Spelling suggestions: "subject:"nanosystems""
1 |
Nano-Système Magnéto-Électro-Mécanique (NMEMS) ultra-basse consommation pour le traitement et le stockage de l'information / Ultra-low power Nano-Magneto-Electro-Mechanical-System (NMEMS) for data processing and data storageDusch, Yannick 29 November 2011 (has links)
Avec le développement des nouvelles technologies de l'information et de la communication (NTIC), la consommation énergétique des systèmes de traitement et de stockage de données est devenue un problème majeur. Les limites des systèmes actuels à cet égard impliquent le besoin de technologies de rupture ultra-basse consommation.Cette thèse propose une approche originale de cette problématique, basée sur l'utilisation d'un élément magnétoélectrique composite (piézoélectrique/magnétostrictif) bistable et commandable de façon univoque, baptisé MELRAM.L'étude énergétique statique montre que la combinaison d'une anisotropie uni-axiale et d'un champ de polarisation magnétique statique définit deux positions d'équilibre stables perpendiculaires pour l'aimantation dans la partie magnétostrictive. L'application de contraintes piézoélectriques sur celle-ci permet de contrôler électriquement la position de l'aimantation. L'étude énergétique du système permet également de montrer la stabilité du système à long terme (10 ans), dans une large gamme de températures autour de l'ambiante, avec une barrière énergétique de 60kBT. L'étude dynamique, utilisant le modèle du macrospin, permet quant à elle d'exhiber un temps de réponse inférieur à 1ns. L'énergie dissipée lors de l'écriture, d'origine électrique et magnétique, est évaluée à 261kBT (1,1aJ), soit quatre ordres de grandeur en dessous de l'état de l'art.Plusieurs stratégies de lecture par vanne de spin et jonction tunnel magnétique sont proposées et commentées. Les premières réalisations d'éléments nanométriques magnétostrictifs sont présentées ainsi qu'une solution de polarisation magnétique intégrée par aimant permanent / As new information and communication technologies boom, the energy consumption of data processing and storage systems has become a major issue. The limits of state of the art systems regarding this gives rise to the need for ground-breaking ultra-low power technologies.This PhD thesis suggests an original approach of this issue, based on a bistable composite magnetoelectric element (piezoelectric/magnetostrictive) which can be controlled unequivocally, named MELRAM.The static energetic study shows that the combination of an uniaxial anisotropy and a static magnetic bias field defines two stable and perpendicular equilibrium positions for magnetization in the magnetostrictive part. The application of piezoelectric stress allows the electric control of the magnetization position.The energetic study also shows the long term (10 years) stability of the system, in a large temperature range around room temperature, with an energy barrier of 60kBT. The dynamic study, using the macrospin model, gives a response time less than 1ns. The dissipated energy during writing, of electric and magnetic origin, is estimated at 261kBT (1.1aJ), that is to say four orders of magnitude below the state of the art.Several reading strategies using spin valves and magnetic tunnel junction are proposed and commented. First realization of nanometer-sized magnetostrictive elements are presented as well as an integrated polarization solution, using permanent magnets
|
2 |
Nanoscale structuration effects on phonon transport at low temperatures / Transport quantique de phonons dans des nanostructures à très basse températureBlanc, Christophe 05 November 2013 (has links)
Cette thèse, intitulé « Effet de structuration à l'échelle du nanomètre sur le transport de phonon à basse température » c'est déroulé pendant trois ans au sein du groupe Thermodynamique et Biophysique des Petits Systèmes de l'Institut Néel.Il s'agit de comprendre et de contrôler le transport de chaleur au sein d'échantillons ayant des variations de l'ordre du nanomètre. Ces échantillons ont surtout été des nanofils suspendus en silicium. La fabrication a été réalisée au sein de l'Institut Néel. Lors de ces trois années, trois résultats importants ont été réalisés.Tout d'abord, il a fallu vérifier que le transport de chaleur ne soit pas dominé par un effet dû aux contacts entre le nanofil suspendu et le bain thermique. Cela a pu être mis en évidence grâce à la concordance entre les mesures et le modèle appelé Casimir-Ziman. Mais cela a surtout été vérifié avec des fils dont la jonction au bain thermique a été adaptée afin de permettre une transmission proche de l'unité. Ces