'expression des gènes associés aux IFN-I dans les tumeurs de sein et iii) un rôle majeur de la voie des IFN-I dans l'immunosurveillance des tumeurs mammaires chez la souris. De plus, des données préliminaires chez la souris suggèrent que les pDC participent à l'immunosurveillance anti-tumorale in vivo. Les travaux présentés dans ce manuscrit apportent de nouvelles données sur le rôle des pDC dans l'immunosurveillance des cancers du sein et ouvrent sur de nouvelles stratégies d'immunothérapie anti-tumorale ciblant les pDC / Breast cancer are disease impacting immune system whose play role during tumorigenesis, to detect and eliminate malign cells (immunosurveillance) or promote tumoral development (immunosubversion). Efforts to define new therapeutic strategies revealed that restoring anti-tumor immunity in patients would improve their prognosis. During my thesis, first, we demonstrated the existence of stimulatory and inhibitory signals of pDCs in the breast, which give the pDCs a role in immunosurveillance and immune escape of breast cancer, respectively. We showed that TGF-beta and TNF-alpha are involved in the functional inhibition of TApDC repressing IRF-7 expression and activation. Secondly, we showed i) the presence of [DNA LL37] complex produced by neutrophils in tumors that can induce the production of IFN-alpha by pDCs, ii) the expression of type I IFN associated genes in breast tumors and iii) a major role of IFN-I pathway in immunosurveillance of mammary tumors in mice. In addition, in mice, preliminary data suggest that pDC could play a role in anti-tumor immunosurveillance in vivo. The work presented in this thesis provide new data on the role of pDCs in immunosurveillance of breast cancers, and open new anti-tumor immunotherapy strategies targeting pDCs
|
52 |
Role of Bb-elicited IL-10 in Suppression of Innate Immune Responses within Murine Skin TissueMoledina, Muhammed Saad Abdul Aziz 05 September 2019 (has links)
No description available.
|
53 |
Identification and Characterization of a Burkholderia pseudomallei Factor H-Binding ProteinSyed, Irum 11 July 2022 (has links)
No description available.
|
54 |
IL-7-MEDIATED CD56BRIGHT NK CELL FUNCTION IS IMPAIRED IN HCV IN PRESENCE AND ABSENCE OF CONTROLLED HIV INFECTION, WHILE CD14BRIGHTCD16- MONOCYTES NEGATIVELY CORRELATE WITH CD4 MEMORY T CELLS AND HCV DECLINE DURING HCV-HIV CO-INFECTIONJudge, Chelsey J. 08 February 2017 (has links)
No description available.
|
55 |
Streptococcal immunoglobulin degrading enzymes of the IdeS and IgdE familySpoerry, Christian January 2017 (has links)
Bacteria of the genus Streptococcus are common asymptomatic colonisers of humans and animals. As opportunistic pathogens they can however, depending on their host’s immune status and other circumstances, cause mild to very severe infections. Streptococci are highly intertwined with specific host species, but can also cause zoonosis or anthroponosis in more uncommon hosts. Prolonged and reoccurring infections require immune evasion strategies to circumvent detection and eradication by the host’s immune defence. A substantial part of the immune defence against bacterial pathogens is mediated by immunoglobulins. This thesis is based on work to identify and characterise immunoglobulin degrading enzymes secreted by different Streptococcus species as a means to sabotage and evade antibody-mediated immune responses. Stoichiometric and kinetic analysis of the IgG degrading enzyme IdeS from the important human pathogen S. pyogenes revealed that IdeS cleaves IgG, opposed to previous publications, as a monomer following classical Michaelis-Menten kinetics. The IdeS homologue of S. suis, IdeSsuis, did however not cleave IgG, but was highly specific fo rporcine IgM. S. suis was found to possess yet another protease, IgdE, capable of cleaving porcine IgG. Both of these proteases were shown to promote increased bacterial survival in porcine blood during certain conditions. IgdE is the founding member of a novel cysteine protease family (C113). Novel streptococcal members of this protease family were shown to specifically degrade certain IgG subtypes of the respective Streptococcus species’ main host. The observed substrate specificity of IgdE family proteases reflects the host tropism of these Streptococcus species, thereby giving insights into host-pathogen co-evolution. The abundance of immunoglobulin degrading enzymes among Streptococcus species indicates the importance of evasion from the antibody mediated immune responses for streptococci. These novel identified immunoglobulin degrading enzymes of the IdeS and IgdE protease families are potential valid vaccine targets and could also be of biotechnological use.
