• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 26
  • 14
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development Of Fluorescent OLED And Analysis Of Integrated Optofluidic Lab-on-a Chip Sensor

Narayan, K 04 1900 (has links) (PDF)
Optofluidics is a new branch within photonics which attempts to unify concepts from optics and microfluidics. Unification of photonics and microfluidics enable us to carry out analysis of fluids through highly sensitive optical sensing device. These optical sensing devices are contained within a microchip, wherein light is made to pass through analyte (fluids of few nanoliters). The interaction between light and fluid gives rise to highly sensitive diagnostic systems. In this work the fabrication and performance characterization of a fluorescent green OLED for optofluidic applications is presented. The effect of thickness variation of hole injection (CuPc) and hole blocking (BCP) layers on the performance of fluorescent green organic light emitting diodes (OLEDs) have been studied. Even though these two organic layers have opposite functions, yet there is a particular combination of their thicknesses when they function in conjunction and luminous efficiency and power efficiency are maximized. The optimum thickness of CuPc layer, used as hole injection layer and BCP used as hole blocking layer were found to be 18 nm and 10 nm respectively. It is with this delicate adjustment of thicknesses, charge balancing was achieved and luminous efficiency and power efficiency were optimized. Such OLEDs with higher luminance can be monolithically integrated with other optical and fluidic components on a common substrate and can function as monolithically integrated internal source of light in optofluidic sensors. In this work the analysis of a fully integrated optofluidic lab-on-a-chip sensor for refractive index and absorbance based sensing using fluorescent green organic light emitting diode (OLED) as a light source is also presented. This device consists of collinear input and output waveguides which are separated by a microfluidic channel. When light is passed through the analyte contained in the fluidic gap an optical power loss due to absorption of light takes place. Apart from absorption a mode-mismatch between collinear input and output waveguide also occurs. The degree of mode-mismatch, quantum of optical power loss due to absorption of light by the fluid forms the basis of our analysis. Detection of minutest change in refractive index and changes in concentration of species contained in the analyte is indicative of sensitivity. Various parameters which influence the sensitivity of the sensor are mode spot size, refractive index of the fluid, molar concentration of the species contained in the analyte, width of the fluidic gap, waveguide geometry. By correlating various parameters, an optimal fluidic gap distance corresponding to a particular mode spot size to achieve the best sensitivity for refractive index based sensing and absorbance based sensing have been determined.
52

Optofluidique : études expérimentales, théoriques et de modélisation / Optofluidics : experimental, theoretical studies and modeling

