• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 10
  • 2
  • Tagged with
  • 59
  • 59
  • 59
  • 31
  • 25
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Dynamique moléculaire par imagerie attoseconde

Ruf, Hartmut 06 December 2012 (has links) (PDF)
Depuis sa première observation, la génération d'harmoniques d'ordre élevé (GHOE) dans les gaz a demontré son importance, ouvrant la voie à la science attoseconde. Cette technique produit un rayonnement impulsionnel XUV qui s'étend dans le domaine spectral intermédiaire entre l'ultraviolet et les rayons X. Ces impulsions attosecondes donnent accès à des résolutions temporelles extrêemes, permettant ainsi d'observer des dynamiques électroniques dans des atomes ou des molécules. En effet le processus de généneration d'harmonique repose sur l'oscillation de paquets d'électrons attosecondes issus des molécules, accélérés par le champ de laser intense et se recombinant radiativement avec leurs ions moléculaires parents. Ainsi, le rayonnement harmonique émis lors de la recombinaison permet d'encoder l'information structurale sur le ou les orbitales impliquées avec une résolution spatiale de l'ordre l'Angström et temporelle femtoseconde ou attoseconde. La génération d'harmonique peut être utilisée comme signal de sonde dans des expériences de spectroscopie pompe-sonde résolue en temps. Ces expériences de spectroscopie harmoniques permettent d'étudier la structure des orbitales et les dynamiques moléculaires ultra-rapides. L'objectif de cette thèse est d'utiliser le processus de la GHOE, pour sonder les processus fondamentaux qui interviennent dans les atomes, les molécules et la matière condensée. Tout d'abord, pour comprendre comment extraire des informations dynamiques ou structurelles sur les orbitales à partir du signal harmonique nous avons étudié un système simple et connu: l'argon. Une nouvelle approche théorique développée par Fabre et Pons a permis de reproduire fidèlement l'expérience. Nous avons continué à étudier la structure et la dynamique moléculaire dans N2 et CO2. Les molécules issues d'un jet supersonique Even-Lavie qui permettait d'obtenir des températures rotationelles de moins de 10K ont été alignées par laser avec un fort degré d'alignement. Ce type de jet permet d'améliorer la sensibilité à la structure des orbitales impliquées et d'identifier la contribution de plusieurs orbitales. Ensuite nous avons utilisé la sensibilité de la génération des harmoniques d'ordre élevé à la structure des orbitales moléculaires pour sonder la dynamique complexe du NO2 excité autour d'une intersection conique. Nous avons appliqué la méthode du réseau d'excitation transitoire qui permet d'améliorer la sensibilité aux molécules excitées. Nous avons donc mené une étude dans les agrégats. A l'aide d'une étude différentielle en température et d'une méthode de cartographie spectrale et spatiale, nous avons pu isoler la contibution des grands agrégats. Notre analyse suggère un nouveau mécanisme de génération par des agrégats et permet même une estimation de la longeur de corrélation des électrons dans les agrégats. Ce manuscrit se termine avec la présentation d'une ligne de lumière XUV. Cette technique consiste à utiliser le rayonnement XUV fs produit par la GHOE comme impulsion sonde pour ioniser des fragments de dissociation moléculaire à l'aide d'une transition à un photon.
42

Etudes théorique et expérimentale des plasmas produits par laser en vue de leur application à l'analyse chimique des matériaux en environnement complexe.

Clair, Guillaume 04 April 2011 (has links) (PDF)
Ce travail présente une étude originale de l'interaction laser-matière en régime nanoseconde à l'aide d'une double approche expériences-modélisation numérique. L'approche expérimentale vise à caractériser les plasmas produits par laser et l'empreinte laissée par le faisceau laser sur la cible. L'approche numérique s'appuie sur un modèle 1D qui permet de décrire le chauffage de la cible par le laser, l'ablation de matière et la formation d'un plasma dans cette matière ablatée due à l'interaction avec le laser. Des comparaisons des résultats obtenus par les deux approches permettent d'évaluer le degré de précision des résultats issus du modèle. Ces comparaisons se limitent aux 100 premières nanosecondes d'expansion du plasma. Nous montrons ainsi que le modèle décrit assez bien l'écrantage du faisceau laser par le plasma, l'expansion du plasma et la propagation de l'onde de choc dans le gaz ambiant. De plus, les valeurs des seuils d'ablation et de formation du plasma sont calculées avec une bonne précision. En revanche, des écarts sont constatés pour la modélisation des processus d'interaction entre le laser et la cible. Le degré de précision du modèle est au final suffisamment bon pour nous permettre d'étudier précisément l'effet du gaz ambiant sur les propriétés et la dynamique du plasma.
43