|
56 |
Immune Evasion and Survival Strategies of Mycobacterium : Role for Host Signaling Pathway-Mediated Micro RNAs and Epigenetic RegulationHolla, Sahana January 2014 (has links) (PDF)
The genus Mycobacterium represents more than 120 species of bacteria including the pathogenic M. tuberculosis, the etiological agent of tuberculosis. The host mounts a robust inflammatory and cell-mediated response to contain the spread of pathogenic mycobacteria. While macrophages, dendritic cells (DCs) and neutrophils are known to facilitate early responses, the effector functions of CD4+ and CD8+ T cells are critical for containment of the mycobacteria. The type I T helper (Th1) subset of CD4+ T cell population orchestrates the protective immunity through cytokines like interferon (IFN)-γ, interleukin (IL)-12, IL-23 and tumor necrosis factor (TNF)-α However, it is known that despite such responses, host can only contain but not eradicate the infection. Additionally, infection of over one-third of the world’s population with pathogenic mycobacteria is a testimony of its success as a pathogen. Much of its success is attributed to the multiple evasion strategies employed such as inhibition of phagosome-lysosome fusion, secretion of reactive oxygen intermediates antagonistic proteins like superoxide dismutase and catalase, downregulation of antigen presentation to T cells, downregulation of the pro-inflammatory cytokines, skewing the immune balance toward the less effective Th2 responses, inhibition of autophagy, induction of regulatory T cells (Tregs) and immunosuppressive cytokines etc. Thus, an effective check on the infection would be possible if we understand the mechanisms underlying such evasion and survival strategies.
In this perspective, evaluation of the host-pathogen interactions in terms of integration of key signaling centers, particularly that during mycobacteria-macrophage or mycobacteria-DC interactions, would underscore as a critical requisite to detail the immune responses and its regulation. This study addresses three such immune evasion and
survival strategies employed by the mycobacteria; downregulation of IFN-γ-induced autophagy in macrophages, expansion of Tregs by modulating DC phenotype and finally epigenetic regulation of genes involved in foamy macrophage generation.
Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. It contributes to both innate and adaptive immune responses to infections and plays an essential role in restricting intracellular pathogens and delivering pathogen-derived antigens for major histocompatibility complex class II presentation. Nonetheless, several pathogens, especially viruses such as herpes simplex virus, human immunodeficiency virus, influenza; and bacteria like Mycobacteria, Shigella and Listeria exhibit multiple mechanisms to evade autophagy. However, the identities and contributions of host signaling molecules and mechanisms by which pathogens modulate autophagy have not been explored in depth. Here, we demonstrate that M. bovis BCG, Shigella flexneri and Listeria monocytogenes but not Klebsiella pneumoniae, Staphylococcus aureus and Escherichia coli inhibit IFN-γ-induced autophagy in macrophages by evoking selective and robust activation of WNT and sonic hedgehog (SHH) pathways via mechanistic target of rapamycin (mTOR). Utilization of macrophages derived from mir155-null mice or by conventional siRNA or miRNA mimics emphasized the role for mTOR-responsive epigenetic modifications in the induction of microRNAs, miR-155 and miR-31 to fine-tune autophagy. Importantly, cellular levels of PP2A, a phosphatase, were regulated by miR-155 and miR-31. Diminished expression of PP2A led to inhibition of glycogen synthase kinase (GSK)-3β, a negative regulator and a nodal link that regulate WNT and SHH pathways. This facilitated the prolonged activation of WNT and SHH signaling pathways. Further, sustained WNT and SHH signaling effectuated the
expression of anti-inflammatory lipoxygenases (ALOX5 and ALOX15), which in tandem inhibited IFN-γ-induced janus kinase (JAK)- signal transducer of activated (STAT) signaling and contributed to evasion of autophagy. Together, we have identified novel molecular mechanisms and host factors that are crucial to control autophagy and help the bacterial pathogens like mycobacteria to evade the host immune responses.
