• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 13
  • 12
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 102
  • 40
  • 31
  • 26
  • 17
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structural and optical properties of short period superlattices for rational (In,Ga)N

Anikeeva, Mariia 10 February 2020 (has links)
In dieser Arbeit untersuchen wir ultradünne (In,Ga)N Quantentöpfe (QW) in Form von kurzperiodischen Übergittern auf (0001) GaN. Wir charakterisieren dieser Strukturen mit verschiedenen Methoden, d.h.: die hochauflösende Transmissionselektronenmikroskopie, die Rastertransmissionselektronenmikroskopie, Röntgenbeugung und die hochenergetischer Refeflexionselektronenbeugung an Oberflächen, sowie die Photolumineszenz (PL) und die Kathodolumineszenz. Wir fokussieren uns dabei auf die Quantifizierung des Indiumgehaltes solche ultradünnen Schichten und diskutieren über grundlegende optische Eigenschaften dieser Übergitter. Wir finden, dass: 1. Der Indiumeinbau in GaN unter Exposition von In und N-Fluss ist selbst-begrenzend auf eine Zusammensetzung von 25% und eine Schichtdicke von einer Monolage. Die Variation der Wachstumsbedingungen führen weder nicht zu einer Höhung des Indiumgehalts noch der Schichtdicke. Diese Selbstbegrenzung ist im Ergebnis auf die Unterschiede in der Bildungsenthalpie von InN und GaN und auf die hohe Gitterfehlanpassung des Systems. Die niedrigste Energiekonfiguration ist einer (2»3×2»3)R30° Oberflächenrekonstruktion. 2. In diesen polaren In0.25Ga0.75N Übergitter Polarisationsfelder, Dickenfluktuationen oder Kompositionsschwankungen keine wesentliche Rolle spielen. Unsere optischen Studien in Kombination mit DFT-Berechnungen zeigen, dass der Rekombinationsprozess durch den Einschluss der Lochwellenfunktion in den Monoschichten gesteuert wird, dass mit abnehmender Barrieredicke verändert werden können. Im Gegenteil, ist die Elektronenwellenfunktion immer delokalisiert. Unsere Übergitter Phänomene sind als in konventionellen QWs, z.B. den nichtexponentiellen Abfall der PL-Intensität, die spektrale Abhängigkeit der PL Lebensdauer und eine S-förmige Temperaturabhängigkeit des Emissionspeaks. Die letzte lassen sich durch das Zusammenspiel von Ladunsgträgerlokalisation und nicht-strahliger Rekombination erklären. / In this work we investigate ultra-thin (In,Ga)N quantum wells (QWs) grown on (0001) GaN in the form of short-period superlattices (SLs). We perform a comprehensive study of these structures via various methods, i.e.: high resolution transmission electron microscopy, scanning transmission electron microscopy, x-ray diffraction and reflection high-energy electron diffraction, as well as photoluminescence (PL) and cathodoluminescence. We focus on the quantification of In incorporation and study basic optical properties of these SLs. The main results of our investigations are: 1. The In incorporation into GaN under exposure of In and N flux is self-limited to a composition of 25% and a layer thickness of one monolayer. Varying growth conditions do not increase the In content or the layer thickness. This self-limitation is a result of the differences in formation enthalpy of InN and GaN and the high lattice mismatch of the system. The lowest energy configuration that sets maximum In concentration to a fundamental limit of 25%, stable under various growth regimes, is the one with (2»3×2»3)R30° surface reconstruction. 2. Our polar In0.25Ga0.75N SLs serve as model system for recombination process in (In,Ga)N since their recombination is not suffering from polarization fields, well-width or high compositional fluctuations. The optical studies combined with DFT calculations show that the recombination process is governed by the confinement of the hole wavefunction in the QWs, that can be substantially weakened by decreasing barrier thickness. This leads to an increase of non-radiative recombination in the barriers. In the opposite, the electron wave function is always delocalized. Our SLs show common phenomena observed in conventional QWs or bulk alloys like a non-exponential decay of the PL intensity, spectral dependence of the decay time and S-shape temperature dependence. The latter can be explained by the interplay of carrier localization and non-radiative recombination.
42