Etude de l'interaction laser-matière dans les composants optiques en irradiation multiple, en régime nanoseconde et dans l'UV / Study of laser-matter interaction in optical components under multiple irradiation, nanosecond regime and in the UV

Beaudier, Alexandre 09 November 2017 (has links)
La fatigue du seuil d’endommagement laser dans la silice fondue a été largement étudiée au cours des dernières années, car ce phénomène est directement lié à la durée de vie des matériaux optiques utilisés dans des applications laser, le plus souvent à forte puissance. En effet, dans l’UV, on observe une décroissance du seuil d’endommagement laser quand le nombre de tirs laser augmente. Ce phénomène a été attribué pour ce couple longueur d’onde-matériau à des modifications laser-induites dans le matériau. Sous irradiation laser multiple à 266 nm, en utilisant des impulsions nanosecondes de densité d’énergie constante, nous avons observé que le signal de photoluminescence est modifié jusqu’à l’endommagement. A partir de cela, nous proposons une nouvelle représentation des données expérimentales qui permet de prédire l’apparition d’un endommagement dans le matériau. Cette prédiction réalisée à partir du signal de fluorescence et non de la statistique d’endommagement utilisée jusque-là, permet une économie significative de surface de composant et du temps d’expérience. Afin d’étendre l’intérêt de l’étude à un plus grand nombre d’applications, une extension des résultats à la longueur d’onde de 355 nm est proposée. Nous proposons un modèle où l’endommagement dans la silice fondue sous irradiation multiple à 266 nm est causé par une accumulation de modifications laser-induites induisant de l’autofocalisation non-linéaire. Afin d’essayer de généraliser la méthode de diagnostic de la fatigue par fluorescence, nous avons aussi réalisé des tests préliminaires sur des cristaux optiques non-linéaires bien connus comme le LBO ou le KDP. / Fatigue effects in fused silica have been largely studied in the past years, as this phenomenon is directly linked to the lifetime of high power photonic materials. Indeed, in the UV regime, we observe a decrease of the LIDT (Laser-Induced Damage Threshold) when the number of laser shots increases and this has been attributed for this couple wavelength/material to laser-induced material modifications. Under 266 nm laser irradiation, with nanosecond pulses of constant fluence, we observed that the photoluminescence is modified until damage occurs. Based on this observation, we propose a new representation of the experimental S-on-1 breakdown data which allows predicting the occurrence of material breakdown. This prediction, based on fluorescence signal and not damage statistics (presently widely used) allows consuming fewer sample surface and saving time. To extend the interest of the study to many more applications, we propose an extension of the results at 355 nm. We suppose that damage is caused in our fused silica samples by accumulation of laser-induced modifications under multiple-pulse UV irradiation inducing catastrophic non-linear self-focusing. In order to try to extend the fatigue diagnostic method by fluorescence, we have also realized preliminary tests in well-known non-linear crystals like LBO and KDP.
44

Étude expérimentale et modélisation des potentialités de la technique libs (ablation laser couplée à la spectroscopie) pour l’analyse directe des solides / Experimental study and modeling of LIBS potentialities (Laser Induced Breakdown Spectroscopy) for direct solid sample analysis