Much of the protective immunity against mycobacterial infection is mediated by Th1 CD4+ T cells. However, suppressive T cell populations such as CD4+CD25+FoxP3+ Tregs or a less effective Th2 cells are exploited by mycobacteria to subvert the protective host immune response. In this perspective, the molecular mechanisms underlying mycobacteria-induced Treg expansion are unclear. Utilizing cues from the previous reports from others’ and our laboratory, we explored the role for host signaling pathways such as SHH, WNT and NOTCH1 signaling during mycobacteria-mediated DC maturation and Treg generation/expansion. We demonstrate that while inhibition of SHH signaling markedly reduced the ability of the infected DCs to expand Tregs, NOTCH1 signaling functioned to suppress M. bovis BCG-induced Treg expansion. Though SHH and NOTCH1 signaling did not regulate the DC maturation during infection in terms of the maturation markers CD1a, HLA-DR, CD40, CD83, CD80 and CD86, pro-inflammatory cytokines such as TNF-α, IL-2, IL-1β and IL-6 were moderately NOTCH1-responsive and suppressed by SHH signaling. Further, M. bovis BCG-induced SHH signaling and Treg expansion was mediated by the classical phosphoinositide 3-kinase (PI3K)-mTOR-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) cascade. Recent studies have attributed the role for programmed death ligand (PD-L)1 and cyclooxygenase (COX)-2-catalyzed prostaglandin (PG)E2 during expansion of Tregs. Experiments utilizing
pharmacological inhibitors and conventional siRNAs indicated that both PD-L1 and COX-2/PGE2 were induced upon M. bovis BCG and M. tuberculosis infection in DCs and were regulated by SHH signaling. While SHH-responsive transcription factor, GLI1 arbitrated COX-2 expression, mycobacteria-stimulated SHH signaling was found to suppress miR-324 and miR-338, bonafide miRNAs that target PD-L1, to aid increased expression of PD-L1 and Treg expansion. This highlights the bi-functional role of SHH signaling during mycobacterial infection of DCs. Further, we found interesting cross-regulation of NOTCH and SHH pathway functions during M. bovis BCG infection of DCs. Inhibition of NOTCH1 signaling resulted in elevated expression of infection-induced PD-L1 whereas inhibition of SHH signaling showed increased transcripts of JAGGED2 (JAG2), a NOTCH1 ligand, and NOTCH intracellular domain (NICD), a marker for NOTCH activation. Thus, our results demonstrate that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in DCs to determine the functional outcome of the immune responses including Tregs expansion that favours its survival.
Foamy macrophages (FMs) are integral components of granulomas during mycobacterial pathogenesis. FMs are one of the morphotypes differentiated from macrophages characterized by the presence of lipid bodies (LBs)/droplets. The lipids provide nutrients to mycobacteria, leading to an enhanced ability to survive and replicate in host FMs. LBs are also known to regulate lipid metabolism, membrane trafficking, intracellular signaling and inflammatory mediator production. Interestingly, LBs are stores for various immune mediators including arachidonic acid, COX-2, ALOX5, ALOX15 and leukotrienes, underscoring the significance of FMs in the current study. However, molecular mechanisms that regulate intracellular lipid accumulation in FMs in the course
of mycobacterial infection are not clear. Here, we analyzed the role for one of the histone modifications widely implicated in shaping the immune responses, Histone H3 lysine 27 trimethylation (H3K27me3), a known marker for gene silencing. While the trimethylation of H3K27 is catalyzed by EZH2, a component of Polycomb-repressive complex (PRC)2, Jumonji C (JmjC) domain protein (JMJD3) is a well-established H3K27me3 demethylase. Unlike M. smegmatis, infection of macrophages with M. tuberculosis or M. bovis BCG displayed JMJD3-dependent LB formation. Supporting this observation, the genes involved in lipid biosynthesis (Ascl1, Adrp, Psap) and uptake (Fat (CD36) and Msr1) were significantly upregulated with M. tuberculosis or M. bovis BCG infection of macrophages in a JMJD3- and TLR2-dependent manner. Abca1 and Abcg1, genes assisting in lipid export were downregulated or remained unchanged with M. tuberculosis or M. bovis BCG infection. Chromatin immunoprecipitation analysis revealed a reduced H3K27me3 mark on the promoters of the selected genes that were upregulated on mycobacterial infections. Corresponding, elevated recruitment of JMJD3 to these promoters was observed. Interestingly, NOTCH1 signaling-responsive MUSASHI (MSI), an evolutionarily conserved RNA-binding protein that inhibits translation of the mRNA, was found to positively regulate infection-induced JMJD3 expression. MSI targeted a transcriptional repressor of JMJD3, Msx2-interacting nuclear target protein (MINT/ SPEN), in the infected macrophages to aid in FM formation. Immunohistochemistry and immunofluorescence experiments utilizing in vivo murine granuloma model using M. bovis BCG substantiated these observations. Thus, our study has unveiled novel roles for JMJD3 and its regulators in epigenetic regulation of LB generation in FMs.
