• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 25
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 106
  • 64
  • 24
  • 19
  • 18
  • 16
  • 16
  • 16
  • 16
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The role of the JNK/AP-1 pathway in the induction of iNOS and CATs in vascular cells

Zamani, Marzieh January 2013 (has links)
Nitric oxide (NO) is an important biological molecule within the body, which over production of this molecule in response to different stimulations can cause various inflammatory diseases. Over production of this molecule is caused by the induction of the inducible nitric oxide synthase (iNOS) enzyme. This enzyme uses L-arginine as a substrate and therefore the presence and transport of this amino acid into the cells can be a key factor in regulating NO over production. Different signalling mechanisms have been implicated in the regulation of this pathway and one of which involves the Mitogen Activated Protein Kinases (MAPK). This family of proteins respond to inflammatory conditions and may mediate effects induced by inflammatory mediators. Of the MAPKs, the role of the c-Jun-N-terminal kinase (JNK) pathway in the induction of iNOS is still controversial. JNK and its downstream target, the transcription factor Activator Protein-1 (AP-1), have shown contradictory effects on iNOS induction leading to controversies over their role in regulating iNOS expression in different cell systems or with various stimuli. The studies described in this thesis have determined the role of JNK/AP-1 on iNOS expression, NO production, L-arginine uptake and also on the transporters responsible for L-arginine transport into the cells. The studies were carried out in two different cell types: rat aortic smooth muscle cells (RASMCs) and J774 macrophages which are both critically associated with the over production of NO in vascular inflammatory disease states. The first approach was to block the expression of the inducible L-arginine-NO pathway using SP600125 and JNK Inhibitor VIII which are both pharmacological inhibitors of JNK. The results from these studies showed that the pharmacological intervention was without effect in RASMCs, but inhibited iNOS, NO and L-arginine transport in J774 macrophages. In contrast, the molecular approach employed using two dominant negative constructs of AP-1 (TAM-67 and a-Fos) revealed a different profile of effects in RASMCs, where a-Fos caused an induction in iNOS and NO while TAM-67 had an inhibitory effect on iNOS, NO, L-arginine transport and CAT-2B mRNA expression. The latter was unaffected in RASMCs but suppressed in J774 macrophages by SP600125. Examination of JNK isoforms expression showed the presence of JNK1 and 2 in both cell systems. Moreover, stimulation with LPS/IFN- or LPS alone resulted in JNK phosphorylation which did not reveal any difference between smooth muscle cells and macrophages. In contrast, expression and activation of AP-1 subunits revealed differences between the two cell systems. Activation of cells with LPS and IFN- (RASMCs) or LPS alone (J774 macrophages) resulted in changes in the activated status of the different AP-1 subunit which was different for the two cell systems. In both cell types c-Jun, JunD and Fra-1 were increased and in macrophages, FosB activity was also enhanced. Inhibition of JNK with SP600125 caused down-regulation in c-Jun in both cell types. Interestingly this down-regulation was in parallel with increases in the subunits JunB, JunD, c-Fos and Fra-1 in RASMCs or JunB and Fra-1 in J774 macrophages. Since, SP600125 was able to exert inhibitory effects in the latter cell type but not in RASMCs, it is possible that the compensatory up-regulation of certain AP-1 subunits in the smooth muscle cells may compensate for c-Jun inhibition thereby preventing suppression of iNOS expression. This notion clearly needs to be confirmed but it is potentially likely that hetero-dimers formed between JunB, JunD, c-Fos and Fra-1 could sustain gene transcription in the absence of c-Jun. The precise dimer required has not been addressed but unlikely to exclusively involve JunB and Fra-1 as these are up-regulated in macrophages but did not sustain iNOS, NO or induced L-arginine transport in the presence of SP600125. To further support the argument above, the dominant negatives caused varied effects on the activation of the different subunits. a-Fos down-regulated c-Jun, c-Fos, FosB, Fra-1 whereas TAM-67 reduced c-Jun and c-Fos but marginally induced Fra-1 activity. Associated with these changes was an up-regulation of iNOS-NO by a-Fos and inhibition by TAM-67. Taken together, the data proposes a complex mechanism(s) that regulate the expression of the inducible L-arginine-NO pathway in different cell systems and the complexity may reflect diverse intracellular changes that may be different in each cell type and not always be apparent using one experimental approach especially where this is pharmacological. Moreover, these findings strongly suggest exercising caution when interpreting pure pharmacological findings in cell-based systems particularly where these are inconsistent or contradictory.
102