fils profilés ayant la même conductance thermique que les fils avec une jonction abrupte au bain thermique, cela prouve que la transmission est toujours proche de 1.Ensuite des mesures sur des fils dont la section est ondulée ont permis de montrer une réduction de la conductance thermique. Cette réduction est expliquée par la présence de rétrodiffusion des phonons à la surface, ce qui entraîne une grande réduction de leur libre parcours moyen. Ainsi, les phonons dans un nanofil droit ont un libre parcours moyen jusqu'à 9 fois plus grand que dans ces nanofils à la section ondulée. Des simulations avec la méthode de Monte-Carlo ont permis de mettre en évidence cet effet.Si ces premiers résultats ont été réalisés pour des fils de silicium monocristallin, le dernier travail a porté sur l'étude d'échantillon en nitrure de silicium. Ce matériau est un matériau amorphe. La physique du transport de chaleur au sein des matériaux amorphes n'est pas encore complètement comprise. Cependant les mesures faites sur ces matériaux montrent un comportement similaire, tant qualitatif que quantitatif, pour presque tous les matériaux amorphes. Nous avons donc mesurés des échantillons de différentes sortes, afin de vérifier si ce comportement était toujours valable, lorsque la dimension de l'échantillon est réduite. Le résultat de nos mesures est que la dimension joue un rôle sur le transport. Tout comme dans les matériaux cristallins, la basse dimension de l'échantillon va limiter le transport de chaleur. Cependant le transport dans les échantillons de basses dimensions montre le même comportement qualitatif que les matériaux amorphes massifs. Ce travail peut permettre de donner des pistes pour la compréhension du transport de chaleur au sein des matériaux amorphes.En conclusion ce travail m'a permis de fabriquer puis de mesurer le transport de chaleur dans différents types d'échantillons. Les résultats obtenus permettent une meilleur connaissance du transport des phonons, et donc aident à ouvrir la voie vers un meilleur contrôle du transport de la chaleur. / This PhD entitled "Nanoscale structuration effect on the phonon transport at low temperature" take place for three years in the Thermodynamique et Biophysique des Petits Systèmes of the Institut Néel.The context of this PhD is to understand and control the heat transport in samples with variations at the nanoscale. These samples were mostly suspended silicon nanowires. The production was performed in the Néel Institute. During these three years, three important results have been demonstrated.First, we verify that heat transport is not dominated by an effect due to the contact between the suspended nanowire and the thermal bath. This has been demonstrated by the agreement between the measurements and the model called Casimir-Ziman. It was also mainly verified with wires whose junction to the thermal bath has been adapted to allow transmission close to unity. These profiles nanowires have the same thermal conductance as a nanowire with abrupt junction to the thermal bath. This proves that the transmission is always close to 1.Then measurements on nanowires whose section is corrugated have shown a reduction in thermal conductance. This reduction is explained by the presence of backscatter phonons at the surface, resulting in a large reduction of their mean free path. Thus, the phonons in a smooth nanowire have a mean free path up to 9 times greater than in these corrugated nanowires. Simulations with the Monte-Carlo method also demonstrate this effect.If these first results were achieved for monocrystalline silicon nanowires, my last work has focused on the study sample of silicon nitride. This material is an amorphous one. Physics of heat transport in amorphous materials is not yet fully understood. However, measurements on these materials show a similar behavior, both qualitatively and quantitatively, for almost all amorphous materials. We have measured samples of different kinds, to see if this behavior was still valid when the sample size is reduced. The result of our measurements is that the size plays a role in transport. As in crystalline materials, the small sample size will limit the heat transport. However transport in low-dimensional samples shows the same behavior qualitatively as in bulk amorphous materials. This can help provide clues for understanding the heat transport in amorphous materials.In conclusion, this work has allowed me to make and measure the heat transport in different types of samples. The results allow a better knowledge of the phonon transport, thus helping to pave the way towards a better control of heat transport.