Altogether, we have established significant roles for several new host factors and inhibitory, survival mechanisms employed by pathogenic mycobacteria. Emphasis on functions of miRNAs and epigenetic regulation in the study has underscored the importance of fine-tuning immune responses during mycobacterial pathogenesis to determine the cell-fate and shape the course of infection. Further understanding and evaluation of these molecular regulators bears potential importance in disease control by aiding the search for effective drugs and therapeutics.
|
57 |
Implication de la signalisation de la tyrosine kinase Yes dans la carcinogenèse hépatiqueLapouge, Marjorie 07 1900 (has links)
Le carcinome hépatocellulaire (CHC) est la première néoplasie létale du foie, représentant 80 à 90% des cas. Actuellement, la majeure partie des patients bénéficient de solutions thérapeutiques avec des efficacités très modestes. La haute variété étiologique, l’hétérogénéité des tumeurs ainsi que l’absence de médiateurs oncogéniques clés connus dans le développement de cette pathologie sont responsables du manque d’options thérapeutiques.
À partir d’un crible génétique du kinome humain, nous avons identifié la tyrosine kinase Yes comme un acteur majeur de la prolifération des cellules de CHC. Yes appartient à la famille des kinases Src qui contrôlent de nombreux processus cellulaires notamment la prolifération, la motilité et la survie. La sur-expression ou activation anormale de Yes est retrouvée dans de nombreux cancers et est souvent associée à un mauvais pronostic.
Nous avons démontré par des expériences in vitro et in vivo l’activité pro-proliférative de Yes ainsi que son potentiel oncogénique. Notamment, dans un modèle murin de carcinogenèse hépatique induit par le diéthylnitrosamine, la déplétion génétique de Yes abolit totalement la formation de tumeurs. Grâce aux profils transcriptionnels obtenus dans plusieurs modèles cellulaires de CHC, nous avons découvert que l’activité de Yes est associée à une augmentation des signatures géniques des régulateurs transcriptionnels YAP et TAZ ainsi que du facteur transcriptionnel c-Myc. Ces observations ont abouti à identifier YAP, TAZ et c-Myc comme des nouveaux substrats de la tyrosine kinase Yes.
Nous avons montré que la phosphorylation par Yes de YAP et TAZ médie leur recrutement dans le noyau ce qui conduit à une hausse de leur activité transcriptionnelle. Nous avons d’ailleurs confirmé l’importance de YAP et TAZ dans les propriétés prolifératives de Yes, notamment dans différents modèles murins de carcinogenèse hépatique. De manière intéressante, nous avons observé que près de 50% de CHCs humains présentent une activation anormale des kinases Src qui corrèle avec la phosphorylation et activation de YAP.
Enfin, nous avons observé in vitro et in vivo que Yes stabilise c-Myc. En effet, l’expression transgénique de Yes constitutivement actif dans des hépatocytes entraine la stabilisation de c-Myc à des stades précoces du développement tumoral et une induction de plusieurs de ses gènes cibles à des stades plus tardifs. En plus de leur synergie d’action, cette étude propose que la tyrosine Yes intervient dans les propriétés oncogéniques de c-Myc.
Finalement, nous avons découvert que la kinase Yes joue un rôle dans la progression de la stéatose hépatique. En effet, la progression de la pathologie est abolie à la suite de la déplétion de Yes ou suivant l’inhibition pharmacologique des kinases Src. De plus, la survie des cellules tumorales face à leur élimination par le système immunitaire semble être favorisé par la signalisation Yes qui induit l’expression des points de contrôle immuns PD-L1/2.
