• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 20
  • 9
  • Tagged with
  • 69
  • 69
  • 69
  • 44
  • 33
  • 33
  • 33
  • 27
  • 26
  • 23
  • 19
  • 18
  • 17
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 16 December 2014 (has links) (PDF)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.
62

Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits / Wachstum von Kohlenstoffnanoröhren auf verschiedenen Untergrund/Katalysator-Systemen für zukünftige Leitungsverbindungen in integrierten Schaltkreisen

Hermann, Sascha 15 November 2011 (has links) (PDF)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.
63

Quantum transport in defective carbon nanotubes at mesoscopic length scales

Teichert, Fabian 17 July 2019 (has links)
This thesis theoretically investigates the electronic transport properties of defective carbon nanotubes (CNTs). For the defects the focus is set to vacancy types. The calculations are performed using quantum transport theory and an underlying density-functional-based tight-binding method. Two algorithmic improvements are derived, which accelerate the common methods for quasi one-dimensional systems for the specific case of (i) randomly distributed defects and (ii) long unit cells. With this, the transmission spectrum and the conductance is calculated as a function of the CNT length, diameter, chiral angle, defect type, defect density, defect fraction, and temperature. The diffusive and the localized transport regime are described by extracting elastic mean free paths and localization lengths for metallic and semiconducting CNTs. Simple analytic models for estimating or even predicting the conductance dependence on the mentioned parameters are derived. Finally, the formation of defect-induced long-range deformations and its influence on the conductance are studied.:1 Introduction 2 Fundamentals 2.1 Carbon nanotubes 2.1.1 Structure 2.1.2 Properties 2.1.3 Defects 2.1.4 Synthesis 2.1.5 Characterization 2.1.6 Applications 2.2 Electron structure theory 2.2.1 Introduction 2.2.2 Density functional theory 2.2.3 Density-functional-based tight binding 2.2.3.1 First-order expansion 2.2.3.2 Creation of the parameter set 2.2.3.3 Second-order expansion 2.2.3.4 Usage 2.3 Electron transport 2.3.1 Equilibrium Green’s-function-based quantum transport theory 2.3.2 Transport regimes 2.3.3 Classical derivation: drift-diffusion equation with a sink 2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619) A.1 Introduction A.2 Quantum transport theory A.3 Recursive Green’s function formalisms A.3.1 Forward iteration scheme A.3.2 Recursive decimation scheme A.3.3 Renormalization decimation algorithm A.4 Improved RGF+RDA A.5 Performance test A.5.1 Random test matrix A.5.2 Transport through carbon nanotubes A.6 Summary and conclusions B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026) B.1 Introduction B.2 Theoretical framework B.2.1 Transport formalism B.2.2 Recursive Green’s function formalism B.2.3 Electronic structure B.2.4 Strong localization B.3 Modeling details of the defective system B.4 Results and discussion B.4.1 Single defects B.4.2 Randomly distributed defects B.4.3 Localization exponent B.4.4 Diameter dependence and temperature dependence of the localization exponent B.5 Summary and conclusions Supplementary material C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57) C.1 Introduction C.2 Theoretical framework C.3 Modeling details C.4 Results and discussion C.4.1 Conductance C.4.2 Localization exponent C.4.3 Influence of temperature C.4.4 Conductance estimation C.5 Summary and conclusions D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039) D.1 Introduction D.2 Electronic transport D.3 Decimation technique and renormalization-decimation algorithm D.4 Renormalization-decimation algorithm for electrodes with long unit cells D.4.1 Surface Green’s functions D.4.2 Bulk Green’s functions and electrode density of states D.5 Complexity measure and performance test D.6 Exemplary results D.7 Summary and conclusions E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012) E.1 Introduction E.2 Theoretical framework E.3 Modeling details E.4 Results and discussion E.4.1 Transmission and transport regimes E.4.2 Energy dependent localization exponent and elastic mean free path E.4.3 Conductance, effective localization exponent and effective elastic mean free path E.5 Summary and conclusions Supplementary material F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023) F.1 Introduction F.2 Theory F.3 Results F.4 Summary and conclusions 