Barreda, Flory-Anne 09 December 2010 (has links)
L'utilisation de lasers est largement répandue dans le domaine de la microanalyse directe des solides. La matière vaporisée, en focalisant un faisceau laser de forte puissance sur la cible, peut être analysée soit par spectrométrie d'émission optique sur plasma induit (LIBS, acronyme anglais pour Laser Induced Breakdown Spectroscopy), soit par une source à plasma induit par haute fréquence couplée à la spectrométrie d'émission optique (ICP-AES) ou à la spectrométrie de masse (ICP-MS). Avec une résolution spatiale à l'échelle microscopique, les techniques d'ablation laser permettent ainsi d'accéder à la composition élémentaire locale de la surface d'un matériau. Néanmoins, les performances analytiques de ces techniques pourraient être améliorées par l'utilisation combinée des informations LIBS et ICP afin également de comprendre et maîtriser davantage l'interaction laser/matière. Dans ce but, ce travail a consisté à développer une technique de microanalyse par ablation laser couplée avec une détection en simultané par ICP et par LIBS afin d'étudier les potentialités analytiques de cet instrument pour cartographier la surface des matériaux. Les performances et les limitations de ce système ont été évaluées d'une part, en caractérisant les aérosols produits par ablation laser et d'autre part, en étudiant les signaux LIBS et ICP obtenus à partir d'un même prélèvement de matière. Le phénomène de fractionnement élémentaire rencontré sur des matrices critiques telles que le laiton a été mis en évidence en microablation malgré des caractéristiques de l'interaction laser/matière différente de la macroablation. Une méthode de correction, a posteriori, par l'efficacité d'extraction de la cellule d'ablation a été proposée afin de pallier ces effets limitatifs pour l'analyse quantitative. Une cellule d'ablation, optimisée à partir d'une étude de simulation numérique, a été développée afin de s'adapter aux applications de cartographies de surface. Les performances analytiques du système ont été évaluées en termes de stabilité (8-10%), de résolution spatiale (5 µm) et de limites de détection (de l'ordre de la ppm dans le solide avec un détecteur de masse). La complémentarité des mesures LIBS et ICP représente à la fois un outil de diagnostic de l'interaction laser/matière et un instrument d’analyse très complet grâce à la double détection qui permet de suivre simultanément des traces et des majeurs sur une large gamme d'éléments de la classification périodique / Laser ablation is widely spread for solid sample microanalysis. A tightly focused laser beam allows direct sampling of matter, the ablated mass can then be analysed either with LIBS (Laser Induced Breakdown Spectroscopy) or with an inductively coupled plasma source combined with an optical emission spectrometer (ICP-AES) or a mass spectrometer (ICP-MS). With spatial resolution down to the micron scale, laser ablation techniques permit local elemental analysis of sample surface. Nevertheless, analytical performances of such techniques could be improved by combining LIBS and ICP information to understand and control laser/matter interaction. For this purpose, this work aimed to develop a microanalytical technique based on laser ablation coupled to simultaneous detection with LIBS and ICP to study analytical potentialities of such technique for elemental mapping of material surface. Performances and limitations of the system were studied on one hand, by characterizing laser-induced aerosols and on the other hand, by studying simultaneous LIBS and ICP signals. Elemental fractionation on critical matrices such as brass was evidenced in microablation despite a different laser/matter interaction compared with macroablation. A correction procedure a posteriori using the total extraction efficiency of the ablation cell was proposed to overcome this problem for quantitative analysis. An ablation cell, optimized from a numerical simulation study, was developed for mapping applications. Analytical performances were evaluated in terms of stability (8-10 %), spatial resolution (5 µm) and detection limits (in the ppm range with ICP-MS). The LIBS and ICP complementarity makes the double detection system a diagnostic tool for laser/matter interaction and an analytical instrument allowing simultaneous monitoring of traces and majors from a large element range of the periodic classification
45

Tenue au flux et physique de l'interaction laser/matière dans les couches minces optiques en régime sub-picoseconde / Laser induced damage and ultrashort-pulse laser excitation of optical thin films