Thermodynamic Studies On The Synthesis Of Nitrides And Epitaxial Growth Of Ingan

Monga, Zinki 01 January 2007 (has links)
Nitride semiconductor materials have been used in a variety of applications, such as LEDs, lasers, photovoltaic cells and medical applications. If incandescent bulbs could be replaced by white GaN LEDs, they would not only provide compactness and longer lifetime, but this would also result in huge energy savings. A renewed interest in InGaN emerged recently after it was discovered that the band gap for InN is 0.7eV, instead of the previously published value of 1.9eV. Thus InGaN solid solutions cover almost the whole visible spectrum, from a band gap of 3.34eV for GaN and 0.7eV for InN. Hence, InGaN can have excellent applications for photovoltaic cells. The objective of this work was to investigate and search for new ways of synthesis of nitrides. We studied the thermodynamics and evaluated chemical compatibilities for the growth of AlN, GaN, InN and their solid solutions from metallic solvents. The compatibility between potential substrate, crucible and solvent materials and various growth atmospheres was evaluated from Gibbs free energy calculations. Most of the nitride synthesis experiments performed by other groups were at higher temperatures (around 2,000C) and pressures up to 1GPa using different growth methods. Therefore, their results could not be extrapolated to our growth system, as their growth conditions were significantly different from ours Moreover, to the best of our knowledge; no-one has ever evaluated such compatibilities by thermodynamic calculations. We used those calculations to design our experiments for further studies on nitrides. Experimentally, we encountered fewer issues such as corrosion problems than others observed with their growth procedures, because near-atmospheric pressures and temperatures not exceeding 1,000C could be used. Preliminary experiments were performed to confirm the thermodynamic computations and test the behavior of the chosen system. A suitable configuration was found that allowed to nucleate films of InGaN on the templates. Nitride templates or 'Buffer layers' were used to saturate the solution and grow the films. A relatively simpler configuration, to create a temperature gradient in the solution was used. Two templates were placed in the crucible, one at the top and the other one at the bottom. The temperature was raised to 950C and they were soaked there for 15-20hrs. After the growth the surface morphology was analyzed using an optical microscope and it was found to be entirely different for both the templates. The atoms from the top template dissolved and attached at the bottom template. This can be explained by the thermal gradient between the two templates: one at the bottom was at lower temperature than the top template, so there was diffusion from the top substrate towards the bottom one. AFM studies were carried out on the film to study the surface morphology of the top and the bottom templates. Growth hillocks having step height typically between 15 and 50 nm were observed. Such hillocks were not present on the templates before the experiment.
43

Fabrication of Si/InGaN Heterojunction Solar Cells by RF Sputtering Method: Improved Electrical and Optical Properties of Indium Gallium Nitride (InGaN) Thin Films

Jakkala, Pratheesh Kumar 15 June 2017 (has links)
No description available.
44

Towards high electron mobility in Gan(0001) based InGaN and AlGaN heterostructures / Hohe Elektronenbeweglichkeit in GaN(0001) basierten InGaN und AlGaN Heterostrukturen

Broxtermann, Daniel 28 October 2011 (has links)
No description available.
45

Amélioration de l'incorporation d'indium dans zone active à base d'InGaN grâce à la croissance sur pseudo-substrat InGaN pour l'application à la DEL blanche monolithique / In incorporation improvement in InGaN based active region using InGaN pseudo substrate for monolithic white LED application