Targeting breast cancer with natural forms of vitamin E and simvastatin

Gopalan, Archana 13 July 2012 (has links)
Breast cancer is the second leading cause of death due to cancer in women. A number of effective therapeutic strategies have been implemented in clinics to cope with the disease yet recurrent disease and toxicity reduce their effectiveness. Hence, there is a need to identify and develop more effective therapies with reduced toxic side effects to improve overall survival rates. This dissertation investigates the mechanisms of action of two natural forms of vitamin E and a cholesterol lowering drug, simvastatin, as a therapeutic strategy in human breast cancer cells. Vitamin E in nature consists of eight distinct forms which are fat soluble small lipids. Until recently, vitamin E was known as a potent antioxidant but emerging work suggests they may be resourceful agents in managing a number of chronic diseases including cancer. Anticancer properties of vitamin E have been identified to be limited to the γ- and δ- forms of both tocopherols and tocotrienols. Gamma-tocopherol ([gamma]T) and gamma-tocotrienol ([gamma]T3) have both already been identified to induce death receptor 5 (DR5) mediated apoptosis in breast cancer cells. Studies here show that similar to [gamma]T3, [gamma]T induced DR5 activation is mediated by c-Jun N-terminal kinase/C/EBP homologous protein (JNK/CHOP) proapoptotic axis which in part contributed to [gamma]T mediated dowregulation of c-FLIP, Bcl-2 and Survivin. Also, both agents activate de novo ceramide synthesis pathway which induces JNK/CHOP/DR5 proapoptotic axis and downregulates antiapoptotic factors FLICE inhibitory protein (c-FLIP), B-cell lymphoma 2 (Bcl-2) and Survivin leading to apoptosis. Simvastatin (SVA) has been identified to display pleiotropic effects including anticancer effects but mechanisms responsible for these actions have yet to be fully understood. In this dissertation, it was observed that simvastatin induced apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 proapoptotic axis and down regulation of antiapoptotic factors c-FLIP and Survivin which are in part dependent on JNK/CHOP/DR5 axis. The anticancer effects mediated by simvastatin can be reversed by exogenously added mevalonate and geranylgeranyl pyrophosphate (GGPP), implicating the blockage of mevalonate as a key event. Furthermore, work has been done to understand the factors responsible for drug resistance and identify therapeutic strategies to counteract the same. It was observed that development of drug resistance was associated with an increase in the percentage of tumor initiating cells (TICs) in both tamoxifen and Adriamycin resistant cells compared to their parental counterparts which was accompanied by an increase in phosphorylated form of Signal transducer and activator of transcription 3 (Stat3) proteins as well as its downstream mediators c-Myc, cyclin D1, Bcl-xL and Survivin. Inhibition of Stat3 demonstrated that Stat3 and its downstream mediators play an important role in regulation of TICs in drug resistant breast cancer. Moreover, SVA, [gamma]T3 and combination of SVA+[gamma]T3 has been observed to target TICs in drug resistant human breast cancer cells and downregulate Stat3 as well as its downstream mediators making it an attractive agent to overcome drug resistance. From the data presented here, the mechanisms responsible for the anticancer actions of [gamma]T, [gamma]T3 and SVA have been better understood, providing the necessary rationale to test these agents by themselves or in combination in pre-clinical models. / text
103

Death is Not the End: The Role of Reactive Oxygen Species in Driving Apoptosis-induced Proliferation