Ali Aboulela Gaber, Noha 11 September 2014 (has links)
Ce travail porte sur l'étude de propriétés optiques des fluides à échelle micrométrique. A cet effet, nous avons conçu, réalisé et étudié différents types de micro-résonateurs optofluidiques, sous forme de laboratoires sur puce. Notre analyse est fondée sur la modélisation analytique et numérique, ainsi que sur des mesures expérimentales menées sur des micro-cavités optiques; nous utilisons l'une d'entre elles pour des applications de réfractométrie de fluides homogènes et de fluides complexes ainsi que pour la localisation par piégeage optique de microparticules solides. Nous nous sommes d'abord concentrés sur l'étude d'une nouvelle forme de micro-cavité Fabry-Pérot basée sur des miroirs courbes entre lesquels est inséré un tube capillaire permettant la circulation d'une solution liquide. Les résultats expérimentaux ont démontré la capacité de ce dispositif à être utilisé comme réfractomètre avec un seuil de détection de 1,9 × 10-4 RIU pour des liquides homogènes. De plus, pour un liquide contenant des particules solides, la capacité de contrôler la position des microparticules, par des effets de piégeage optique ou de liaison optique, a été démontrée avec succès. Dans un second temps, un résonateur optique est formé simplement à partir d'une goutte de liquide disposée sur une surface super-hydrophobe. La forme quasi-sphérique résultante est propice à des modes de galerie. Il est démontré que, jusqu'à des tailles de gouttelettes millimétriques, la technique de couplage en espace libre est toujours en mesure d'accéder à ces modes à très faible queue évanescente d'interaction, contrairement à ce qu'indiquait jusqu'ici la littérature. De tels résonateurs optofluidiques à gouttelette devraient trouver leur application notamment comme capteur d'environnement de l'air ambiant ou encore comme incubateur de micro-organismes vivants pouvant être suivis par voie optique / This work focuses on the study of optical properties of fluids at the micrometer scale. To this end, we designed, implemented and studied different types of optofluidic micro- resonators in the Lab-on-Chip format. Our analysis is based on analytical and numerical modeling, as well as experimental measurements conducted on optical microcavities; we use one of them for refractometry applications on homogeneous fluids and on complex fluids, as well as for the localization of solid microparticles by optical trapping. We first focused on the study of a new form of Fabry-Perot micro-cavity based on curved mirrors between which a capillary tube is inserted for injecting a fluidic solution. Experimental results demonstrated the ability of this device to be used as a refractometer with a detection limit of 1.9 × 10-4 RIU for homogeneous liquids. Furthermore, for liquid containing solid particles, the ability to control the microparticles position either by optical trapping or optical binding effects has been successfully demonstrated. In a second step, an optical resonator is simply formed from a liquid droplet placed on top of a superhydrophobe surface. The resulting quasi-spherical shape supports resonant whispering gallery modes. It is shown that, up to millimeter size droplets, the proposed technique of free-space coupling of light is still able to access these modes with very low evanescent tail interaction, contrary to what was indicated in the literature so far. Such optofluidic droplet resonators are expected to find their applications for environmental air quality monitoring, as well as for incubator of living micro-organisms that can be monitored optically
53

From Macro to Nano : Electrokinetic Transport and Surface Control

Pardon, Gaspard January 2014 (has links)
Today, the growing and aging population, and the rise of new global threats on human health puts an increasing demand on the healthcare system and calls for preventive actions. To make existing medical treatments more efficient and widely accessible and to prevent the emergence of new threats such as drug-resistant bacteria, improved diagnostic technologies are needed. Potential solutions to address these medical challenges could come from the development of novel lab-on-chip (LoC) for point-of-care (PoC) diagnostics. At the same time, the increasing demand for sustainable energy calls for the development of novel approaches for energy conversion and storage systems (ECS), to which micro- and nanotechnologies could also contribute. This thesis has for objective to contribute to these developments and presents the results of interdisciplinary research at the crossing of three disciplines of physics and engineering: electrokinetic transport in fluids, manufacturing of micro- and nanofluidic systems, and surface control and modification. By combining knowledge from each of these disciplines, novel solutions and functionalities were developed at the macro-, micro- and nanoscale, towards applications in PoC diagnostics and ECS systems. At the macroscale, electrokinetic transport was applied to the development of a novel PoC sampler for the efficient capture of exhaled breath aerosol onto a microfluidic platform. At the microscale, several methods for polymer micromanufacturing and surface modification were developed. Using direct photolithography in off-stoichiometry thiol-ene (OSTE) polymers, a novel manufacturing method for mold-free rapid prototyping of microfluidic devices was developed. An investigation of the photolithography of OSTE polymers revealed that a novel photopatterning mechanism arises from the off-stoichiometric polymer formulation. Using photografting on OSTE surfaces, a novel surface modification method was developed for the photopatterning of the surface energy. Finally, a novel method was developed for single-step microstructuring and micropatterning of surface energy, using a molecular self-alignment process resulting in spontaneous mimicking, in the replica, of the surface energy of the mold. At the nanoscale, several solutions for the study of electrokinetic transport toward selective biofiltration and energy conversion were developed. A novel, comprehensive model was developed for electrostatic gating of the electrokinetic transport in nanofluidics. A novel method for the manufacturing of electrostatically-gated nanofluidic membranes was developed, using atomic layer deposition (ALD) in deep anodic alumina oxide (AAO) nanopores. Finally, a preliminary investigation of the nanopatterning of OSTE polymers was performed for the manufacturing of polymer nanofluidic devices. / <p>QC 20140509</p> / Rappid / NanoGate / Norosensor
54