Douti, Dam-Bé Lardja 05 November 2015 (has links)
La tenue au flux des traitements de surfaces optiques constitue aujourd'hui un enjeu majeur pour le développement des lasers de puissance à courtes durées d'impulsion. L’étude des interactions laser-matière en régime sub-picoseconde a montré que l’initiation de l'endommagement laser est le résultat de processus d’excitation fortement non-linéaires (photoionisation, ionisation par impact et avalanche électronique). Dans cette thèse, un dispositif de tests multiparamétriques a été développé pour l’étude de la tenue au flux des composants optiques. Différentes études expérimentales ont été menées sur des matériaux diélectriques, en couche mince ou en matériau massif, afin d’apporter des données nouvelles sur les matériaux couches minces assez peu étudiés dans la littérature. L’étude de l’influence de la longueur d’onde a révélé différentes phases de prédominance des processus d’ionisation. L’influence du nombre de tirs à différentes longueurs d’ondes aussi a été étudiée, en considérant différentes techniques de dépôt de couches minces. L’interprétation de ces résultats expérimentaux est soutenue par un modèle de simulation numérique que nous présentons en détail dans le manuscrit. Une place, non moins importante, a été accordée dans notre travail à la métrologie de l’endommagement. Nous avons proposé et appliqué l’utilisation d’un dispositif original de mesure quantitative de phase pour l’analyse des processus d’endommagement. Et pour terminer nous avons développé un système de microscopie pompe-sonde afin de pousser les investigations sur les processus en jeu lors de l’interaction laser-matière en régime sub-picoseconde. / Laser fluence resistance of optical surfaces is a major challenge for the development of high power and short duration pulse lasers. Studies on laser matter interactions show that the damage initiation is the result of highly nonlinear excitation process such as photoionization, impact ionization and electronic avalanche. In this PhD thesis we focused on the study of the damage and the response of materials after this initiation and their dependence with laser parameters, this in order to better understand the complex mechanisms of damage, identify laws of relevant scales for applications, and enable new optical design with higher laser resistance and lifetimes. A multi parametric experimental testing setup was developed for studying laser resistance of optical components. To collect new data on thin film materials damage dependences, which have been less studied in the literature, different experimental studies have been conducted on dielectrics, in coating or bulk form. The study of the dependency of damage with laser wavelength reveals different ranges characterized by the electronic processes occurring during the interaction. We have considered also the effect of multiple pulse irradiations, with different wavelengths and on coatings realized by different technologies. All these experimental results have been discussed with the help of a numerical simulation model we have developed and presented in this thesis. We have also proposed an original method based on optical phase difference measurement for damage characterization and study. We finished with some experiments on the time resolved microscopy measurements and investigations of damage processes.
46

Evaluation expérimentale et modélisation de la contamination induite par laser sur les optiques spatiales / Experimental evaluation and modeling of laser-induced contamination on space optics

Gebrayel El Reaidy, Georges 06 December 2018 (has links)
Dans le domaine du spatial, des sources laser à forte puissance sont déjà employées dans le cadre d’activités scientifiques. On peut citer par exemple l’analyse à distance de la composition chimique des roches sur Mars par LIBS (Laser Induced Breakdown Spectroscopy) et le sondage atmosphérique par Lidar (Light Detection And Ranging) pour l’amélioration des prédictions météorologiques. Cependant l’endommagement laser (LID) et la contamination induite par laser (LIC) sur les composants optiques des systèmes demeurent des risques difficiles à anticiper. En ce qui concerne la LIC, l’interaction du flux laser avec les optiques de l’instrument en orbite peut provoquer des dégradations irréversibles, liées à la création de dépôts organiques absorbants qui peuvent induire des endommagements laser dans le temps. L’effet LIC reste donc aujourd’hui un obstacle au développement de sources laser de puissance pour les applications sans maintenance possible et possédant des durées de vie raisonnables. Une étude paramétrique de l’effet LIC est proposée dans cette thèse afin de progresser dans la compréhension des mécanismes mis en jeu / Since their first implementation in satellite systems, lasers have proven to be very versatile devices in space applications. They are key components of a variety of space-based instruments performing altimetry, light detection and ranging, laser sensing, and laser communication. However, laser induced damage (LID) and laser-induced contamination (LIC) of optical surfaces are a major failure risk for space-bound laser instruments. Regarding the LIC effect, the interaction of the laser with slight traces of organic compounds on the optical surface leads to the formation of a highly absorbing nanometric deposit on the laser footprint. Under certain conditions, this deposit may cause laser induced damage. Today, mainly the LIC effect remains an obstacle for the development of reliable and long-living spaceborne lasers. A parametric study concerning this effect was carried out in this work in order to enhance our understanding of the various mechanisms involved
47