|
3 |
Non-Orthogonality and Electron Correlations in Nanotransport : Spin- and Time-Dependent CurrentsFransson, Jonas January 2002 (has links)
<p>The concept of the transfer Hamiltonian formalism has been reconsidered and generalized to include the non-orthogonality between the electron states in an interacting region, e.g. quantum dot (QD), and the states in the conduction bands in the attached contacts. The electron correlations in the QD are described by means of a diagram technique for Hubbard operator Green functions for non-equilibrium states. </p><p>It is shown that the non-orthogonality between the electrons states in the contacts and the QD is reflected in the anti-commutation relations for the field operators of the subsystems. The derived forumla for the current contains corrections from the overlap of the same order as the widely used conventional tunneling coefficients. </p><p>It is also shown that kinematic interactions between the QD states and the electrons in the contacts, renormalizes the QD energies in a spin-dependent fashion. The structure of the renormalization provides an opportunity to include a spin splitting of the QD levels by polarizing the conduction bands in the contacts and/or imposing different hybridizations between the states in the contacts and the QD for the two spin channels. This leads to a substantial amplification of the spin polarization in the current, suggesting applications in magnetic sensors and spin-filters.</p>
|
4 |
Non-Orthogonality and Electron Correlations in Nanotransport : Spin- and Time-Dependent CurrentsFransson, Jonas January 2002 (has links)
The concept of the transfer Hamiltonian formalism has been reconsidered and generalized to include the non-orthogonality between the electron states in an interacting region, e.g. quantum dot (QD), and the states in the conduction bands in the attached contacts. The electron correlations in the QD are described by means of a diagram technique for Hubbard operator Green functions for non-equilibrium states. It is shown that the non-orthogonality between the electrons states in the contacts and the QD is reflected in the anti-commutation relations for the field operators of the subsystems. The derived forumla for the current contains corrections from the overlap of the same order as the widely used conventional tunneling coefficients. It is also shown that kinematic interactions between the QD states and the electrons in the contacts, renormalizes the QD energies in a spin-dependent fashion. The structure of the renormalization provides an opportunity to include a spin splitting of the QD levels by polarizing the conduction bands in the contacts and/or imposing different hybridizations between the states in the contacts and the QD for the two spin channels. This leads to a substantial amplification of the spin polarization in the current, suggesting applications in magnetic sensors and spin-filters.
|
5 |
Contribution to a kernel of symbolic asymptotic modeling software. / Contribution au noyau d'un logiciel de modélisation asymptotique symboliqueYang, Bin 16 December 2014 (has links)
Cette thèse est consacrée au développement d’un noyau du logiciel MEMSALab de modélisation parcalcul symbolique qui sera utilisé pour la génération automatique de modèles asymptotiques pourdes matrices de micro et nano-systèmes. Contrairement à des logiciels traditionnels réalisant des simulationsnumériques utilisant des modèles prédéfinis, le principe de fonctionnement de MEMSALabest de construire des modèles asymptotiques qui transforment des équations aux dérivées partiellesen tenant compte de leurs caractéristiques. Une méthode appelée ”par extension-combinaison” pourla modélisation asymptotique, qui permet la construction de modèle de façon incrémentale de sorteque les caractéristiques désirées soient incluses étape par étape est tout d’abord proposé pour lemodèle d’homogénéisation dérivation. Il repose sur une combinaison de méthodes asymptotiquesissues de la théorie des équations aux dérivés partielles et de techniques de réécriture issues del’informatique. Cette méthode concentre sur la dérivation de modèle pour les familles de PDEs aulieu de chacune d’entre elles. Un modèle d’homogénéisation de l’électro thermoélastique équationdéfinie dans un domaine mince multicouche est dérivé par utiliser la méthode mathématique danscette approche. Pour finir, un outil d’optimisation a été développé en combinant SIMBAD, une boite `aoutils logicielle pour l’optimisation et développée en interne, et COMSOL-MATLAB. Il a ´ et ´e appliquépour étudier la conception optimale d’une classe de sondes de microscopie atomique thermique et apermis d’ établir des règles générale pour leurs conception / This thesis is dedicated to develop a kernel of a symbolic asymptotic modeling software packageMEMSALab which will be used for automatic generation of asymptotic models for arrays of micro andnanosystems. Unlike traditional software packages aimed at numerical simulations by using pre-builtmodels, the purpose of MEMSALab is to derive asymptotic models for input equations by taking intoaccount their own features. An approach called ”by extension-combination” for the asymptotic modelingwhich allows an incremental model construction is firstly proposed for the homogenization modelderivation. It relies on a combination of the asymptotic method used in the field of partial differentialequations with term rewriting techniques coming from computer science. This approach focuses onthe model derivation for family of PDEs instead of each of them. An homogenization model of theelectrothermoelastic equation defined in a multi-layered thin domain has been derived by applyingthe mathematical method used in this approach. At last, an optimization tool has been developed bycombining a house-made optimization software package SIMBAD and COMSOL-MATLAB simulationand it has been applied for optimization of a SThM probe.