Engineering three-dimensional extended arrays of densely packed nano particles for optical metamaterials using microfluidIque evaporation / Mise en en forme de réseaux 3D de nanoparticules par voie microfluidique et applications aux métamatériaux dans le domaine du visible

Iazzolino, Antonio 19 December 2013 (has links)
Les métamatériaux sont définis comme étant des matériaux artificiels présentant des propriétés exotiques qui modifient la propagation des ondes électromagnétiques. À la fin des années 90, Pendry et al. démontrèrent théoriquement qu'il est possible de générer de tels métamatériaux, grâce à des structures particulières au sein du matériau (le fameux "splitring resonator"). Les métamatériaux sont donc structurés à une échelle inférieure à la longueur d'onde incidente, et décrits par une permittivité et une perméabilité effective. En 2000, Smith et al. fabriquèrent le premier métamatériau mais dans la gamme micro-onde. Les perspectives dans le domaine de l'optique (300800 nm) sont très prometteuses, mais le transfert des technologies utilisées en micro-ondes rencontre des obstacles. Un des défis dans le domaine émergent des métamatériaux est d'assembler à grande échelle des nanoparticules NPs (10-50 nm) en des super-réseaux présentant des propriétés collectives. Des nanostructures tridimensionnelles de matériaux nobles, ayant de fortes réponses plasmoniques, peuvent en effet générer des matériaux aux nouvelles propriétés optiques. Cette thèse fait partie du projet européen METACHEM, dont le but est de fabriquer des métamatériaux dans le domaine de l'infrarouge et du visible, en se basant sur l'utilisation de la nanochimie et de l'assemblage de matériaux. Plus précisément, ce travail de thèse se situe à l'interface entre les groupes de chimie qui synthétisent des nanoparticules en dispersion, et les groupes de caractérisation optique des matériaux. Dans ce travail de thèse, nous utilisons une technique originale la microévaporation basée sur les outils microfluidiques, afin de générer de façon contrôlée des assemblées 3D de nanoparticules (dimensions typiques 1 mm10 m 50 m). / 1-Microevaporation - Microfluidics is the branch of fluid mechanics dedicated to the study of flows in the channel withdimensions between 1 micron and 100 micron. The object of this chapter is to illustrate the basicprinciples and possible applications of microfluidic chip, called microevaporator. In the first part ofthe chapter, we present a detailed description of the physics of microevaporators using analyticalarguments, and describe some applications. In the second part of the chapter, we present theexperimental protocol of engineering of micro evaporator and different type of microfluidics device.2- On-chip microspectroscopy - The object of this chapter is to illustrate a method to measure absorption spectra during theprocess of growth of our materials in our microfluidic tools. The aim is to make an opticalcharacterization of our micro materials and to carry-out a spatio-temporal study of kineticproperties of our dispersion under study. This instrumental chapter presents the theoretical basis !of the method we used.3-Role of colloidal stability in the growth of micromaterials - We used combined microspectroscopy and videomicroscopy to follow the nucleation and growth ofmaterials made of core-shell Ag@SiO2 NPs in micro evaporators.!We evidence that the growth is actually not always possible, and instead precipitation may occurduring the concentration process. This event is governed by the concentration of dispersion in thereservoir and we assume that its origin come from ionic species that are concentrated all togetherwith the NPs and may alter the colloidal stability en route towards high concentration. 4-Microfluidic-induced growth and shape-up of three-dimensional extended arrays of denselypacked nano particles - In this chapter I present in details microfluidic evaporation experiments to engineer various denselypacked 3D arrays of NPs.5-Bulk metamaterials assembled by microfluidic evaporation - In this chapter I introduced the technique we used (microspot ellipsometry) in close collaborationswith V.Kravets and A.Grigorenko(University of Manchester) and with A.Aradian, P.Barois, A.Baron,K.Ehrhardt(CRPP, Pessac) to characterized the solids made of densely packed NPs. I describe theconstraints that emerge from the coupling between the small size of our materials and the opticalrequirements, the analysis and interpretation of the ellipsometry experiments show that for thematerial with high volume fraction of metal exists the strong electrical coupling between the NPsand the materials display an extremely high refraction index in the near infra-red regime.
55