Particle acceleration with beam driven wakefield / Accélération de particules dans des ondes de sillage plasma excitées par faisceaux de particules

Doche, Antoine 09 March 2018 (has links)
Les accélérateurs par onde de sillage plasma produites par faisceaux de particules (PWFA) ou par faisceaux laser (LWFA) appartiennent à un nouveau type d’accélérateurs de particules particulièrement prometteur. Ils permettent d’exploiter des champs accélérateurs jusqu’à cent Gigaélectronvolt par mètre alors que les dispositifs conventionnels se limitent à cent Megaélectronvolt par mètre. Dans le schéma d’accélération par onde de sillage plasma, ou par onde de sillage laser, un faisceau de particules ou une impulsion laser se propage dans un plasma et créé une structure accélératrice dans son sillage : c’est une onde de densité électronique à laquelle sont associés des champs électromagnétiques dans le plasma. L’un des principaux résultats de cette thèse a été la démonstration de l’accélération par onde de sillage plasma d’un paquet distinct de positrons. Dans le schéma utilisé, un plasma de Lithium était créé dans un four, et une onde plasma était excitée par un premier paquet de positrons (le drive ou faisceau excitateur) et l’énergie était extraite par un second faisceau (le trailing ou faisceau témoin). Un champ accélérateur de 1,36 GeV/m a ainsi été obtenu durant l’expérience, pour une charge accélérée typique de 40 pC. Nous montrons également ici la possibilité d’utiliser différents régimes d’accélération qui semblent très prometteurs. Par ailleurs, l’accélération de particule par sillage laser permet quant à elle, en partant d’une impulsion laser femtoseconde de produire un faisceau d’électron quasi-monoénergétique d’énergie typique de l’ordre de 200 MeV. Nous présentons les résultats d’une campagne expérimentale d’association de ce schéma d’accélération par sillage laser avec un schéma d’accélération par sillage plasma. Au cours de cette expérience un faisceau d’électrons créé par laser est refocalisé lors d’une interaction dans un second plasma. Une étude des phénomènes associés à cette plateforme hybride LWFA-PWFA est également présentée. Enfin, le schéma hybride LWFA-PWFA est prometteur pour optimiser l’émission de rayonnement X par les électrons du faisceau de particule crée dans l’étage LWFA de la plateforme. Nous présentons dans un dernier temps la première réalisation expérimentale d’un tel schéma et ses résultats prometteurs. / Plasma wakefield accelerators (PWFA) or laser wakefield accelerators (LWFA) are new technologies of particle accelerators that are particularly promising, as they can provide accelerating fields of hundreds of Gigaelectronvolts per meter while conventional facilities are limited to hundreds of Megaelectronvolts per meter. In the Plasma Wakefield Acceleration scheme (PWFA) and the Laser Wakefield Acceleration scheme (LWFA), a bunch of particles or a laser pulse propagates in a gas, creating an accelerating structure in its wake: an electron density wake associated to electromagnetic fields in the plasma. The main achievement of this thesis is the very first demonstration and experimental study in 2016 of the Plasma Wakefield Acceleration of a distinct positron bunch. In the scheme considered in the experiment, a lithium plasma was created in an oven, and a plasma density wave was excited inside it by a first bunch of positrons (the drive bunch) while the energy deposited in the plasma was extracted by a second bunch (the trailing bunch). An accelerating field of 1.36 GeV/m was reached during the experiment, for a typical accelerated charge of 40 pC. In the present manuscript is also reported the feasibility of several regimes of acceleration, which opens promising prospects for plasma wakefield accelerator staging and future colliders. Furthermore, this thesis also reports the progresses made regarding a new scheme: the use of a LWFA-produced electron beam to drive plasma waves in a gas jet. In this second experimental study, an electron beam created by laser-plasma interaction is refocused by particle bunch-plasma interaction in a second gas jet. A study of the physical phenomena associated to this hybrid LWFA-PWFA platform is reported. Last, the hybrid LWFA-PWFA scheme is also promising in order to enhance the X-ray emission by the LWFA electron beam produced in the first stage of the platform. In the last chapter of this thesis is reported the first experimental realization of this last scheme, and its promising results are discussed.
48

Étude des rayonnements Bétatron et Compton dans l'accélération d'électrons par sillage laser. / Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons.