3 Ongoing work 4 Summary and outlook 4.1 Summary 4.2 Outlook 5 Appendix 5.1 Bandstructure of graphene 5.2 Quantum transport theory and Landauer-Büttiker formula References List of figures List of tables Acknowledgement Selbstständigkeitserklärung Curriculum vitae List of publications / Diese Dissertation untersucht mittels theoretischer Methoden die elektronischen Transporteigenschaften von defektbehafteten Kohlenstoffnanoröhren (englisch: carbon nanotubes, CNTs). Dabei werden Vakanzen als Defekte fokussiert behandelt. Die Berechnungen werden mittels Quantentransporttheorie und einer zugrunde liegenden dichtefunktionalbasierten Tight-Binding-Methode durchgeführt. Zwei algorithmische Verbesserungen werden hergeleitet, welche die üblichen Methoden für quasi-eindimensionale Systeme für zwei spezifische Fälle beschleunigen: (i) zufällig verteilte Defekte und (ii) lange Einheitszellen. Damit werden das Transmissionsspektrum und der Leitwert als Funktion von CNT-Länge, Durchmesser, chiralem Winkel, Defekttyp, Defektdichte, Defektanteil und Temperatur berechnet. Das Diffusions- und das Lokalisierungstransportregime werden beschrieben, indem die elastische freie Weglänge und die Lokalisierungslänge für metallische und halbleitende CNTs extrahiert werden. Einfache analytische Modelle zur Abschätzung bis hin zur Vorhersage des Leitwertes in Abhängigkeit besagter Parameter werden abgeleitet. Schlussendlich werden die Bildung einer defektinduzierten, langreichweitigen Deformation und deren Einfluss auf den Leitwert studiert.:1 Introduction 2 Fundamentals 2.1 Carbon nanotubes 2.1.1 Structure 2.1.2 Properties 2.1.3 Defects 2.1.4 Synthesis 2.1.5 Characterization 2.1.6 Applications 2.2 Electron structure theory 2.2.1 Introduction 2.2.2 Density functional theory 2.2.3 Density-functional-based tight binding 2.2.3.1 First-order expansion 2.2.3.2 Creation of the parameter set 2.2.3.3 Second-order expansion 2.2.3.4 Usage 2.3 Electron transport 2.3.1 Equilibrium Green’s-function-based quantum transport theory 2.3.2 Transport regimes 2.3.3 Classical derivation: drift-diffusion equation with a sink 2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619) A.1 Introduction A.2 Quantum transport theory A.3 Recursive Green’s function formalisms A.3.1 Forward iteration scheme A.3.2 Recursive decimation scheme A.3.3 Renormalization decimation algorithm A.4 Improved RGF+RDA A.5 Performance test A.5.1 Random test matrix A.5.2 Transport through carbon nanotubes A.6 Summary and conclusions B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026) B.1 Introduction B.2 Theoretical framework B.2.1 Transport formalism B.2.2 Recursive Green’s function formalism B.2.3 Electronic structure B.2.4 Strong localization B.3 Modeling details of the defective system B.4 Results and discussion B.4.1 Single defects B.4.2 Randomly distributed defects B.4.3 Localization exponent B.4.4 Diameter dependence and temperature dependence of the localization exponent B.5 Summary and conclusions Supplementary material C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57) C.1 Introduction C.2 Theoretical framework C.3 Modeling details C.4 Results and discussion C.4.1 Conductance C.4.2 Localization exponent C.4.3 Influence of temperature C.4.4 Conductance estimation C.5 Summary and conclusions D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039) D.1 Introduction D.2 Electronic transport D.3 Decimation technique and renormalization-decimation algorithm D.4 Renormalization-decimation algorithm for electrodes with long unit cells D.4.1 Surface Green’s functions D.4.2 Bulk Green’s functions and electrode density of states D.5 Complexity measure and performance test D.6 Exemplary results D.7 Summary and conclusions E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012) E.1 Introduction E.2 Theoretical framework E.3 Modeling details E.4 Results and discussion E.4.1 Transmission and transport regimes E.4.2 Energy dependent localization exponent and elastic mean free path E.4.3 Conductance, effective localization exponent and effective elastic mean free path E.5 Summary and conclusions Supplementary material F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023) F.1 Introduction F.2 Theory F.3 Results F.4 Summary and conclusions 3 Ongoing work 4 Summary and outlook 4.1 Summary 4.2 Outlook 5 Appendix 5.1 Bandstructure of graphene 5.2 Quantum transport theory and Landauer-Büttiker formula References List of figures List of tables Acknowledgement Selbstständigkeitserklärung Curriculum vitae List of publications
64