OSTE Microfluidic Technologies for Cell Encapsulation and Biomolecular Analysis

Zhou, Xiamo January 2017 (has links)
In novel drug delivery system, the encapsulation of therapeutic cells in microparticles has great promises for the treatment of a range of health con- ditions. Therefore, the encapsulation material and technology are of great importance to the validity and efficiency of the advanced medical therapy. Several unsolved challenges in regards to versatile microparticle synthesis ma- terials and methods form the main obstacle for a translation of novel cell therapy concepts from research to clinical practice. Thiol-ene based polymer systems have emerged and gained great popular- ity in material development in general and in biomedical applications specif- ically. The thiol-ene platform is broad and therefore of interest for a variety of applications. At the same time, many aspects of this material platform are largely unexplored, for example material and manufacturing technology developments for microfluidic applications . In this Ph.D. thesis, thiol-ene materials are explored for use in cell encap- sulation. The marriage of these two technology fields breeds the possibility for a novel microfluidic cell encapsulation approach using a novel encapsulation material. To this end, several new manufacturing technologies for thiol-ene and thiol-ene-epoxy droplet microfluidic devices were developed. Moreover, core-shell microparticle synthesis for cell encapsulation based on a novel co- synthesis concept using a thiol-ene based material was developed and inves- tigated. Finally, a thiol-ene-epoxy system was also used for the formation of microwells and microchannels that improve protein analysis on microarrays. The first part of the thesis presents the background and state-of-the-art technologies in regards to cell therapy, microfluidics, and thiol-ene based ma- terials. In the second part of the thesis, a novel manufacturing approach of thiol-ene-epoxy material as well as core-shell particle co-synthesis in micro- fluidics using thiol-ene based material are presented and characterized. The third part of the thesis presents the cell viability studies of encapsulated cells using the novel encapsulation material and method. In the final part of the thesis, two applications of thiol-ene-epoxy gaskets for protein detection mi- croarrays are presented. / Inkapsling av levande celler i mikrokapslar för terapeutiska ändamål är mycket lovande för frmatida behandling av många olika sjukdomar. Emeller- tid är en behandlings effektivitet i hög grad beroende av vilka material som används för inkapsling och vilken teknisk lösning som används för att ska- pa mikrokapslarna. För närvarande återstår det många utmaningar för att omvandla grundforskningresultat till klinisk verklighet, vilken kräver mer än- damålsenliga tillvägagångssätt för att tillverka mikrokapslar i material som är kompatibla med användningsområdena. De senaste åren har tiol-en baserade polymerer har blivit mycket använda för materialutveckling i stort och för biomedicinska tillämpningar i synnerhet. Med tiol-en kemi kan en mycket stor mängd helt olika syntetiska material framställas, vilket gör tiol-ener intressanta för en mängd applikationer. För närvarande är dock mycket inom denna materialklass outforskat, t.ex. inom material och tillverkningmetodik för mikrofluidiktillämpningar. I denna avhandling används tiol-ener för cellinkapsling. Sammanslagning av dessa teknologier möjliggör en ny typ av cellinkapsling med nya materi- alegenskaper. En mängd olika tillverkningssätt där tiol-en eller tiol-en-epoxi används för droplet-mikrofluidiksystem utvecklades. Core-shell mikrokapsel- syntes för cell-inkapsling baserat på en ny metod för samtidig syntes av både core och shell utvecklades och karaktäriserades. Slutligen utvecklades ett tiol- en-epoxi system för enkel integrering med proteinmikroarrayer på objektsglas. I avhandlingens första del presenteras bakgrund och dagens bästa teknolo- gier för terapeutisk cellinkapsling, mikrofluidik och tiol-en baserade material. I avhandlingens andra del presenteras en ny tillverkningsmetod för mikro- strukturerade tiol-en-epoxi artiklar och samtidig syntes av core och shell för mikrokapslar med användande av mikrofluidik. I den tredje delen presenteras cellöverlevandsstudier för de celler som inkapslats med de nya materialen och de nyutvecklade metoderna. I den avslutande delen beskrivs två specifika fall där tiol-en-epoxi komponenter används för proteindetektion och mikroarrayer. / <p>QC 20171122</p>
56