Even, Armelle 27 February 2018 (has links)
Les Diodes Electroluminescentes (DEL) à base de composés III-nitrures sont très efficaces pour les longueurs d’ondes correspondant à la couleur bleue. Ces DELs bleues sont très utilisées sur le marché car leur combinaison avec des phosphores produit une lumière blanche. Néanmoins, cette approche a plusieurs inconvénients tels que l’instabilité de la température de couleur ou les pertes liées à la conversion. Dans ce contexte la DEL blanche monolithique dont la lumière blanche est obtenue directement dans la zone active grâce à l’émission des puits quantiques à différentes longueurs d’ondes est envisagée.Pourtant, lorsque la longueur d’onde d’émission augmente, le rendement d’émission des puits quantiques InGaN/GaN diminue. Ceci est problématique pour l’application de la DEL blanche monolithique mais également pour l’application micro-display qui nécessite idéalement des DELs monochromatiques bleues, vertes et rouges fabriquées à partir de la même famille de matériaux. Ce problème est principalement du à la différence importante de paramètre de maille entre les puits quantiques InGaN et la couche GaN sur saphir utilisée comme substrat qui provoque une forte contrainte compressive. Cette contrainte est à l’origine d’un champ électrique interne dans les puits quantiques, préjudiciable au rendement d’émission, et d’un taux d’incorporation d’indium faible bien qu’originellement thermodynamiquement difficile.Cette thèse de doctorat propose de résoudre ce problème en réalisant la croissance de la DEL sur un pseudo-substrat InGaN appelé InGaNOS fabriqué par Soitec.Après avoir identifié les limitations des structures InGaN/GaN sur substrat GaN sur sapphire classique pour l’émission efficace à grande longueur d’onde, des structures « tout-InGaN » ont été crues par EPVOM sur substrats InGaNOS. Il a été démontré que la contrainte était partiellement relaxée et que l’incorporation d’indium était plus facile. Grâce à des caractérisations optiques et structurelles fines, les différentes étapes depuis la reprise de croissance InGaN jusqu’à la DEL complète ont été étudiées. En photoluminescence (PL), la longueur d’onde de 617 nm a été atteinte à température ambiante. Les performances optiques de ces structures de puits quantiques dans les régions spectrales correspondant au vert, jaune et ambre ont été mesurées et sont comparables aux meilleures valeurs de la littérature. Enfin, la croissance de la première DEL « tout InGaN » sur substrat InGaN a révélé les challenges restants qui nécessiteront des développements complémentaires. / Light emitting diodes (LEDs) based on nitride materials are very efficient in the blue range. These blue LEDs combined with phosphors are used to manufacture white LEDs widely used in the lighting market. Nonetheless, this converted approach presents some disadvantages , like an instability of the color temperature or conversion losses. In this context, the white monolithic LED which produces the white color thanks to different emission wavelengths produced from quantum wells (QWs) placed in the active region is one of the considered solution.However, as emission wavelength increases the quantum efficiency of the InGaN based QWs decreases. This is problematic for the white monolithic application but also for micro-display application which both ideally requires red, green and blue monochromatic LEDs grown in the same material system. This issue is mainly due to the great lattice mismatch between the InGaN QW and the GaN layer on sapphire substrate which induces an important compressive strain. This strain is responsible for a strong internal electric field in the QWs, which is detrimental for the quantum efficiency, and for low indium incorporation rate in GaN, originally thermodynamically difficult.This PhD thesis proposes to tackle this issue by growing the LED on an InGaN pseudo-substrate called InGaNOS manufactured by Soitec.After identifying the limitations of InGaN based structures grown on regular GaN on sapphire substrate for efficient long wavelength emission, full InGaN structures were grown by MOCVD on InGaNOS substrates. It was shown that the strain was partially released and the indium incorporation was made easier. Through fine structural, optical and electrical characterizations, the different steps leading from the InGaN buffer regrowth stage to the complete processed LED were studied. PL emission wavelengths up to 617 nm were reached at room temperature. The optical performances of these MQW structures in the green, yellow and amber range were measured to be comparable to the best ones achieved in the literature. Finally, the growth of the first full InGaN LED structure on InGaN substrate revealed the remaining challenges that will require some additional developments.
46

Croissance par épitaxie par jets moléculaires et détermination des propriétés structurales et optiques de nanofils InGaN/GaN / Structural and optical properties of MBE-grown InGaN/GaN nanowire heterostructures for LEDs