Ferri, Julien 25 November 2016 (has links)
Une impulsion laser ultra-courte et ultra-intense se propageant dans un gaz de faible densité est capable d'accélérer une partie des électrons de ce gaz à des énergies relativistes, de l'ordre de quelques centaines de MeV, sur des distances de seulement quelques millimètres. Pendant leur accélération et dû à leur mouvement transverse, ces électrons émettent de plus un rayonnement X fortement collimaté et dirigé vers l'avant appelé rayonnement bétatron. Les caractéristiques de cette source la rendent intéressante pour son utilisation en imagerie à ultra-haute résolution.Dans ce manuscrit, nous explorons trois axes de travail autour de cette source à l'aide de simulations réalisées avec les codes Particle-In-Cell CALDER et CALDER-Circ. Nous commençons ainsi par étudier la création d'une source bétatron avec des impulsions laser de durée picoseconde et d'énergie kilojoule, donc plus longues et plus puissantes que celles habituellement utilisées par la communauté. Nous montrons que malgré les paramètres inhabituels de ces impulsions lasers il est toujours possibles de générer des sources X, et ce dans deux régimes différents.Ensuite, afin de comprendre une partie des différences généralement observées entre expériences et simulations, nous montrons dans une autre étude que l'utilisation dans les simulations de profils lasers réalistes au lieu de profils parfaitement Gaussiens dégrade fortement les performances de l'accélérateur laser-plasma et de la source bétatron. De plus, ceci conduit à un meilleur accord qualitatif et quantitatif avec l'expérience.Enfin nous explorons plusieurs techniques pour augmenter l'émission X basées sur une manipulation des profils de plasmas utilisés pour l'accélération. Nous trouvons que l'utilisation d'un gradient transverse ou d'une marche de densité conduisent tous deux à une augmentation de l'amplitude du mouvement transverse des électrons, et donc de l'énergie émise par la source bétatron. Alternativement, nous montrons que cet objectif peut-être atteint par la transition d'un régime de sillage laser vers un régime d'accélération par sillage plasma induit par une augmentation de la densité. L'accélération des électrons est optimisée dans le premier régime, tandis que l'émission X est fortement favorisée dans le second. / An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilojoule and picosecond laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment.Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray emission.
49

Étude critique de la densité électronique et des températures (excitation et ionisation) d'un plasma d'aluminium induit par laser