En conclusion nous avons découvert et caractérisé trois nouveaux effecteurs clés de la signalisation oncogénique de la tyrosine kinase Yes dans le CHC. D’ailleurs, la signature génique induite par Yes permet de prédire la survie des patients atteints de CHC. Ces données fournissent de robustes évidences qui placent la tyrosine kinase Yes comme une cible thérapeutique de choix pour la maladie du CHC. / Hepatocellular carcinoma (HCC) is the first lethal neoplasia of the liver, representing 80 to 90% of cases. Currently, for most patients the therapeutic option only provides modest efficiencies. The high etiological variety and heterogeneity of the tumors as well as the absence of known key oncogenic mediator in the development of this pathology is mainly responsible for the lack of therapeutic option.
Based on a genetic screen of the human kinome, we identified the tyrosine kinase Yes as a major player in the proliferation of HCC cells. Yes belongs to the family of Src kinases which control many cellular processes including proliferation, motility and survival. The over-expression or abnormal activation of Yes is detected in many cancers and is often associated with poor prognosis.
We have demonstrated in vitro and in vivo the pro-proliferative activity of Yes as well as its oncogenic potential. In particular, in a mouse model of hepatic carcinogenesis induced by diethylnitrosamine, the genetic depletion of Yes completely abolishes the formation of tumors. Thanks to the transcriptional profiles obtained in several cellular models of CHC, we discovered that the activity of Yes is associated with an increase in the gene signatures of the transcriptional regulators YAP and TAZ as well as of the transcriptional factor c-Myc. These observations led to the identification of YAP, TAZ and c-Myc as new substrates for the tyrosine kinase Yes.
We have shown that the phosphorylation of YAP and TAZ by Yes mediates their recruitment into the nucleus associated with an increase in their transcriptional activity. We have also confirmed the importance of YAP and TAZ in the proliferative properties of Yes in various mouse models of hepatocarcinogenesis. Interestingly, we observed that nearly 50% of human CHCs exhibit an abnormal activation of Src kinases that correlates with phosphorylation and activation of YAP.
Moreover, in vitro and in vivo experiments revealed that Yes stabilizes c-Myc. Indeed, the transgenic expression of constitutively active Yes into hepatocytes leads to the accumulation of c-Myc protein at early stages of tumor development and to the induction of several of its target genes at later stages. In addition to their synergistic action, this study suggests that Yes is involved in the oncogenic properties of c-Myc.
Finally, we discovered that Yes kinase plays a role in the progression of fatty liver diseases. Indeed, the progression of the pathology is abolished following the depletion of Yes or the pharmacological inhibition of Src kinases. In addition, the survival of Yes-active tumor cells is associated with the induction of PD-L1/2 immune checkpoints that protect cells from immune elimination.
In conclusion, we have discovered and characterized three new key effectors of the oncogenic tyrosine kinase Yes in HCC. Interestingly, the gene signature induced by Yes can predict the survival of patients with HCC. These data provide strong evidence for targeting the tyrosine kinase Yes in HCC.
|
58 |
The multifactorial regulation of the immune checkpoint PD-L1 in the course of H. pylori infectionSigulla, Janine 18 March 2021 (has links)
Eines der prävalentesten humanen Pathogene ist das Magenbakterium Helicobacter pylori, welches ca. die Hälfte der Weltbevölkerung infiziert. Die Persistenz geht mit einer chronischen Gastritis einher, welche bis zu Magenkrebs fortschreiten kann. H.pylori bedient sich diverser Mechanismen um sich der Erkennung des Immunsystems zu entziehen und somit eine chronische Infektion zu ermöglichen. Erhöhte Expression des Immunzellinhibitors PD-L1 wurde in Magenepithelzellen gefunden, welche mit diesem Gram-negativen Erreger infiziert wurden. In dieser Arbeit wurde die Regulation auf in vitro Ebene untersucht, wobei zwei unterschiedliche Mechanismen identifiziert wurden. Ursächlich für die frühe PD-L1-Induktion ist die ADP-heptose/ALPK1 Signalkaskade. Der bakterielle Metabolit ADP-heptose, welcher für die Bildung von LPS benötigt wird, wurde als PAMP identifiziert, welcher durch das Sekretionssystems cagT4SS in die infizierte transportiert und anschließend von der Host Kinase ALPK1 erkannt wird. Gegensätzlich