|
6 |
Design of New Up-conversion Systems for Anticancer TherapiesAnaya González, Cristina 19 July 2021 (has links)
[ES] El cáncer es una de las principales causas de muerte a nivel mundial. Los tratamientos anticancerígenos generalmente usados tienen diversos efectos secundarios producidos por su baja especificidad. Esta es una de las razones por las que se sigue en continua búsqueda de nuevos tratamientos.
Dentro de estas nuevas investigaciones se encuentra el extenso campo de la nanomedicina, es decir, el estudio de nuevos materiales a escala nanométrica. Esta permite reducir dichos efectos secundarios aumentando la selectividad y especificidad de los tratamientos. Dentro de los nanomateriales se encuentran las nanopartículas de upconversion que son capaces de absorber luz en el infrarrojo cercano y emitirla en la región ultravioleta-visible.
Por otro lado, desde el principio de la historia de la medicina la luz se ha empleado como forma de tratamiento teniendo un rol muy importante. Un inconveniente para dichos tratamientos suele ser la necesidad de emplear luz de la región ultravioleta-visible, pues las biomoléculas son capaces de absorber y produce daño celular.
En este contexto, la presente Tesis Doctoral se centra en el estudio de nuevas formas de tratamiento anticancerígeno combinando nanomedicina y luz. Para ello se han desarrollado nuevos fármacos fototóxicos y nuevos materiales capaces de ser activados mediante luz infrarroja cercana.
En primer lugar, se sintetizaron nuevas fluoroquinolonas para explorar sus propiedades fototóxicas para su uso en fotoquimioterapia (Capítulo 3 de la Tesis). Se estudiaron las características fotofísicas y fotoquímicas de los nuevos compuestos, además de su capacidad para producir mayor fototoxicidad en las células en comparación con las fluoroquinolonas como la lomefloxacina mediante la aplicación de luz ultravioleta.
En base a los resultados obtenidos se realizó un estudio para determinar las diferencias entre las interacciones de algunas fluoroquinolonas dihalogenadas, incluidas las comentadas anteriormente, y biomoléculas como ADN y proteínas. La reactividad de sus intermedios fotogenerados también se estudió en el Capítulo 4.
Tras conocer en profundidad la capacidad fototóxica de los nuevos fármacos, en el Capítulo 5 se llevó a cabo el diseño de un nanosistema compuesto por fluoroquinolonas y nanopartículas de conversión ascendente. Se demostró la alta capacidad fototóxica de este nuevo nanosistema. De esta manera, se generó actividad fototóxica a partir de una fluoroquinolona sin el uso de luz ultravioleta
Por otro lado, la formación de profármacos abre la puerta a la administración selectiva de fármacos contra el cáncer. Los profármacos consisten en la unión fotolábil de una molécula capaz de ser activada por la luz y el fármaco de interés. Sin embargo, un conocimiento profundo de las propiedades fotofísicas y fotoquímicas del fotodisparador y de los potenciales redox de ambos miembros de la diada puede ser crucial para obtener la fotoliberación deseada. Así, en el Capítulo 6, se destacó la relevancia de estos datos utilizando un profármaco formado por un derivado de cumarina como molécula fotoactivable y colchicina como fármaco.
Finalmente, en el Capítulo 7 se exploró la síntesis de un nuevo nanosistema que contiene un profármaco formado por un derivado de cumarina unido al fármaco contra el cáncer clorambucilo y nanopartículas biocomatibles de conversión ascendente. La adición de albúmina de suero humano como recubrimiento de las nanopartículas cumple la doble función de obtener nanopartículas biocompatibles y ser el lugar de carga del profármaco. / [CA] El càncer és una de les principals causes de mort a nivell mundial. Els tractaments anticancerígens generalment usats tenen diversos efectes secundaris produïts per la seva baixa especificitat. Aquesta és una de les raons per les que se segueix en contínua recerca de nous tractaments.