Tourbot, Gabriel 11 June 2012 (has links)
Ce travail a porté sur la croissance par épitaxie par jets moléculaires de nanofils InGaN/GaNsur Si (111).Le dépôt d'InGaN en conditions riches azote sur des nanofi ls GaN pré-existants permet deconserver la structure colonnaire. La morphologie des nanofi ls s'est révélée dépendre fortementdu taux d'indium utilisé dans les fl ux. A faible taux nominal d'indium celui-ci se concentre dansle coeur du fi l, ce qui résulte en une structure coeur-coquille InGaN-GaN spontanée. Malgré letaux d'indium important dans le coeur, la relaxation des contraintes y est entièrement élastique.La luminescence est dominée par des eff ets de localisation de porteurs qui donnent lieu à unebonne tenue en température. Au contraire, à plus fort flux nominal d'indium il y a relaxationplastique des contraintes et aucune séparation de phase n'est observée.L'étude d'insertions InGaN permet de con firmer que, malgré le faible diamètre des nano fils, lacroissance est dominée par la nécessité de relaxation des contraintes, et la nucléation de l'InGaNse fait sous la forme d'un îlot facetté. Il en résulte une incorporation préférentielle de l'indiumau sommet de l'îlot, et donc un gradient radial de composition qui se développe en structurecoeur-coquille spontanée au cours de la croissance.Au contraire, la croissance en conditions riches métal entraîne une croissance latérale trèsimportante, nettement plus marquée dans le cas d'InGaN que de GaN : l'indium en excès a une ffet surfactant qui limite la croissance axiale et favorise la croissance latérale. / This work reports on the molecular-beam-epitaxial growth of InGaN/GaN nanowires on Si(111) substrates.The deposition of InGaN in nitrogen-rich conditions on preexisting GaN nanowires allows usto maintain the columnar structure. Wire morphology varies strongly with the indium concentrationin the fluxes. At low nominal In flux, it concentrates in the wire core, resulting in aspontaneous InGaN-GaN core-shell structure. In spite of the high indium content in the core,strain relaxation is purely elastic in these structures. On the other hand, using higher nominal Influxes lead to plastic relaxation and no phase separation is observed. Luminescence is dominatedby carrier localization phenomena, allowing for a low quenching of the emission up to roomtemperature.Studying InGaN insertions con firms that in spite of the small diameter of the wires, growthis dominated by strain relaxation e ffects, and InGaN nucleates as facetted islands. The incorporationof indium occurs preferentially at the top of the islands, resulting in a radial compositiongradient which leads to the spontaneous growth of a core-shell structure.Growth in metal-rich conditions results in a very strong lateral growth, far superior for InGaNthan for GaN : excess In has a surfactant e ffect limiting the axial growth rate and promotinglateral growth.
47

Micro- et nanofils de Ga (In)N et GaAs par épitaxie en phase vapeur par la méthode aux hydrures (HVPE) / Ga(In)N and GaAs micro- and nanowires grown by Hydride Vapor Phase Epitaxy (HVPE)

Avit, Geoffrey 16 December 2014 (has links)
Le manuscrit traite de l'épitaxie en phase vapeur par la méthode aux hydrures (HVPE) de micro- et nanofils Ga(In)N et GaAs. La HVPE est une méthode de croissance originale qui utilise des précurseurs en éléments III chlorés permettant des vitesses de croissance importantes. La croissance sélective de réseaux de microfils GaN sur des substrats silicium avec et sans couche tampon d'AlN, masqués par un diélectrique, est étudiée. Nous montrons que sans la couche tampon, la nucléation de plusieurs fils par ouverture a lieu. Par contre, l'emploi d'une couche tampon d'AlN entre le masque diélectrique et le substrat silicium permet la synthèse de réseaux de fils de grande qualité cristalline et optique par HVPE. Une étude théorique et expérimentale de la croissance d'InGaN par HVPE est effectuée. Les résultats indiquent qu'avec un précurseur pour l’élément indium de type InCl, la synthèse d'InGaN est très difficile ; mais, qu'elle est en revanche facilitée par l'emploi d'un précurseur de type InCl 3 . Nous démontrons la croissance de nanofils GaN/AlN coeur/coquille sur substrat saphir plan c en une seule étape. Un mécanisme original mixte VLS-VS est proposé en guise d'explication. La stabilité de la phase Zinc-Blende de nanofils GaAs, ultra-longs et de diamètre 10 nm, obtenus par un procédé VLS catalysé Au, est démontrée pour la première fois expérimentalement et est expliquée grâce à un modèle thermodynamique et cinétique de nucléation. / The manuscript deals with the growth of Ga(In)N and GaAs micro- and nanowires by hydride vapor phase epitaxy (HVPE). HVPE is an original growth process with very high growth rates. This particular feature is due to the use of chloride molecules as element III precursors. Selective area growth of arrays of GaN microwires on silicon substrates covered by a dielectric mask, with or without an intermediate AlN buffer layer, is studied. We show that without the AlN buffer layer, nucleation of many wires in a single opening cannot be prevented. On the other hand, with an intermediate AlN buffer layer between the silicon substrate and the dielectric mask, the growth of arrays of microwires with high crystalline and optical properties is achieved. A theoretical and experimental study of the growth of InGaN is carried out. Results show that with InCl as indium precursor, synthesis of InGaN is difficult, but the use of InCl 3 precursors makes it easier. The growth of core/shell GaN/AlN nanowires on c-sapphire substrates in a single step process is demonstrated. A mixed VLS/VS growth mechanism is proposed as explanation. The stability of the Zinc-Blende phase in ultra-long and 10 nanometers in diameter GaAs nanowires grown by Au-assisted VLS is experimentally demonstrated for the first time. This is successfully explained by a nucleation model involving thermodynamic and kinetic considerations.
48