Organische Photosensoren mit spektraler Anpassung

Jahnel, Matthias Stephan 24 March 2017 (has links)
Der Schwerpunkt dieser Arbeit liegt auf der Simulation, Entwicklung und Realisierung organischer Halbleiterbauelemente für Anwendungen im Bereich der Sensorik. Unter dem Gesichtspunkt der Fertigung sollen die organischen lichtemittierenden Dioden (OLEDs) und die organischen Photodioden (OPDs) einfach konzeptioniert sein. Je nach Bauelementetyp stehen für die Herstellung der organischen Schichten die Vakuumtechnologie oder lösungsmittelbasierte Prozesse zur Verfügung. Eine Besonderheit der Arbeit ist die Integration der OLEDs bzw. der OPDs auf Silizium-Substraten. Zudem wird die Integration von optischen Filtern für die OLEDs sowie die Etablierung einer Dünnschichtverkapselung für die OLEDs und OPDs gezeigt. Im ersten Teil der Arbeit wird anhand von Simulationen der Dünnschichtoptik erarbeitet, welche Möglichkeiten vorhanden sind, die Charakteristik der OLEDEmission bzw. die Absorptionseigenschaften der OPDs zu beeinflussen. Die Besonderheit der OLEDs für die Sensorikanwendungen liegt hierbei in der Licht-Emission mit geringen Halbwertsbreiten. Es wird anhand von Fluoreszenzmarkern (Rhodamin 6G und Nah-IR Alzheimer Farbstoff-4) und einem Chromoprotein (PAS-GAF-64) verdeutlicht, welche Möglichkeiten für die Sensorik durch die Anregung mit der OLED bestehen. Für die OPDs hingegen wird gezeigt, welche Möglichkeiten es für das Rodamin 6G gibt, mit dielektrischen Spiegeln die Absorptionseigenschaften so zu beeinflussen, dass die gewünschten spektralen Bereiche des Lichtes absorbiert bzw. reflektiert werden. Der zweite Teil widmet sich der Entwicklung der OLEDs anhand der Integrationsmöglichkeiten der dielektrischen Filter sowie deren Optimierung. Es wird am Beispiel des Rhodamin 6G gezeigt, dass für die OLED-Emission eine Halbwertsbreite von 18 nm beim Maximum von 530 nm hat. Durch die Verwendung von Entlastungsschichten zwischen OLED und dielektrischem Spiegel können die Kennwerte der OLED positiv beeinflusst werden und weiterhin werden das Temperaturverhalten der OLEDs sowie die Verspannungseigenschaften der dielektrischen Schichten betrachtet. Darüber hinaus steht im dritten Teil die Entwicklung der organischen Photodioden im Fokus. Hierbei wurden OPDs auf Glas- und Siliziumsubstraten gefertigt. Inhalt der Entwicklung auf Glassubstraten ist die Variation der absorbierenden Schicht und deren Einfluss auf die elektro-optischen Eigenschaften. Die Entwicklung der OPDs auf Siliziumsubstraten basiert auf der Integration sowie der Optimierung verschiedener Absorbersysteme, einer alternativen Anode und Kathode sowie der Integration einer Dünnschichtverkapselung. Im Ergebnis wurden OPDs entwickelt, die ohne Dünnschichtverkapselung einen Photonen-zu-Elektron-Umwandlungs-wirkungsgrad (IPCE) von ca. 37 % bei 550 nm haben. Der IPCE konnte zudem durch die Modifikation des Kathodenaufbaus um 4 % gesteigert werden. Die OPD-Bauelemente mit integrierter Dünnschichtverkapselung zeigen einen IPCE von ca. 33 % bei 550 nm. Weiterhin wurde die Methode der orthogonalen Photolithographie zur Strukturierung der OPDs verwendet und es erfolgte der Übertrag der OPD-Technologie auf 8-Zoll-Halbleitersubstrate. In diesem Zusammenhang sind zur Bewertung von Einflüssen, wie Wasser oder Sauerstoff, Untersuchungen zur Lebensdauer der OPDs durchgeführt