Giroux, Karl 12 1900 (has links)
La caractérisation de matériaux par spectroscopie optique d’émission d’un plasma induit par laser (LIPS) suscite un intérêt qui ne va que s’amplifiant, et dont les applications se multiplient. L’objectif de ce mémoire est de vérifier l’influence du choix des raies spectrales sur certaines mesures du plasma, soit la densité électronique et la température d’excitation des atomes neutres et ionisés une fois, ainsi que la température d’ionisation. Nos mesures sont intégrées spatialement et résolues temporellement, ce qui est typique des conditions opératoires du LIPS, et nous avons utilisé pour nos travaux des cibles binaires d’aluminium contenant des éléments à l’état de trace (Al-Fe et Al-Mg). Premièrement, nous avons mesuré la densité électronique à l’aide de l’élargissement Stark de raies de plusieurs espèces (Al II, Fe II, Mg II, Fe I, Mg I, Halpha). Nous avons observé que les densités absolues avaient un comportement temporel différent en fonction de l’espèce. Les raies ioniques donnent des densités électroniques systématiquement plus élevées (jusqu’à 50 % à 200 ns après l’allumage du plasma), et décroissent plus rapidement que les densités issues des raies neutres. Par ailleurs, les densités obtenues par les éléments traces Fe et Mg sont moindres que les densités obtenues par l’observation de la raie communément utilisée Al II à 281,618 nm. Nous avons parallèlement étudié la densité électronique déterminée à l’aide de la raie de l’hydrogène Halpha, et la densité électronique ainsi obtenue a un comportement temporel similaire à celle obtenue par la raie Al II à 281,618 nm. Les deux espèces partagent probablement la même distribution spatiale à l’intérieur du plasma. Finalement, nous avons mesuré la température d’excitation du fer (neutre et ionisé, à l’état de trace dans nos cibles), ainsi que la température d’ionisation, à l’aide de diagrammes de Boltzmann et de Saha-Boltzmann, respectivement. À l’instar de travaux antérieurs (Barthélémy et al., 2005), il nous est apparu que les différentes températures convergeaient vers une température unique (considérant nos incertitudes) après 2-3 microsecondes. Les différentes températures mesurées de 0 à 2 microsecondes ne se recoupent pas, ce qui pourrait s’expliquer soit par un écart à l’équilibre thermodynamique local, soit en considérant un plasma inhomogène où la distribution des éléments dans la plume n’est pas similaire d’un élément à l’autre, les espèces énergétiques se retrouvant au cœur du plasma, plus chaud, alors que les espèces de moindre énergie se retrouvant principalement en périphérie. / Interest in the characterization of materials by laser induced plasma spectroscopy (LIPS) is growing with new applications emerging at an ever increasing pace. The purpose of this thesis is to verify the influence of the selection of spectral lines according to measured parameters of the plasma: electron density and excitation (neutral and singly ionized atoms) and ionization temperatures. Our measurements are conducted under typical operating conditions of LIPS: spatially integrated and temporally resolved. We used two binary aluminum targets containing trace elements (Al-Fe and Al-Mg). First, we measured the electron density using Stark broadening of lines from several species (Al II, Fe II, Mg II, Fe I, Mg I, Hα). We observed that the absolute density had a different temporal behavior depending on the species. The ionic lines giving electron densities systematically higher (up to 50 % at 200 ns after plasma ignition), and decreasing faster than densities derived from neutral lines. Densities obtained from trace elements Mg and Fe are lower than densities obtained from the commonly used line Al II at 281.618 nm. In parallel, we studied the space-integrated electron density evolution found from hydrogen Hα line and observed that it has a temporal behavior similar to the density obtained by the Al II line at 281.618 nm. Thus the two species probably share the same spatial distribution within the plasma. Finally, we measured the excitation temperature of iron (neutral and ionized, in trace amount in our targets), and the ionization temperature, using Boltzmann and Saha-Boltzmann plots, respectively. As previously described by Barthélémy et al. (2005), it appears that the different temperatures converge to a single value (considering error bars) after 2-3 microseconds. The different temperatures measured from 0 to 2 microseconds do not overlap, which could be explained by a departure from local thermodynamic equilibrium (Barthélémy et al., 2005), or by considering an inhomogeneous plasma where spatial distribution differs from one species to another, so that high energy species are found from within the plasma’s centre, which is hotter, while the lower energy species are found mainly in the periphery.
50