Dins d'aquestes noves investigacions es troba l'extens camp de la nanomedicina, és a dir, l'estudi de nous materials a escala nanomètrica. Aquesta permet reduir aquests efectes secundaris augmentant la selectivitat i especificitat dels tractaments. Dins dels nanomaterials es troben les nanopartícules de upconversion que són capaços d'absorbir llum en l'infraroig proper i emetre-la en la regió ultraviolada-visible.
D'altra banda, des del principi de la història de la medicina la llum s'ha emprat com a forma de tractament tenint un paper molt important. Un inconvenient per aquests tractaments sol ser la necessitat d'emprar llum de la regió ultraviolada-visible, ja que les biomolècules són capaços d'absorbir-la i produïr dany cel·lular.
En aquest context, la present Tesi Doctoral es centra en l'estudi de noves formes de tractament anticancerigen combinant nanomedicina i llum. Per això s'han desenvolupat nous fàrmacs fototòxics i nous materials capaços de ser activats mitjançant llum infraroja propera.
En primer lloc, es van sintetitzar noves fluoroquinolones per explorar les seves propietats fototòxiques per al seu ús en fotoquimioteràpia (Capítol 3 de la Tesi). Es van estudiar les característiques fotofísiques i fotoquímiques dels nous compostos, a més de la seva capacitat per produir major fototoxicitat en les cèl·lules en comparació amb les fluoroquinolones com la lomefloxacina mitjançant l'aplicació de llum ultraviolada.
En base als resultats obtinguts es va realitzar un estudi per determinar les diferències entre les interaccions d'algunes fluoroquinolones dihalogenades, incloses les comentades anteriorment, i biomolècules com ADN i proteïnes. La reactivitat de les seves intermedis fotogenerats també es va estudiar en el Capítol 4.
Després de conèixer en profunditat la capacitat fototòxica dels nous fàrmacs, en el Capítol 5 es va dur a terme el disseny d'un nanosistema compost per fluoroquinolones i nanopartícules de upconversion. Es va demostrar l'alta capacitat fototòxica d'aquest nou nanosistema. D'aquesta manera, es va generar activitat fototòxica a partir d'una fluoroquinolona sense l'ús de llum ultraviolada
D'altra banda, la formació de profàrmacs obre la porta a l'administració selectiva de fàrmacs contra el càncer. Els profàrmacs consisteixen en la unió fotolábil d'una molècula capaç de ser activada per la llum i el fàrmac d'interès. No obstant això, un coneixement profund de les propietats fotofísiques i fotoquímiques del fotodisparador i dels potencials redox de tots dos membres de la diada pot ser crucial per obtenir el fotoalliberament desitjada. Així, en el Capítol 6, es va destacar la rellevància d'aquestes dades utilitzant un profàrmac format per un derivat de cumarina com a molècula fotoactivable i colquicina com a fàrmac.
Finalment, en el Capítol 7 es va explorar la síntesi d'un nou nanosistema que conté un profàrmac format per un derivat de cumarina unit a l'fàrmac contra el càncer clorambucilo i nanopartícules biocomatibles de upconversion. L'addició d'albúmina de sèrum humà com a recobriment de les nanopartícules compleix la doble funció d'obtenir nanopartícules biocompatibles i ser el lloc de càrrega del profàrmac. / [EN] Cancer is one of the leading causes of death worldwide. Generally used anticancer treatments have various side effects produced by their low specificity. This is one of the reasons why the search for new treatments continues.
Within these new investigations is the extensive field of nanomedicine, which can be explained as the study of new materials on a nanometric scale. It can be translated in the reduction of these side effects by increasing the selectivity and specificity of the treatments. Among the nanomaterials are upconversion nanoparticles that are capable of absorbing light in the near infrared and emit it in the ultraviolet-visible region.
On the other hand, since the beginning of the history of medicine, light has been used as a form of treatment, having a very important role. A drawback for such treatments is sometimes the need to use light from the ultraviolet-visible region since biomolecules are capable of absorbing and causing cell damage.
In this context, this Doctoral Thesis focuses on the study of new forms of anticancer treatment combining nanomedicine and light. For this, new phototoxic drugs and new materials capable of being activated by near infrared light have been developed.