worden. Die Kenntnis über den Einfluss der orthogonalen Photolithographie auf die Kennwerte der OPDs sowie der Einfluss der Dünnschichtverkapselung auf die Eigenschaften der OPDs und OLEDs sind essentiell für weitere Entwicklungen und zur Fertigung von Sensoranwendungen. / This work focuses on the simulation, development and implementation of organic semiconductor devices for applications in the field of sensor technology. From the viewpoint of manufacturing, organic light emitting diodes (OLEDs) as well as organic photodiodes (OPD) should be designed simply. Depending on the type of device vacuum technology or solvent-based processes are available for producing organic layer. A special feature of OLED- and OPD-devices is the integration on silicon substrates. In addition, the integration of optical filters for OLED-devices and the thin-film encapsulation of OLEDs and OPDs is shown. The first part of the work elaborates on simulations of thin film optics, describing options to control the characteristics of the OLED-emission or the absorption properties of the OPD. A special characteristic of OLEDs is the light emission with a small full with half maximum for sensor applications. By using of fluorescent markers Rhodamine 6G and near-IR dye Alzheimer-4 or the Chromoproteins (PAS-GAF-64) clarifies the possibilities for sensors by excitation with the OLED. In contrast, for the OPD is shown which solutions are available, to influence the absorption properties of Rhodamin 6G with dielectric mirrors so that desired spectral ranges of light are absorbed or reflected. The second part is dedicated to the development of OLEDs based on integration of dielectric filters and their optimization. It is shown by the example of Rhodamine 6G that the OLED emission represents a full with at half maximum of 18 nm at 530 nm. Furthermore, the temperature behavior of the OLEDs and the strain properties of the dielectric layers are considered. Organic photodiodes are in the focus of the third part of the development. These OPDs were made on glass and silicon substrates. The main objective of the development on glass substrates is the variation of the absorption layer and its influence to the electro-optical properties to increase the spectral sensitivity of the OPD. The development of OPD on silicon substrates deals with the integration and optimization of different absorber systems, an alternative anode and cathode as well as the integration of a thin-film encapsulation. As a result, the OPDs without a thin-film encapsulation have an incident photon-to-electron conversion efficiency (IPCE) of about 37 % at 550 nm. The IPCE was increased to 4 % by modifying the cathode structure. The OPD devices with integrated thin-film encapsulation showed an IPCE of about 33 % at 550 nm. Furthermore, the method of orthogonal photolithography was used to pattern the OPD and an upscaling of the OPD technology to 8-inch semiconductor substrates have been realized. In this context studies have been carried out to evaluate the influence of process and encapsulation to the lifetime of OPDs. The knowledge about the influence of the orthogonal photolithography to the characteristics of OPDs and the influence of the thin-film encapsulation on the properties of OPD and OLEDs is essential for further development and for the manufacturing of sensor applications.
57