Nanomanipulation and In-situ Transport Measurements on Carbon Nanotubes

Löffler, Markus 18 March 2010 (has links)
With the advent of microelectronics and micromechanical systems, the benefits of miniaturized technology became evident. With the discovery of carbon nanotubes by Iijima in 1991, a material has been found that offers superior porperties such as high tensile strength, excellent electrical and heat conductivity while being lightweight, flexible and tunable by the specific atomic arrangement in its structure. The first part of this thesis deals with a new synthesis approach, which combines the known routes of chemical vapour deposition and laser ablation. The results concerning diameter and yield fit well within an established model for the nucleation and growth of carbon nanotubes and extend it by considering a larger parameter space. Furthermore, conventional laser ablation has been used to synthesize C-13 augmented carbon nanotubes, whose diameters depend among the usual synthesis parameters also on the C-13 content, an influence which is in line with the changed thermal conductivities of isotope mixtures. Manipulation of carbon nanotubes inside a transmission electron microscope forms the second part of this thesis. With the help of an in-situ nanomanipulator, several experiments involving the mechanical and electrical properties of carbon nanotubes have been performed. Two-probe resistances of individual nanotubes have been measured and the observation of individual shell failures allowed for the determination of current limits per carbon shell. With the help of electrical current, a nanotube was modified in its electrical characteristics by reshaping its structure. By application of DC-currents or square current pulses, the filling of iron- or cementite-filled multi-wall carbon nanotubes has been found to move in a polarity-defined direction guided by the nanotube walls. Depending on the current, nanotube shape, and composition of the filling different regimes of material transport have been identified, including the reworking of the inner nanotube shells. The application of a high driving current leads to a complete reworking of the host nanotube and the current-induced growth of carbonaceous nanostructures of changed morphology. Utilizing the obtained results, a transport mechanism involving momentum transfer from the electron wind to the filling atoms and a solid filling core during transport is developed and discussed. Finally, measurements of mechanical properties using electrically induced resonant or non-resonant vibrations inside the transmission electron microscope have been observed and important mechanical parameters have been determined with the help of a modified Euler-Bernoulli-beam approach. / Mit dem Aufkommen von Mikroelektronik und mikromechanischen Systemen wurden die Vorteile miniaturisierter Geräte augenscheinlich. Mit der Entdeckung von Kohlenstoff-Nanoröhren durch Iijima 1991 wurde ein Material gefunden, welches überlegene Eigenschaften wie hohe Festigkeit, exzellente elektrische und Wärmeleitfähigkeit zeigt, während es zeitgleich leicht und flexibel ist. Diese Eigentschaften können durch eine Änderung der spezifischen atomaren Anordnung in der Nanoröhrenhülle beeinflusst werden. Der erste Teil dieser Dissertationsschrift behandelt einen neuartigen Syntheseansatz, welche die bekannten Syntheserouten der chemischen Gasphasenabscheidung und Laserablation kombiniert. Die Ergebnisse bezüglich des Durchmessers und der Ausbeute lassen sich gut mit einem etablierten Modell der Nukleation und des Wachstums von Kohlenstoff-Nanoröhren beschreiben - sie erweitern es, indem sie einen größeren Parameterraum berücksichtigen. Des Weiteren wurde konventionelle Laserablation benutzt, um C-13 angereicherte Kohlenstoff-Nanoröhren herzustellen, deren Durchmesser nicht nur von den üblichen Parametern, sondern auch vom C-13 Anteil abhängt. Diese Abhängigkeit geht mit der veränderten thermischen Leitfähigkeit von Isotopenmischungen einher. Die Manipulation von Kohlenstoff-Nanoröhren in einem Transmission-Elektronenmikroskop formt den zweiten Teil der Dissertationschrift. Mit Hilfe eines in-situ Manipulators wurden vielfältige Experimente durchgeführt, um die mechanischen und elektrischen Eigenschaften der Kohlenstoff-Nanoröhren zu bestimmen. Zweipunktmessungen des Widerstands einzelner Nanoröhren und die Beobachtung des Versagens einzelner Kohlenstoffschichten erlaubte die Bestimmung der Stromtragfähigkeit einzelner Hüllen. Mit Hilfe eines elektrischen Stromes konnte eine Nanoröhre durch die veränderung der Struktur in ihren elektrischen Eigenschaften verändert werden. Unter Verwendung dauerhaften oder gepulsten Gleichstroms konnte die Eisen- oder Zementit-Füllung der Kohlenstoff-Nanoröhren in eine polaritätsabhängige Richtung bewegt werden. Die Füllung wurde dabei durch die Wände der Nanoröhre geführt. Abhängig von Strom, Form der Nanoröhre und Zusammensetzung der Füllung ließen sich verschiedene Bereiche des Materialtransports identifizieren, u.a. das Umarbeiten einiger innerer Kohlenstoffschichten. Ein hoher Strom hingegen bewirkt eine Umarbeitung der kompletten Nanoröhre und strominduziertes Wachstum von Kohlenstoff-Nanostrukturen mit veränderter Morphologie. Mit Hilfe der gewonnenen Resultate wurde ein Transportmodell entwickelt, welches den Impulstransfer von Elektronen an Füllungsatome sowie einen festen Füllungskern während des Transports diskutiert. Messungen der mechanischen Eigenschaften, welche mit Hilfe von resonanter oder nicht-resonanter elektrischer Anregung von Schwingungen im Transmissions-Elektronenmikroskop durchgeführt wurden bilden den Abschluss der Arbeit. Durch die Beobachtungen konnten mit einem modifizierten Euler-Bernoulli-Balkenmodell wichtige mechanische Eigenschaften bestimmt werden.
65