Fogarty, Caitlin E. 02 June 2015 (has links)
Apoptosis-induced proliferation (AiP) is a compensatory mechanism to maintain tissue size and morphology following unexpected cell loss during normal development, and may also be a contributing factor to cancer growth and drug resistance. In apoptotic cells, caspase-initiated signaling cascades lead to the downstream production of mitogenic factors and the proliferation of neighboring surviving cells. In epithelial Drosophila tissues, the Caspase-9 homolog Dronc drives AiP via activation of Jun N-terminal kinase (JNK); however, the specific mechanisms of JNK activation remain unknown. Using a model of sustained AiP that produces a hyperplastic phenotype in Drosophila eye and head tissue, I have found that caspase-induced activation of JNK during AiP depends on extracellular reactive oxygen species (ROS) generated by the NADPH oxidase Duox. I found these ROS are produced early in the death-regeneration process by undifferentiated epithelial cells that have initiated the apoptotic cascade. I also found that reduction of these ROS by mis-expression of extracellular catalases was sufficient to reduce the frequency of overgrowth associated with our model of AiP. I further observed that extracellular ROS attract and activate Drosophila macrophages (hemocytes), which may in turn trigger JNK activity in epithelial cells by signaling through the TNF receptor Grindelwald. We propose that signaling back and forth between epithelial cells and hemocytes by extracellular ROS and Grindelwald drives compensatory proliferation within the epithelium, and that in cases of persistent signaling, such as in our sustained model of AiP, hemocytes play a tumor promoting role, driving overgrowth.
104

Role of MAP4K4 Signaling in Adipocyte and Macrophage Derived Inflammation: A Dissertation

Tesz, Gregory J. 22 July 2008 (has links)
Human obesity is increasing globally at an impressive rate. The rise in obesity has led to an increase in diseases associated with obesity, such as type 2 diabetes. A major prerequisite for this disease is the development of insulin resistance in the muscle and adipose tissues. Interestingly, experiments in rodent models suggest that adipocytes and macrophages can profoundly influence the development of insulin resistance. Accordingly, the number of adipose tissue macrophages increases substantially during the development of obesity. Numerous research models have demonstrated that macrophages promote insulin resistance by secreting cytokines, like TNFα, which impair whole body insulin sensitivity and adipose tissue function. Additionally, enhancements of murine adipose function, particularly glucose disposal, prevent the development of insulin resistance in mice on a high fat diet. Thus, mechanisms which enhance adipose function or attenuate macrophage inflammation are of interest. Our lab previously identified mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4) as a potent negative regulator of adipocyte function. In these studies, TNFα treatment increased the expression of adipocyte MAP4K4. Furthermore, the use of small interfering RNAs (siRNA) to block the increase in MAP4K4 expression protected adipocytes from some of the adverse effects of TNFα. Because MAP4K4 is a potent negative regulator of adipocyte function, an understanding of the mechanisms by which TNFα regulates MAP4K4 expression is of interest. Thus, for the first part of this thesis, I characterized the signaling pathways utilized by TNFα to regulate MAP4K4 expression in cultured adipocytes. Here I show that TNFα increases MAP4K4 expression through a pathway requiring the transcription factors activating transcription factor 2 (ATF2) and the JUN oncogene (cJUN). Through TNFα receptor 1 (TNFR1), but not TNFR2, TNFα increases MAP4K4 expression. This increase is highly specific to TNFα, as the inflammatory agents IL-1β, IL-6 and LPS did not affect MAP4K4 expression. In agreement, the activation of cJUN and ATF2 by TNFα is sustained over a longer period of time than by IL-1β in adipocytes. Finally, MAP4K4 is unique as the expression of other MAP kinases tested fails to change substantially with TNFα treatment. For the second part of this thesis, I assessed the role of MAP4K4 in macrophage inflammation in vitro and in vivo. To accomplish this task, pure β1,3-D-glucan shells were used to encapsulate siRNA. Glucan shells were utilized because they are effectively taken up by macrophages which express the dectin-1 receptor and they survive oral delivery. I demonstrate that these β1,3-D-glucan encapsulated RNAi particles (GeRPs) are efficiently phagocytosed and capable of mediating the silencing of multiple macrophage genes in vitro and in vivo. Importantly, oral treatment of mice with GeRPs fails to increase plasma IFNγ and TNFα or alter serum AST and ALT levels. Orally administered GeRPs are found in macrophages isolated from the spleen, liver, lung and peritoneal cavity and mediate macrophage gene silencing in these tissues. Utilizing this technology, I reveal that MAP4K4 augments the expression of TNFα in macrophages following LPS treatment. Oral delivery of MAP4K4 siRNA in GeRPs silences MAP4K4 expression by 70% and reduces basal TNFα and IL-1β expression significantly. The depletion of MAP4K4 in macrophages protects 40% of mice from death in the LPS/D- galactosamine (D-GalN) model of septicemia, compared to less than 10% in the control groups. This protection associates with significant decreases in serum TNFα concentrations following LPS/D-GalN challenge. Consistent with reduced macrophage inflammation, hepatocytes from mice treated orally with GeRPs targeting MAP4K4 present less apoptosis following LPS/D-GalN treatment. Thus, MAP4K4 is an important regulator of macrophage TNFα production in response to LPS. The results presented here add to the knowledge of MAP4K4 action in adipocyte and macrophage inflammation substantially. Prior to these studies, the mechanism by which TNFα controlled MAP4K4 expression in adipocytes remained unknown. Considering that MAP4K4 is a negative regulator of adipocyte function, identifying the mechanisms that control MAP4K4 expression was of interest. Furthermore, the role of macrophage MAP4K4 in LPS stimulated TNFα production was also unknown. To address this question in vivo, new technology specifically targeting macrophages was needed. Thus, we developed a technology for non toxic and highly specific macrophage gene silencing in vivo. Considering that macrophages mediate numerous diseases, the application of GeRPs to these disease models is an exciting new possibility.
105