Design improvements for an Organ-on-chip system : Implementation and evaluation of a bubble trap

Jonasson, Albin, Soto Carlsson, Linnéa January 2022 (has links)
The field of organ-on-chip is a relatively new area of research and builds upon the principle of engineering microfluidic systems to mimic the body’s internal environment as precisely as possible. Eventually these models could hopefully simulate whole organ-systems and enable the examination of the cell’s or organ’s reaction to foreign substances like new pharmaceuticals in a better way than current models. Previously this has been done with in vitro models such as petri dishes that only offer static culturing conditions. These are not very realistic environments compared to the human body where the cells are exposed to both variations in pressure and flows among other things. The purpose of this bachelor’s thesis project has been to evaluate and improve the design of an organ-on-chip system developed by the EMBLA-group at Ångströmslaboratoriet, Uppsala university. This has been done by evaluating the manufacturing process to find areas of improvements of the current chip design, as well as conducting a literature study to understand key components of similar organ-on-chip systems and see if it is possible to implement relevant parts to the organ-on-chip of this project. One of these important parts is a so-called bubble trap. A bubble trap is a construction that enables the capturing and elimination of bubbles in the system since the bubbles can harm the chips components, kill the cells, and compromise measurements.  A first prototype of the bubble trap was developed in Polydimethylsioxane (PDMS) and integrated on the EMBLA-group’s chip design. The principle behind the bubble trap was to use the natural buoyancy of the bubbles to trap them. This was done by introducing an upwards going slope before the inlets to the chip. In this manner the bubbles would float up to the top of the slope and accumulate at the roof as the liquid moved on into the chip without bubbles. To make the bubbles leave the chip a low-pressure chamber was added on top of the bubble trap to help the process of the bubble’s diffusion through the roof and out of the chip. The development of an improved chip design turned out to be a time-consuming endeavor and the time left for evaluation the functionality of the chip became too short. One test was performed which showed that the bubbles did accumulate at the top of the slope as expected, but it rapidly became full and thus started to let bubbles through to the microfluidic chip. The bubbles did not diffuse as efficiently as required and the removal of the bubbles became inefficient. To understand and correct the problem areas of this bubble trap design further tests and experiments will have to be conducted. / Organ-på-chip (Organ-on-chip eller OoC) är ett relativt nytt forskningsområde som bygger på att mikrofluidiksystem utvecklas till att efterlikna människokroppen i så stor utsträckning som möjligt. Detta då det är attraktivt att kunna undersöka cellers/organs beteende vid tillförsel av vissa substanser, till exempel nya läkemedel. I tidigare in vitro modeller har det endast observerats och utförts tester på celler odlade i statiska förhållanden vilket inte är likt den omgivning cellerna har i människokroppen där de tex utsätts för olika vätskeflöden och tryckförändringar.    Syftet med detta examensarbete har varit att utvärdera och förbättra designen på ett OoC system utvecklat av EMBLA-gruppen på Ångströmlaboratoriet vid Uppsala universitet. Detta har gjorts genom att studera den nuvarande tillverkningsprocessen för att hitta relevanta förbättringsområden samt att genom en litteraturstudie undersöka viktiga delar som bör ingå i dessa typer av system. En av dessa delar är en bubbelfälla (bubble trap eller BT) vilket innebär att det i chippet bör finnas ett sätt att eliminera/fånga upp bubblor. Detta eftersom bubblorna kan orsaka stor skada på både chipet, cellerna och mätningarna som skall utföras. En första prototyp av en BT design i Polydimetylsiloxan (PDMS) utvecklades och integrerades på EMBLA-gruppens OoC design. Principen bakom BT-designen var att utnyttja bubblornas flytkraft vilket gjordes genom att introducera en uppåtgående backe innan ingångskanalen. Bubblorna kan därmed flyta upp till toppen av lutningen och vätskan kan fortsätta in i mikrochipset utan bubblor. För att bubblorna ska ta sig ut ur chippet integrerades en tryckkammare ovanpå BT-designen för att få bubblorna att diffundera ut genom taket i den uppåtgående kammaren och ut ur chippet. Utvecklingen av den förbättrade chip-designen visade sig var tidskrävande och tiden för att utvärdera designens funktionalitet blev för kort. Ett test gjordes på den nya chip-designen vilket visade att den utvecklade BT som väntat fångade upp bubblor men att den snabbt blev full i och med att bubblorna inte diffunderade ut genom taket i den takt som behövdes. Vidare undersökningar och experiment behövs för att evaluera vad som orsakade detta och rätta till eventuella felkällor i design och experimentuppställning.

Page generated in 0.0321 seconds