Spelling suggestions: "subject:"integrable lemsystems"" "subject:"integrable atemsystems""
21 |
Symplectic topology, mirror symmetry and integrable systems.Rossi, Paolo 21 October 2008 (has links) (PDF)
Using Sympelctic Field Theory as a computational tool, we compute Gromov-Witten theory of target curves using gluing formulas and quantum integrable systems. In the smooth case this leads to a relation of the results of Okounkov and Pandharipande with the quantum dispersionless KdV hierarchy, while in the orbifold case we prove triple mirror symmetry between GW theory of target P^1 orbifolds of positive Euler characteristic, singularity theory of a class of polynomials in three variables and extended affine Weyl groups of type ADE.
|
22 |
Semi-toric integrable systems and moment polytopesWacheux, Christophe 17 June 2013 (has links) (PDF)
Un système intégrable semi-torique sur une variété symplectique de dimension 2n est un système intégrable dont le flot de n − 1 composantes de l'application moment est 2 -périodique. On obtient donc une action hamiltonienne du tore Tn−1. En outre, on demande que tous les points critiques du système soient non-dégénérés et sans composante hyperbolique. En dimension 4, San V˜u Ngo.c et Álvaro Pelayo ont étendu à ces systèmes semi-toriques les résultats célèbres d'Atiyah, Guillemin, Sternberg et Delzant concernant la classification des systèmes toriques. Dans cette thèse nous proposons une extension de ces résultats en dimension quelconque, à commencer par la dimension 6. Les techniques utilisées relèvent de l'analyse comme de la géométrie symplectique, ainsi que de la théorie de Morse dans des espaces différentiels stratifiés. Nous donnons d'abord une description de l'image de l'application moment d'un point de vue local, en étudiant les asymptotiques des coordonnées actionangle au voisinage d'une singularité foyer-foyer, avec le phénomène de monodromie du feuilletage qui en résulte. Nous passons ensuite à une description plus globale dans la veine des polytopes d'Atiyah, Guillemin et Sternberg. Ces résultats sont basés sur une étude systématique de la stratification donnée par les fibres de l'application moment. Avec ces résultats, nous établissons la connexité des fibres des systèmes intégrables semi-toriques de dimension 6 et indiquons comment nous comptons démontrer ce résultat en dimension quelconque.
|
23 |
The Drinfeld Double of Dihedral Groups and Integrable SystemsPeter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
|
24 |
The Drinfeld Double of Dihedral Groups and Integrable SystemsPeter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
|
25 |
Géométrie et topologie de systèmes dynamiques intégrables / Geometry and topology of integrable dynamical systemsBouloc, Damien 30 June 2017 (has links)
Dans cette thèse, on s'intéresse à deux aspects différents des systèmes dynamiques intégrables. La première partie est dévouée à l'étude de trois familles de systèmes hamiltoniens intégrables : les systèmes de pliage de Kapovich et Millson sur les espaces de modules de polygones 3D de longueurs de côtés fixées, les systèmes de Gelfand-Cetlin introduits par Guillemin et Sternberg sur les orbites coadjointes du groupe de Lie U(n), et une famille de systèmes définie par Nohara et Ueda sur la variété grassmannienne Gr(2,n). Dans chaque cas on montre que les fibres singulières de l'application moment sont des sous-variétés plongées et on en donne des modèles géométriques sous la forme de variétés quotients. La deuxième partie poursuit une étude initiée par Zung et Minh sur les actions totalement hyperboliques de Rn sur des variétés compactes de dimension n, qui apparaissent naturellement lors de l'étude des systèmes non-hamiltoniens intégrables dont toutes les singularités sont non-dégénérées. On s'intéresse au flot engendré par l'action d'un vecteur générique de Rn. On donne une définition d'indice pour ses singularités qu'on relie à la théorie de Morse classique, et on utilise ce flot pour obtenir des résultats sur le nombres d'orbites de dimension donnée. Une étude plus poussée est effectuée en dimension 2, et en particulier sur la sphère S2, où les orbites de l'action dessinent un graphe plongé dont on analyse la combinatoire. On termine en construisant explicitement des exemples d'actions hyperboliques en dimension 3 sur la sphère S3 et dans l'espace projectif RP3. / In this thesis, we are interested in two different aspects of integrable dynamical systems. The first part is devoted to the study of three families of integrable Hamiltonian systems: the systems of bending flows of Kapovich and Millson on the moduli spaces of 3D polygons with fixed side lengths, the Gelfand-Cetlin systems introduced by Guillemin and Sternberg on the coadjoint orbits of the Lie group U(n), and a family of integrable systems defined by Nohara and Ueda on the Grassmannian Gr(2,n). In each case we prove that the fibers of the momentum map are embedded submanifolds for which we give geometric models in terms of quotients manifolds. In the second part we carry on with a study initiated by Zung and Minh of the totally hyperbolic actions of R^n on compact n-dimensional manifolds that appear naturally when investigating integrable non-hamiltonian systems with nondegenerate singularities. We study the flow generated by the action of a generic vector in Rn. We define a notion of index for its singularities and we use this flow to obtain results on the number of orbits of given dimension. We investigate further the 2-dimensional case, and more particularly the case of the sphere S2, where the orbits of the action draw an embedded graph of which we analyse the combinatorics. Finally, we provide explicit examples of totally hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.