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts

Zienert, Andreas 11 January 2013 (has links)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
66

Elektronischer Transport in defektbehafteten quasi-eindimensionalen Systemen am Beispiel von Kohlenstoffnanoröhrchen

Teichert, Fabian 27 January 2014 (has links)
Die vorliegende Arbeit beschäftigt sich mit den Transporteigenschaften defektbehafteter Kohlenstoffnanoröhrchen (CNTs). Als Beispiel werden dabei einfache und doppelte Fehlstellen betrachtet. Der Fokus liegt auf der Berechnung des Transmissionsspektrums und der Leitfähigkeit mit einem schnellen, linear skalierenden rekursiven Greenfunktions-Formalismus, mit dem große Systeme quantenmechanisch behandelt werden können. Als Grundlage wird ein dichtefunktionalbasiertes Tight-Binding-Modell verwendet. Der Einfluss der Defektdichte und des CNT-Durchmessers wird im Rahmen einer statistischen Analyse untersucht. Es wird gezeigt, dass im Grenzfall kleiner Transmission die Leitfähigkeit exponentiell mit der Defektanzahl skaliert. Das System befindet sich im Regime starker Lokalisierung, wobei die Lokalisierungslänge von der Defektdichte und dem CNT-Durchmesser abhängt.:1 Einleitung 2 Physikalische Grundlagen 2.1 Vom Graphen zum Kohlenstoffnanoröhrchen 2.1.1 Geometrische Struktur 2.1.2 Elektronische Eigenschaften 2.2 Schrödingergleichung 2.3 Dichtefunktionaltheorie 2.4 Tight-Binding-Verfahren 2.5 Dichtefunktionalbasiertes Tight-Binding-Verfahren 2.6 Fermienergie, Zustandsdichte und Bandstruktur 2.7 Landauer-Formalismus 2.8 Transportmechanismen und Lokalisierungseffekte 3 Greenfunktions-Formalismus 3.1 Definition der Greenfunktion 3.2 Greenfunktion für die Schrödingergleichung 3.3 Dezimierungstechnik 3.4 Einfacher Algorithmus für periodische Matrizen 3.5 Renormierungs-Dezimierungs-Algorithmus 3.6 Erste Nebendiagonalgreenfunktionsblöcke für periodische Matrizen 3.7 Rekursiver Greenfunktions-Formalismus für endliche Matrizen 4 Elektronische Struktur und quantenmechanischer Transport 4.1 Quantenmechanische Systeme mit Elektrodenkopplung 4.1.1 Reduktion und Lösung der Schrödingergleichung 4.1.2 Elektronische Struktur: Spektralfunktion und Zustandsdichte 4.1.3 Elektronischer Transport: Transmissionsspektrum und Strom 4.2 Quasi-eindimensionale Systeme 4.2.1 Zustandsdichte 4.2.2 Transmissionsspektrum 4.3 Numerischer Aufwand 5 Simulation: Software und Algorithmen 5.1 Atomistix ToolKit 5.2 DFTB-Parametersätze 5.3 LAPACK, BLAS 5.4 Überblick über selbst implementierte Programme 6 Ergebnisse 6.1 Testrechnungen 6.1.1 Genauigkeitstest 6.1.2 Geschwindigkeitstest 6.1.3 Parametersatz 6.1.4 Konsistenztest 6.2 Darstellung der Strukturen 6.3 Transmissionsspektren für einen Defekt 6.4 Transmissionsspektren für zwei Defekte 6.5 Transmissionsspektren für zufällig verteilte Defekte 6.6 Abhängigkeit der Leitfähigkeit von der Defektanzahl 6.7 Abhängigkeit der Leitfähigkeit vom CNT-Durchmesser 6.8 Abschließende Bemerkungen und Vergleich zu anderen Arbeiten 7 Zusammenfassung und Ausblick A Anhänge A.1 Orthogonale Transformation der p-Orbitale A.2 Operatordarstellung der Greenfunktion A.3 Berechnung der Greenfunktionsblöcke A.4 Transmission durch die doppelte Potentialbarriere Tabellenverzeichnis Abbildungsverzeichnis Literaturverzeichnis Danksagung Selbstständigkeitserklärung
67