Development of Zn-IV-N2 and III-N/Zn-IV-N2 Heterostructures for High Efficiency Light Emitting Diodes Emitting Beyond Blue and Green

Karim, Md Rezaul 13 October 2021 (has links)
No description available.
49

Contrôle de l'homogénéité et de la composition en indium dans les nanofils InGaN synthétisés par HVPE / Growth of InGaN nanowires by HVPE with the control of indium composition and substrate homogeneity

Zeghouane, Mohammed 02 October 2019 (has links)
Ce mémoire traite de l’étude de la croissance de nanofils (In,Ga)N par épitaxie en phase vapeur par la méthode aux hydrures (HVPE). L’objectif est de contrôler l’homogénéité, la composition et les dimensions des fils. La première partie de ce travail est consacrée à l’étude de la croissance auto-organisée de nanofils InGaN par HVPE. Les résultats montrent qu’il est possible de maitriser la composition des fils en indium, de 7 % à 90 %, en ajustant la composition de la phase vapeur. Des caractérisations structurales confirment une très bonne qualité cristalline des nanofils InGaN obtenus ainsi qu’une parfaite homogénéité sur leurs longueurs. Ce travail expérimental a été couplé à un travail de modélisation théorique basée sur des calculs thermodynamiques. Un deuxième travail portant sur l’étude de l’épitaxie sélective de réseaux de fils (In,Ga)N sur des templates GaN/c-Al2O3, masqués par un diélectrique, est réalisée. La croissance, parfaitement sélective et reproductible, de nano- et microrods d’InN de très bonne qualité cristalline est démontrée pour la première fois par HVPE. Une étude systématique sur l’influence des paramètres de croissance a permis de déterminer la hiérarchie des vitesses de croissance des différentes facettes des rods et d’identifier les phénomènes physiques mis en jeu. Un modèle de croissance basé sur les énergies de surface et d’interface est proposé afin d’expliquer la présence d’un creux dans les rods d’InN. Des études en photoluminescence sur des ensembles de nanorods d’InN ont mis en évidence un fort dopage de type n et indiquent également la présence d’une surface d’accumulation des porteurs de charge sur les parois des rods. Enfin, l’étude de la faisabilité de la croissance sélective d’InGaN par HVPE est initiée. / This thesis focuses on a comprehensive study of (In, Ga)N nanowires grown by hydride vapor phase epitaxy (HVPE), combining the growth technology, complementary chemical and structural analyses and theoretical modeling. The first part of this work is devoted to the study of the self-induced growth of InGaN nanowires by HVPE. The end result shows that growth of vertically aligned InGaN nanowires with a high crystalline quality can be synthesized by this cost-effective technique. The indium content can be varied from 7 % to 90 % with a high degree of homogeneity along the nanowire length with a good crystal quality. This is achieved by understanding the kinetics of interconnected chemical reactions in the vapor phase, and coupling them with the kinetically controlled composition of solid nanowires. The second focus section of this work looks at the selective area growth of (In, Ga)N nanorods. Well-ordered and vertically aligned InN nano and microrods with high aspect ratio and high crystalline quality are synthetized by HVPE using the SAG approach. The growth occurs through the apertures of a SiNx masked Ga-polar GaN/c-Al2O3 template for adjusted growth temperature and V/III ratio. A systematic study of the evolution of InN nanorods shape under various growth conditions: growth temperature, growth time and the input NH3 partial pressure, is investigated. A growth model based on surface and interface energies is proposed to explain the presence of a void in these InN nanorods. Photoluminescence measurements on InN nanorods reveal strong n-type doping and indicate the presence of a carrier accumulation on the nanorods surfaces. Finally, the selective growth feasibility of InGaN nanorods by HVPE is initiated.
50