|
26 |
Wave Functions of Integrable ModelsMei, Zhongtao 29 October 2018 (has links)
No description available.
|
27 |
Um invariante para sistemas com integral primeira Morse-Bott / A invariant for systems with a Morse-Bott first integralSarmiento, Ingrid Sofia Meza 16 August 2011 (has links)
Nesta dissertação são investigados os sistemas diferenciais com integral primeira do tipo Morse-Bott definidos em superfícies compactas e orientáveis. A cada sistema, nas condições acima descritas, associa-se um grafo de modo que a correspondência entre os grafos e as classes de equivalência topologica orbital dos campos investigados seja bijetiva. Portanto, apresenta-se um invariante completo, chamado aqui de grafo de Bott, para essa classe de sistemas. Essa abordagem surgiu como uma iniciativa de generalizar o estudo realizado para sistemas Hamiltonianos com um grau de liberdade com integral primeira do tipo Morse definidos em superfícies 2-dimensionais compactas, onde os conceitos de átomos e fluxos gradiente foram aplicados por A.V. Bolsinov em [4] / In this dissertation are studied differential systems with a Morse-Bott first integral defined on compact orientable surfaces. For each system, under the conditions described above, is associated a graph so that the correspondence between graphs and the orbital topological equivalence classes of the systems are bijective. Therefore, we present a complete invariant, called here Bott graph for this class of systems. This approach has emerged as an initiative to generalize the study to systems Hamiltonian with one degree of freedom having a Morse first integral in 2-dimensional compact surfaces, where the concepts of atoms and gradient flows were applied by A.V. Bolsinov in [4]
|
28 |
A topologia de folheações e sistemas integráveis Morse-Bott em superfícies / The topology of foliations and integrable Morse-Bott systems on surfacesSarmiento, Ingrid Sofia Meza 23 July 2015 (has links)
Nesta tese estudamos os sistemas integráveis definidos em superfícies compactas possuindo uma integral primeira que é uma função Morse-Bott a valores em R. Estes sistemas são aqui chamados de sistemas integráveis Morse-Bott. Classificamos as curvas fechadas e oitos associados a pontos de selas imersos em superfícies compactas. Essa classificação é aplicada ao estudo das folheações Morse-Bott em superfícies e nos permite definir um invariante topológico completo para a classificação topológica global destas folheações. Como uma aplicação desse estudo obtemos a classificação dos sistemas Morse-Bott assim como a classificação topológica das funções Morse-Bott em superfícies compactas e orientáveis. Demonstramos ainda um teorema da realização baseado em duas transformações e numa folheação geradora. Para o caso das funções Morse-Bott também obtivemos um teorema de realização. Finalmente, investigamos a generalização de alguns dos resultados anteriores para sistemas definidos em superfícies não orientáveis. / In this thesis we study integrable systems on compact surfaces with a first integral as a Morse-Bott function with target R. These systems are called here integrable Morse-Bott systems. Initially we present the classification of closed curves and eights associated to saddle points on compact surfaces. This classification is applied to the study of Morse- Bott foliations on surfaces allowing us to define a complete topological invariant for the global topological classification of these foliations. Then as an application of this study we obtain the classification of integrable Morse-Bott systems as well as the topological classification of Morse-Bott functions on compact and orientable surfaces. We also prove a realization theorem based on two transformation and a generating foliation (the foliation on the sphere with two centers). In the case of Morse-Bott functions we also obtain a realization theorem. Finally we investigate generalizations of previous results for systems defined on non-orientable surfaces.