Dynamique moléculaire par imagerie attoseconde

Ruf, Hartmut 06 December 2012 (has links)
Depuis sa première observation, la génération d'harmoniques d'ordre élevé (GHOE) dans les gaz a demontré son importance, ouvrant la voie à la science attoseconde. Cette technique produit un rayonnement impulsionnel XUV qui s'étend dans le domaine spectral intermédiaire entre l'ultraviolet et les rayons X. Ces impulsions attosecondes donnent accès à des résolutions temporelles extrêmes, permettant ainsi d'observer des dynamiques électroniques dans des atomes ou des molécules. En effet le processus de généneration d'harmonique repose sur l'oscillation de paquets d'électrons attosecondes issus des molécules, accélérés par le champ de laser intense et se recombinant radiativement avec leurs ions moléculaires parents. Ainsi, le rayonnement harmonique émis lors de la recombinaison permet d'encoder l'information structurale sur le ou les orbitales impliquées avec une résolution spatiale de l'ordre l'Angström et temporelle femtoseconde ou attoseconde. La génération d'harmonique peut être utilisée comme signal de sonde dans des expériences de spectroscopie pompe-sonde résolue en temps. Ces expériences de spectroscopie harmoniques permettent d'étudier la structure des orbitales et les dynamiques moléculaires ultra-rapides. L'objectif de cette thèse est d'utiliser le processus de la GHOE, pour sonder les processus fondamentaux qui interviennent dans les atomes, les molécules et la matière condensée. Tout d'abord, pour comprendre comment extraire des informations dynamiques ou structurelles sur les orbitales à partir du signal harmonique nous avons étudié un système simple et connu: l'argon. Une nouvelle approche théorique développée par Fabre et Pons a permis de reproduire fidèlement l'expérience. Nous avons continué à étudier la structure et la dynamique moléculaire dans N2 et CO2. Les molécules issues d'un jet supersonique Even-Lavie qui permettait d'obtenir des températures rotationelles de moins de 10K ont été alignées par laser avec un fort degré d'alignement. Ce type de jet permet d'améliorer la sensibilité à la structure des orbitales impliquées et d'identifier la contribution de plusieurs orbitales. Ensuite nous avons utilisé la sensibilité de la génération des harmoniques d'ordre élevé à la structure des orbitales moléculaires pour sonder la dynamique complexe du NO2 excité autour d'une intersection conique. Nous avons appliqué la méthode du réseau d'excitation transitoire qui permet d'améliorer la sensibilité aux molécules excitées. Nous avons donc mené une étude dans les agrégats. A l'aide d'une étude différentielle en température et d'une méthode de cartographie spectrale et spatiale, nous avons pu isoler la contibution des grands agrégats. Notre analyse suggère un nouveau mécanisme de génération par des agrégats et permet même une estimation de la longeur de corrélation des électrons dans les agrégats. Ce manuscrit se termine avec la présentation d'une ligne de lumière XUV. Cette technique consiste à utiliser le rayonnement XUV fs produit par la GHOE comme impulsion sonde pour ioniser des fragments de dissociation moléculaire à l'aide d'une transition à un photon. / Since the first observation of high-order harmonic spectra in gases, high harmonic generation (HHG) has demonstrated its importance, opening a door to the field of attosecond sience. The bandwidth of the emitted spectrum reaches up to the XUV. The attosecond pules reach a very high time resolution, allowing the study of electron dynamics in atoms or molecules. The generation mechanism of HHG is based on the oscillation of the attosecond electron wavepacket emitted by the atoms/molecules, accelerated by the laser field. The electron wavepacket finally recombines radiatively with its parent ion. Thus the structural information of the probed orbital is encoded in the high harmonic spectrum with a spatial resolution of one Angtröm and a temporal resolution of few femtoseconds. HHG can be used as a probe signal resolved for pump-probe spectroscopy. High harmonic spectroscopy allows the study of the orbital structure and ultra-fast molecular dynamics.In this thesis the fundamental mechanisms playing a role in atoms, molecules and condensed matter are probed using HHG. In order to understand how to extract dynamical and structural information of orbitals from a harmonic signal, we have studied an easy and well known systems: the argon atom. A new theoretical approach developped by Fabre and Pons allowed us to reproduce the experimental results in good agreement. We continued with a study of the molecular structure and dynamics of N2 and CO2. A supersonic Even-Lavie jet permitted to reach rotational temperatures lower than 10K with an excellent alignment distribution. Owing to the good alignment in such gas jet, we were able to resolve the orbital structure with a higher sensitivity and to identify the contribution of several orbitals. In the next step we used the sensitivity of HHG towards the structure of molecular orbitals in order to probe the complex dynamics of NO2 in the vicinity of a conical intersection. We applied HHG combined with transient grating spectroscopy which leads to a higher sensitivity of the excited molecules. We then continued with studying cluster. We were able to disentangle the contribution of large clusters to the harmonic signal due to a 2D spatio-spectral representation of a temperature dependent differential measurement. Our analysis suggests a new generation mechanism in clusters and allows an estimation of the electron correlation length in clusters. This thesis ends with the presentation of a XUV beamline. This technique uses the emitted fs-XUV radiation, provided by HHG, as a probe pulse for ionizing the photofragments by a one photon transition.

Page generated in 0.1551 seconds