Direkter Drucksensor unter Verwendung von Kohlenstoffnanoröhren-Nanokompositen

Dinh, Nghia Trong 28 April 2016 (has links)
Im Gegensatz zu herkömmlichen Dehnungsmessstreifen können Carbon nanotube (CNT)-basierte Komposite zusätzlich eine ausgeprägte Druck-abhängigkeit des Widerstandes aufweisen. Deshalb können Drucksensoren aus CNT-Nanokomposite ohne den Einsatz von Verformungskörpern wie z. B. Biegebalken aufgebaut werden. Die möglichen Anwendungsgebiete für diese direkt messenden Sensoren wurden in der vorliegenden Arbeit bei drei industriellen Anwendungen wie z. B. bei Robotergreifarmen gezeigt. Die Zielstellung dieser Arbeit ist die Entwicklung und Charakterisierung eines neuartigen Sensors aus CNT-Nanokomposite. Unter Verwendung von Multi-walled carbon nanotube (MWCNT)-Epoxidharz und interdigitalen Elektroden soll der Sensor auf wenigen Quadratzentimetern Drücke im Megapascal-Bereich und somit Kräfte im Kilonewton-Bereich messen können. Durch die Auswahl geeigneter Werkstoffe und die Modellierung mit der Finite Element Methode wurde der Sensorentwurf durchgeführt sowie der Messbereich abgeschätzt. Die Herstellung der MWCNT-Epoxidharz-Dispersion erfolgte durch mechanische Mischverfahren. Anschließend wurden aus der Dispersion druckempfindliche Schichten mit der Schablonendrucktechnik hergestellt. Dabei wurden die Herstellungs-parameter und besonders der Füllstoffgehalt der MWCNTs variiert, um deren Einflüsse auf das mechanische, thermische und elektrische Verhalten zu untersuchen. Die Charakterisierung der mechanischen Kenngrößen erfolgte mit Zugversuchen und dynamisch-mechanischer Analyse. In den Untersuchungen zeigen die MWCNT-Komposite eine signifikante Steigerung der Zugfestigkeit und eine Erhöhung der Glasübergangstemperatur gegenüber reinem Epoxidharz. Die Abhängigkeiten der Druckempfindlichkeit und der Temperaturempfindlichkeit vom Füllstoffgehalt wurden untersucht. Eine besonders hohe Druckempfindlichkeit, aber auch Temperaturempfind-lichkeit wurde bei Proben mit geringem Füllstoffgehalt (1 wt% und 1,25 wt%) festgestellt. Es ist also wichtig, die richtige Materialkombination für diese Art Sensor zu finden. Die realisierten Sensoren liefern zuverlässige Antwortsignale bei wiederholten Belastungen bis zu einer Belastung von 20 MPa (entspricht 2 kN). Zusätzlich wurde der Temperatureinfluss in einem Bereich von −20 °C bis 50 °C durch eine Wheatstonesche Brückenschaltung kompensiert. Die vorliegende Arbeit zeigt, dass eine zuverlässige Druckmessung mit einer Temperaturmessabweichung von 0,214 MPa/10 K gewährleistet werden kann. / In contrast to conventional metallic strain gauges, carbon nanotube (CNT) composites have an additional pressure sensitivity. Therefore, deformation elements such as bending beam is not needed by using pressure sensors, which are based on CNT nanocomposite. The possible areas of application for these pressure direct measured sensors were showed in three industrial application such as robot gripper. The focus of this work is the development and characterization of a new sensor manufactured from CNT nanocomposite. By using multi-walled carbon nanotube (MWCNT) epoxy and interdigital electrodes the sensor, which has a dimension of few square centimetre, should measure a pressure in mega Pascal range and hence a force in kilo newton range. By the selection of suitable materials and the modelling using finite element method, the sensor design as well as the measurement range were carried out. The MWCNT epoxy dispersion is manufactured by using a mechanical mixing process. Subsequent, the dispersion is used to fabricate pressure sensitive layers by stencil printing methods. Thereby, the fabrication parameters and especially the filler content of the MWCNTs were varied for the mechanical, thermal and electrical investigation. The characterization of the mechanical characteristic values were carried out by using tensile test and dynamic mechanical analysis. The results show a significant increasing of the tensile strength and glass transition temperature in comparison to neat epoxy. Additionally, the influence of the filler content to the pressure and thermal sensitivity were investigated. A highly pressure sensitivity but also a highly thermal sensitivity are obtained for samples with lower filler contents (1 wt% and 1.25 wt%). Therefore, a suitable material combination has to be chosen. The fabricated sensors show reliable response signals by repeated excitations up to 20 MPa (meets to 2 KN). Moreover, the temperature influence ranged from -20 °C to 50 °C was compensated with a Wheatstone bridge. This work demonstrate a direct pressure sensitive sensor with reliable response signals by a thermal deviation of 0.214 MPa/10K.
68

Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits: Growth of carbon nanotubes on different support/catalystsystems for advanced interconnects in integrated circuits

Hermann, Sascha 19 September 2011 (has links)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.
69

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 20 November 2014 (has links)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.:Abkürzungsverzeichnis Symbolverzeichnis Konstanten Mathematische Notation 1. Einleitung 2. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.1. Geometrische Struktur von Kohlenstoffnanoröhrchen 2.2. Elektronische Eigenschaften von Kohlenstoffnanoröhrchen 2.3. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.3.1. Möglichkeiten der Kontaktierung 2.3.2. Geometrie des Gates 2.3.3. Kenngrößen zur Transistor-Charakterisierung 3. Simulationsmethoden 3.1. Grundlegende Begriffe 3.1.1. Schrödinger-Gleichung, Wellen- und Basisfunktion 3.1.2. Elektronendichte 3.1.3. Zustandsdichte 3.2. Atomistische Elektronenstrukturrechnung 3.2.1. Dichtefunktionaltheorie 3.2.2. Erweiterte Hückelmethode 3.3. Quantentransport 3.3.1. Streumechanismen und Transportregime 3.3.2. Landauer-Büttiker-Formalismus 3.3.3. Nichtgleichgewichts-Green-Funktionen-Formalismus 3.4. Numerische Bauelementesimulation 3.4.1. Schrödinger-Gleichung in effektiver-Massen-Näherung 3.4.2. Beschreibung der Kontakte 3.4.3. Lösung der Poisson-Gleichung 3.4.4. Selbstkonsistente Rechnung 4. Entwicklung des Modellsystems 4.1. Beschaffenheit des Kanals 4.2. Eigenschaften der Gate-Elektrode 4.3. Eigenschaften der Source- und Drain-Elektroden 5. Ergebnisse und Diskussion 5.1. Numerische Bauelementesimulation 5.1.1. Extraktion der Parameter 5.1.2. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.1.3. Transistorverhalten und Transistorregime 5.2. Atomistische Simulation 5.2.1. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.2.2. Transistorverhalten und Transistorregime 5.2.3. Einfluss der Dotierung 5.3. Variation der Kanallänge und Methodenvergleich 5.3.1. Diskussion der Transfercharakteristiken 5.3.2. Verhalten von An/Aus-Verhältnis und Subthreshold-Swing 5.4. Variation der Gate-Länge bei fester Kanallänge und Methodenvergleich 5.5. Abschließende Bemerkungen und Vergleich mit Literatur 6. Zusammenfassung der Ergebnisse und Ausblick A. Elektronische Struktur des (7,0)-Kohlenstoffnanoröhrchens B. Simulationsparameter B.1. Parameter für Rechnungen mit Dichtefunktionaltheorie B.2. Parameter für Rechnungen mit erweiterter Hückelmethode B.3. Verwendete Randbedingungen zur Lösung der Poisson-Gleichung C. Vergleich zwischen Dichtefunktionaltheorie und erweiterter Hückelmethode C.1. Physikalische Betrachtung C.2. Rechenzeit und Konvergenz Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Danksagung Selbstständigkeitserklärung

Page generated in 0.1275 seconds