|
29 |
Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov / Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchiesDu Crest de Villeneuve, Ann 13 December 2018 (has links)
Cette thèse traite du calcul et des applications des fonctions tau des hiérarchies de Drinfeld–Sokolov introduites en 1984. Les hiérarchies de Drinfeld–Sokolov sont des suites d’équations aux dérivées partielles intégrables que l’on associe à n’importe quelle algèbre de Lie semi simple. La fonction tau est une fonction associée à toute solution d’une hiérarchie donnée et qui contient toute l’information de la solution. Les fonctions tau sont au cœur des liens qui unissent les hiérarchies de Drinfeld–Sokolov et la géométrie algébrique. Au chapitre 3, nous établissons une transformation explicite entre les fonctions tau polynomiales de la hiérarchie de Korteweg–de Vries (associée à l’algèbre sl(2,C)) et les polynômes d’Adler–Moser (1978). Ces derniers forment une suite de polynômes satisfaisant une certaine relation de récurrence différentielle. Le chapitre 4 traite du calcul des fonctions tau polynomiales par les déterminants de Toeplitz ; une méthode introduite par Cafasso et Wu (2015). En collaboration avec Cafasso et Yang, nous avons obtenu une expansion de la fonction tau en une somme sur les partitions d’entiers. Nous en déduisons un critère de polynomialité de la fonction tau et donnons quelques exemples non triviaux. Au chapitre 5, en collaboration avec Paolo Rossi, nous confirmons la conjecture dite « DR/DZ forte » dans le cas de l’algèbre de Lie simple o(8,C) (D4). Elle prévoit l’équivalence, en particulier, entre les hiérarchies de Drinfeld–Sokolov et d’autres hiérarchies dites de « double ramification, » introduite par Buryak (2015) et construites à partir de la cohomologie de l’espace de modules des courbes complexes stables Mg,n. / This thesis deals with the computation and applications of tau functions of the Drinfeld– Sokolov hierarchies introduced in 1984. The Drinfeld– Sokolov hierarchies are sequences of integrable partial differential equations which one associates to any semisimple Lie algebra. The tau function is a function associated to any solution of a given hierarchy and which contains all the information of the solution. Tau functions are at the heart of the bonds between Drinfeld–Sokolov hierarchies and algebraic geometry. In Chapter 3, we establish an explicit transformation between the polynomial tau functions of the Korteweg–de Vries hierarchy (associated to the algebra sl(2,C)) and the Adler–Moser polynomials (1978). The latter form a sequence of polynomials satisfying a certain differential recursion relation. Chapter 4 is dedicated to the computation of tau functions via Toeplitz determinants; a method introduced by Cafasso and Wu (2015). In collaboration with Cafasso and Yang, we obtained an expansion of the tau function as a sum over all integer partitions. It follows a simple criterion for the polynomiality of the tau function; we give some nontrivial examples. In Chapter 5, in collaboration with Paolo Rossi, we confirm the so-called ‘strong DR/DZ conjecture’ for the algebra o(8,C) (D4). The latter states an equivalence between, in particular, Drinfeld–Sokolov hierarchies and another kind of hierarchies called ‘the double ramification hierarchies’ introduced by Buryak (2015) and constructed from the cohomology of the moduli spaces of stables complex curves Mg,n.
|
30 |
Séparation des variables et facteurs de forme des modèles intégrables quantiques / Separation of variables and form factors of quantum integrable modelsGrosjean, Nicolas 25 June 2013 (has links)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles. / Form factors and correlation functions determine the measurable dynamic quantities that are associated with field theories and statistical physics models. In the case of 2-dimensional integrable models, one of the main challenges beyond spectrum properties and partition function is the exact computation of form factors and correlation functions.The aim of this thesis is to develop an approach in the framework of Sklyanin's separation of variables to address this problem. This framework generalizes to the quantum case and for systems with many degrees of freedom the Hamilton-Jacobi method from analytical mechanics. The Hamiltonian is expressed in terms of separated operators, its spectrum and eigenvectors are characterized by a system of Baxter equations. These Baxter equations are a consequence of Yang-Baxter relations that are characteristic of these models being integrable.The result of this thesis is, in the case of the sine-Gordon model (quantum field theory) and of the chiral Potts model (statistical physics model), the computation of scalar products of Hamiltonian eigenstates, the resolution of the inverse problem (expressing the model operators in terms of separated variables) and the computation in terms of determinant of form factors (the matrix elements of the model local operators in the Hamiltonian eigenbasis), which is an important step towards the computation of the correlation functions of these models.
|
Page generated in 0.0575 seconds