First, new fluoroquinolones were synthesized to explore their phototoxic properties for using in photochemotherapy (Chapter 3 of the Thesis). The photophysical and photochemical characteristics of the new compounds were studied, in addition to their ability to produce greater phototoxicity in cells than fluoroquinolones such as lomefloxacin by applying ultraviolet light.
Based on the results obtained, a study was carried out to determine the differences between the interactions of some dihalogenated fluoroquinolones including the above commented, and biomolecules such as DNA and proteins. The reactivity of their photo-generated intermediates was also studied in Chapter 4.
After a deep knowledge of the phototoxic capacity of the new drugs, design of a nanosystem composed of fluoroquinolones and upconversion nanoparticles was carried out in Chapter 5. The high phototoxic capacity of this new nanosystem was demonstrated. In this way phototoxic activity was generated from a fluoroquinolone without the use of ultraviolet light.
On the other hand, the formation of prodrugs opens a door to the selective administration of anticancer drugs. Prodrugs consist of the photolabile binding of a molecule capable of being activated by light and the drug of interest. However, a knowledge of the photophysical and photochemical properties of the phototrigger as well as the redox potentials of both members of the dyad can be crucial to obtain the desired photorelease. Thus, in Chapter 6, the relevance of these data was highlighted using a prodrug formed by a coumarin derivative as a photoactivatable molecule and colchicine as a drug.
Finally, in Chapter 7 the synthesis of a new nanosystem containing a prodrug formed by a derivative of coumarin linked to the anticancer drug chlorambucil, and upconversion biocompatible nanoparticles was explored. The addition of human serum albumin as a coating for the nanoparticles fulfills the dual function of obtaining biocompatible nanoparticles and being the loading site for the prodrug. / Anaya González, C. (2021). Design of New Up-conversion Systems for Anticancer Therapies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172665
|
7 |
From Macro to Nano : Electrokinetic Transport and Surface ControlPardon, Gaspard January 2014 (has links)
Today, the growing and aging population, and the rise of new global threats on human health puts an increasing demand on the healthcare system and calls for preventive actions. To make existing medical treatments more efficient and widely accessible and to prevent the emergence of new threats such as drug-resistant bacteria, improved diagnostic technologies are needed. Potential solutions to address these medical challenges could come from the development of novel lab-on-chip (LoC) for point-of-care (PoC) diagnostics. At the same time, the increasing demand for sustainable energy calls for the development of novel approaches for energy conversion and storage systems (ECS), to which micro- and nanotechnologies could also contribute. This thesis has for objective to contribute to these developments and presents the results of interdisciplinary research at the crossing of three disciplines of physics and engineering: electrokinetic transport in fluids, manufacturing of micro- and nanofluidic systems, and surface control and modification. By combining knowledge from each of these disciplines, novel solutions and functionalities were developed at the macro-, micro- and nanoscale, towards applications in PoC diagnostics and ECS systems. At the macroscale, electrokinetic transport was applied to the development of a novel PoC sampler for the efficient capture of exhaled breath aerosol onto a microfluidic platform. At the microscale, several methods for polymer micromanufacturing and surface modification were developed. Using direct photolithography in off-stoichiometry thiol-ene (OSTE) polymers, a novel manufacturing method for mold-free rapid prototyping of microfluidic devices was developed. An investigation of the photolithography of OSTE polymers revealed that a novel photopatterning mechanism arises from the off-stoichiometric polymer formulation. Using photografting on OSTE surfaces, a novel surface modification method was developed for the photopatterning of the surface energy. Finally, a novel method was developed for single-step microstructuring and micropatterning of surface energy, using a molecular self-alignment process resulting in spontaneous mimicking, in the replica, of the surface energy of the mold. At the nanoscale, several solutions for the study of electrokinetic transport toward selective biofiltration and energy conversion were developed. A novel, comprehensive model was developed for electrostatic gating of the electrokinetic transport in nanofluidics. A novel method for the manufacturing of electrostatically-gated nanofluidic membranes was developed, using atomic layer deposition (ALD) in deep anodic alumina oxide (AAO) nanopores. Finally, a preliminary investigation of the nanopatterning of OSTE polymers was performed for the manufacturing of polymer nanofluidic devices. / <p>QC 20140509</p> / Rappid / NanoGate / Norosensor
|
Page generated in 0.0416 seconds