Dynamique de recombinaison dans les puits quantiques InGaN/GaN

Brosseau, Colin N. 08 1900 (has links)
Nous étudions la recombinaison radiative des porteurs de charges photogénérés dans les puits quantiques InGaN/GaN étroits (2 nm). Nous caractérisons le comportement de la photoluminescence face aux différentes conditions expérimentales telles la température, l'énergie et la puissance de l'excitation et la tension électrique appliquée. Ces mesures montrent que l'émission provient d'états localisés. De plus, les champs électriques, présents nativement dans ces matériaux, n'ont pas une influence dominante sur la recombinaison des porteurs. Nous avons montré que le spectre d'émission se modifie significativement et subitement lorsque la puissance de l'excitation passe sous un certain seuil. L'émission possède donc deux ``phases'' dont nous avons déterminé le diagramme. La phase adoptée dépend à la fois de la puissance, de la température et de la tension électrique appliquée. Nous proposons que la phase à basse puissance soit associée à un état électriquement chargé dans le matériau. Ensuite, nous avons caractérisé la dynamique temporelle de notre échantillon. Le taux de répétition de l'excitation a une influence importante sur la dynamique mesurée. Nous concluons qu'elle ne suit pas une exponentielle étirée comme on le pensait précédemment. Elle est exponentielle à court temps et suit une loi de puissance à grand temps. Ces deux régimes sont lié à un seul et même mécanisme de recombinaison. Nous avons développé un modèle de recombinaison à trois niveaux afin d'expliquer le comportement temporel de la luminescence. Ce modèle suppose l'existence de centres de localisation où les porteurs peuvent se piéger, indépendamment ou non. L'électron peut donc se trouver sur un même centre que le trou ou sur n'importe quel autre centre. En supposant le transfert des porteurs entre centres par saut tunnel on détermine, en fonction de la distribution spatiale des centres, la dynamique de recombinaison. Ce modèle indique que la recombinaison dans les puits InGaN/GaN minces est liée à des agglomérats de centre de localisation. / We study the radiative recombination of optically generated charges in thin (2 nm) InGaN quantum wells. We characterise the behaviour of the photoluminescence with varying experimental conditions such as temperature, energy and power of the excitation and externally applied voltage. These measurements show that emission comes from localised states. We also show that electric fields, natively present in these materials, do not have a dominating effect on charge carrier dynamics. We have shown that the emission spectrum changes significantly and rapidly when the excitation power drops below a certain level. The emission has two phases of which we have measured the diagram. The phase of the emission depends on the power of the excitation, the temperature and the electric field. We propose that the low power phase is associated with an electrically charged state in the material. Decay dynamics was then characterised. We find that the excitation repetition rate has an influence on the measured dynamics. We conclude that the dynamics are not stretched-exponential as it was originally thought. The dynamics are exponential at short time and follow a power law at long time. This byphasic character results from a single recombination process. We have developped a three-level recombination model to describe experimental dynamics. It supposes the existence of localisation states where carriers can localise, independently or not. This means that the electron can be localised on the same state as the hole or on any other state. If we suppose that inter-state transitions occurs by a tunnel effect, one can determine the decay dynamics as a function of the localisation states' spatial distribution. Henceforth, we then show that radiative recombination in thin InGaN/GaN quantum wells is dominated by localisation and charge separation.

Page generated in 0.1477 seconds