hierzu, wurde festgestellt, dass die zweite PD-L1-Hochregulation auf der metabolischen Reprogrammierung des Wirts beruht. Ein Merkmal von H. pylori ist dessen Bedarf an Cholesterin, welches es aus dem Medium oder aus membranösen Lipidregionen des Wirts extrahiert wird. Es konnte bewiesen werden, dass dieser Sterol-Abbauprozess zu einer erhöhten Stoffwechselaktivität führt, die spezifisch mit einer Zunahme der Glykolyse verbunden ist und mit einer Expressionsverschiebung des ersten Glykolyseenzyms Hexokinase von der Isoform 1 zu 2 einhergeht. Knockdown und Knockout- Experimente wiesen auf einen Zusammenhang mit der Regulation des Immunzellinhibitoren PD-L1 hin. / One of the most prevalent bacteria is the gastric bacterium Helicobacter pylori, which infects half of the world’s population. Persistence is accompanied with chronic gastritis which can progress towards gastric cancer. Several strategies are used by H.pylori to evade the immune system, enabling chronic infection. Heightened expression of the immune cell inhibitor PD-L1 was found in gastric epithelial cells, infected with this Gram-negative pathogen. Within this thesis, upregulation was studied in in vitro models, revealing two distinct mechanism. Causative for early PD-L1 induction is the ADP heptose/ALPK1 signaling axis. The bacterial metabolite ADP heptose, which is needed for LPS synthesis, was identified as PAMP, which is transported through the secretion system cagT4SS into the infected cell and is recognized by the host kinase ALPK1. In contrast, late upregulation of PD-L1 was found to be linked to metabolic reprogramming upon infection. Characteristic to H.pylori is its need of cholesterol, which it has to extract from the surrounding medium or lipid-rich regions within the host membrane. It could be shown that this sterol extraction process is accompanied with an increased metabolic activity which is linked with enhanced glycolysis and an expression shift of the glycolytic enzyme hexokinase isoform 1 to 2. Knockdown and knockout experiments showed a link between HK2 and regulation of the immune checkpoint PD-L1.
|
59 |
Corona Virus 229E, NL63 And OC43 Infection Of Human Monocyte-Derived Dendritic Cells: Modulation of Immune Effector FunctionLister, Erin 10 1900 (has links)
<p> Virus-induced modulation of dendritic cell function is thought to be an effective mechanism for viral-immune evasion. The severe-acute respiratory syndrome coronavirus (SARS-CoV) has been shown to infected human myeloid dendritic cells (MDCs) and directly modulate the cellular cytokine production. The ability of other human coronaviruses to infect MDCs and impair cell immune function has not been assessed. </p>
<p> This thesis describes the infection of human MDCs with coronavirus 229E, NL63, and OC43. 229E showed productive, but limited genomic replication, nucleocapsid protein synthesis and infectious progeny release in MDCs. 229E infection stimulated IFN-α, IL-6 and MCP-1 production in MDCs, but little to no IL-12, TNF-α, IL-8, IP-10, or RANTES . 229E-infected MDCs showed poor CD80 expression, down-regulated CD86 and HLA-DR expression and were poor stimulators of CD4+ T cell proliferation. In contrast to 229E, OC43 showed persistent and productive genomic replication, nucleocapsid protein synthesis and infectious progeny release in MDCs. OC43 infection stimulated IFN-α, IL-12, IP-10 and MCP-1 production in MDCs, but little to no TNF-α, IL-6, IL-8 or RANTES . The up-regulation of maturation molecules and CD4+ T cell stimulatory capacity in OC43-infected MDCs was donor cell-dependent. In contrast to 229E and OC43, NL63 infection of MDCs was non-productive, showing no viral genomic replication, protein production or infectious progeny release. NL63 infection stimulated strong cytokine (IFN-α, IL-12, TNF-β and IL-6) and chemokine (IL-8, IP-10, RANTES and MCP-1) responses in MDCs. NL63-infected MDCs showed up-regulated CD80, CD83, CD86 and HLA-DR expression and were efficient stimulators of CD4+ T cell proliferation. </p>
<p> This study provides the first evidence that human coronaviruses other than SARSCo V can abrogate MDC immune effector function. It also provides the first side-by-side comparison of 229E, NL63 and OC43 and identifies the potential of 229E and OC43 to impair MDC cytokine production and T cell stimulation as a mechanism of immune response evasion. <p> / Thesis / Doctor of Philosophy (PhD)
|
60 |
IFN-Gamma-Mediated Immunoevasive Strategies in Multiple MyelomaCiarlariello, Paul David 08 August 2016 (has links)
No description available.
|
Page generated in 0.0732 seconds