Studying the Role of Peroxiredoxin 1 in ROS Modulation and Drug Resistance / Etude du rôle de la Peroxiredoxine 1 dans la modulation redox et la résistance aux drogues anticancéreuses

He, Tiantian 04 July 2014 (has links)
Les peroxyrédoxines sont des enzymes essentielles de la cellule. Outre leur rôle d’antioxydant, elles sont aussi des régulateurs de la signalisation cellulaire et des suppresseurs de tumeurs. La péroxiredoxine 1 (Prx1) est la plus abondante parmi les six isoformes de peroxyrédoxines humaines. Elle est fréquemment surexprimée dans plusieurs types de cellules cancéreuses, et on a pu associer Prx1 aux processus de carcinogenèse et de métastase, ainsi qu’à la résistance à la radiothérapie ou la chimiothérapie. Ainsi, Prx1 pourrait donc être une cible anticancéreuse intéressante. Au cours de ce travail de thèse, nous avons d’abord évalué l'impact d’une diminution de Prx1 (Prx1 knockdown (Prx1–)) sur la sensibilité cellulaire à des dizaines de médicaments anticancéreux dont la vinblastine, le taxol, la doxorubicine, la daunorubicine, l’actinomycine D, et le 5-fluorouracile, et d’agents connus pour provoquer la production d’espèces réactives de l’oxygène (ROS), dont le peroxyde d'hydrogène, le 2-phényléthyle isothiocyanate, le β-lapachone (β-lap) et la ménadione. Nous avons mis en évidence qu’une diminution de Prx1 augmente significativement la sensibilité des cellules à l'effet cytotoxique de la β-lap et de la ménadione, deux naphtoquinones possédant une activité anti-tumorale.Nous avons étudié les mécanismes responsables de l'augmentation de la cytotoxicité de la β-lap dans un contexte Prx1–. Nous montrons que la toxicité accrue de la β-lap dans des cellules Prx1– est due à une accumulation intracellulaire de ROS. Cet effet est dépendant de l’activité NADPH quinone oxydoréductase (NQO1) et s’accompagne d’une phosphorylation de c-Jun N-terminal kinases (JNK), protein 38 (p38), extracellular signal-regulated kinases (Erk) et des mitogen-activated protein kinases (MAPK), mais aussi d’une diminution des niveaux protéiques de la thiorédoxine 1. En se basant sur le fait que Prx1 est une enzyme antioxydante et un partenaire d'au moins ASK1 et JNK, deux éléments clés de la voie MAPK, nous proposons que la sensibilisation à la β-lap, observée après diminution de Prx1, est provoquée par une action synergique entre l'accumulation de ROS et l'induction de la voie MAPK, conduisant ainsi à l'apoptose.Nous avons ensuite étudié les mécanismes responsables de l'augmentation de la cytotoxicité de la ménadione dans le contexte Prx1–. La sensibilité accrue des cellules à l'effet cytotoxique de la ménadione et également associée à l'accumulation rapide et massive des ROS intracellulaire et à une mort cellulaire ressemblant à la nécrose programmée (necroptosis). L’accumulation de ROS induite par la ménadione et très rapidement détectée dans le cytosol, le noyau, et de façon encore plus importante, dans la matrice mitochondriale. Ce phénomène est en corrélation avec l'oxydation importante des thiorédoxine 2 et peroxiredoxine 3, deux protéines antioxydantes localisées dans la mitochondrie. La diminution de l’expression de Prx1 s’accompagne d’une augmentation des quantités tant de l’ARNm que de la protéine NRH: quinone oxydoréductase 2 (NQO2). Cette augmentation de l'activité de NQO2 est en grande partie responsable de l'accumulation intracellulaire de ROS et de la mort cellulaire après le traitement à la ménadione. Nos données révèlent que l’accumulation de ROS dans les cellules Prx1– provient de la résultante entre l’augmentation de leur production par NQO2 au cours du métabolisme de la ménadione et la diminution de leur élimination par Prx1. Enfin et de façon surprenante, selon la nature des naptoquinones (β-lap ou ménadione), les voies métaboliques qui conduisent à l'accumulation des ROS, ou les voies de signalisation et les mécanismes de mort cellulaire impliqués semblent être distincts. / Peroxiredoxins have multiple cellular functions as major antioxidants, signaling regulators, molecular chaperones and tumor suppressors. Peroxiredoxin 1 (Prx1) is the most abundant among the six isoforms of human peroxiredoxins. It is frequently over-expressed in various cancer cells, which is known associated with carcinogenesis, metastasis and resistance to radiotherapy or chemotherapy. Prx1 could thus be an interesting anticancer target. In this study, we first evaluated the impact of Prx1 knockdown (Prx1–) on cellular sensitivity to dozens of anticancer drugs including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D, and 5-fluorouracil, and of reactive oxygen species (ROS)-generating agents, including hydrogen peroxide, 2-phenylethyl isothiocyanate, β-lapachone (β-lap) and menadione. We observed that Prx1 knockdown significantly enhanced cancer cell sensitivity to β-lap and menadione, two naphthoquinones with anti-cancer activity.We first investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to β-lap in a Prx1 knockdown context. Prx1 knockdown markedly potentiated β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent and associated with the phosphorylation of c-Jun N-terminal kinases (JNK), protein 38 (p38) and extracellular signal-regulated kinases (Erk) proteins in mitogen-activated protein kinase (MAPK) pathways, and a decrease in thioredoxin 1 protein levels. Based on the fact that Prx1 is a major ROS scavenger and a partner of apoptosis signaling kinase 1 (ASK1) and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through the combined action of ROS accumulation and MAPK pathway activation, leading to cell apoptosis.We then investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to menadione in Prx1– cells. Enhanced sensitivity to menadione was associated with a rapid and significant intracellular ROS accumulation and necroptotic-like cell death. Menadione-induced ROS accumulation occurred immediately in the cytosol, the nucleus, and even more noticeably in the mitochondrial matrix, correlated with significant oxidation of both mitochondria-localized thioredoxin 2 and peroxiredoxin 3. Prx1 knockdown significantly up-regulated mRNA and protein levels of NRH: quinone oxidoreductase 2 (NQO2). Increased activity of NQO2 was largely responsible for menadione-induced ROS accumulation and consequent cell death. Our data indicate that massive ROS accumulation results from the combined effect of increased ROS generation by higher NQO2 activity during menadione metabolism, and diminished Prx1 scavenging activity. Finally and noteworthy, the metabolic pathways that lead to ROS accumulation, downstream signaling pathways and cell death mechanisms appear to be distinct for β-lap and menadione.
106

主權與治權: 新疆生產建設兵團研究. / Sovereignty and the power of governance: a case study of Xinjiang Production and Construction Corps / 新疆生產建設兵團研究 / CUHK electronic theses & dissertations collection / Zhu quan yu zhi quan: Xinjiang sheng chan jian she bing tuan yan jiu. / Xinjiang sheng chan jian she bing tuan yan jiu

January 2011 (has links)
魏英杰. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 189-196) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in Chinese and English. / Wei Yingjie.

Page generated in 0.3062 seconds